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A model of strong one-dimensional Langmuir turbulence is considered in terms of the weak 
interaction of Langmuir solitons, plasma waves, and sound waves. With the assumption of an 
equilibrium distribution of free plasmons, the spectral characteristics of the Langevin source 
are determined and the Fokker-Planck equation for the distribution function of the Langmuir 
solitons is derived. For the thermodynamically equilibrium case, at a fixed number of plasmons 
in the system, the stationary distribution function, the partition function, and the dependences 
of the numbers of plasmons in the soliton and wave subsystems on the effective temperature 
are found. The proposed description method can also be applied to other essentially nonlinear 
quasiconservative systems whose dynamics are determined by the weak interaction of 
nonlinear structures. 

1. INTRODUCTION 

At present a large number of different physical phe- 
nomena can be described satisfactorily in terms of the weak 
interaction of linear modes. The theory of weak wave turbu- 
lence that describes such an interaction is valid, as is well 
known, only at relatively low levels of turbulent-energy den- 
sity. At higher levels a transition occurs to a strong wave 
turbulence characterized primarily by the presence of devel- 
oped, spatially localized coherent structures-kinks, soli- 
tons, collapsing wave cavities, etc., i.e., nonlinear wave dis- 
tributions corresponding to a bound state of a large number 
of spatial harmonics of the fields. 

It is natural to expect that when coherent structures are 
taken into account strong wave turbulence can be interpret- 
ed, as before, in terms of the weak interaction of linear and 
nonlinear modes. Indeed, because of the stability of the co- 
herent structures characterized by a large binding energy of 
the field "quanta" that form them, and hence by short re- 
arrangement times under weak external perturbations, their 
parameters vary slowly in comparison with the nonlinear- 
development times. Therefore, the hope that the interactions 
are weak is based essentially on the idea that the fact that 
coherent structures can be distinguished against the back- 
ground of weak turbulence implies a relatively small energy 
of interaction of these structures with each other and with 
the background. These ideas also dictate the language of the 
description-kinetic equations for weakly interacting linear 
and nonlinear oscillators. 

The basic idea is as follows. Assuming that the system is 
close to the state of thermodynamic equilibrium and that, 
consequently, the coefficients of the kinetic equations are 
determined by the equilibrium distribution function," we 
introduce an effective Langevin source. We find the spectral 
characteristics of the source from the requirement that the 
distribution of waves be an equilibrium (Rayleigh-Jeans) 
distribution. In this case the kinetic equation for the solitons 
is obtained by considering the problem of a probe soliton as a 
Brownian particle acted upon by the same Langevin source. 
The stationary solution of this equation is the desired equi- 
librium distribution of the coherent structures that makes it 
possible to construct the thermodynamics. 

A specific feature of the thermodynamics of strong 
wave turbulence in the presence of coherent structures is the 
nonlinear dependence of the energy of the state (soliton) on 
the number of quanta, and, as a consequence, the possibility 
of change of the entropy of the soliton subsystem upon 
change of the number of solitons with no change in the total 
number of quanta in the soliton subsystem. 

In this paper the indicated approach is realized for the 
example of strong one-dimensional Langmuir turbulence. 
The existing results of numerical and model experiments on 
the realization of strong Langmuir turbulence demonstrate 
that the turbulence parameters approach a quasi-equilibri- 
um regime in the sense that the time-averaged parameters of 
the turbulence (the spectra, average fields, average intensi- 
ties, soliton-number density, etc.) depend weakly on the ini- 
tial conditions and are evidently determined by macroscopic 
characteristics of the system (the pumping amplitude, the 
average plasma density, and the electron and ion tempera- 
tures) .Is2 

Qualitatively, this can already be understood on the ba- 
sis of an analysis of the elementary processes of interaction of 
Langmuir solitons with sound,3 and with free plasma waves4 
and plasma particles.' All these and similar processes corre- 
spond in fact to weak interactions and, when included in the 
picture of the turbulence, lead to corresponding kinetic ef- 
fects-the retardation of solitons by sound3 or particles, the 
isotropization of the ion-acoustic wave spectrum, etc. In or- 
der to complete the theory, generally speaking, it is neces- 
sary to take into account exchange of plasmons between the 
soliton and plasma-wave subsystems. This task was partially 
implemented in Ref. 6. However, the question of the possible 
stationary amplitude distributions of solitons and "free" 
plasma waves still remains open. The problem of the deter- 
mination of these distribution functions is the subject of the 
present paper. Here also we shall find the total number of 
solitons in the system without assuming that this number is 
smalL6 

In the Conclusion we discuss the conditions for applica- 
bility of the approach developed and its relation to existing 
ideas, and also discuss in detail the thermodynamic conse- 
quences that stem from the possibility of a gain in entropy 
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upon fractionation of the solitons with no change in the total 
number of plasmons in the soliton subsystem. 

2. THE LANGEVIN SOURCE 

We shall start from the equations of one-dimensional 
Langmuir turbulence in the quasi-hydrodynamic approxi- 
mation,' which, in dimensionless variables, have the follow- 
ing form: 

-idu/dt+d2u/dx2-lzu=O, 

dn/dt+du/dx=O. (2.1) 

13vldt=-an/dx-8)~ 12/dz. 

Here u is the amplitude of the plasma field, n is the perturba- 
tion of the plasma concentration, and u is the hydrodynamic 
velocity. It is known that this system conserves three inte- 
grals of the motion2': the number of quanta 

I= j Iu12dx, (2.2) 

the momentum, and the energy 

In the linear approximation the elementary excitations 
in this system are sound waves (phonons) and "free" plasma 
waves (plasmons) with the dispersion law 

where k is the wave number. In (2.3) and everywhere below, 
the frequency is reckoned from the unperturbed piasma fre- 
quency. 

In the nonlinear regime the elementary excitations also 
include solitons: 

where a is the size of the soliton, and its frequency is 

We have given the expressions (2.5) and (2.6), which are 
valid only for stationary solitons, since, as noted in the Intro- 
duction, developed turbulence is accompanied by effective 
hydrodynamic retardation of the solitons by phonons. 

It is obvious that the Hamiltonian of the noninteracting 
excitations. 

can be written in action-angle variables: 

where i labels a soliton with number of quanta (2.2) equal to 
Ji . 

The interaction of the plasmons and solitons leads to 
exchange of quanta between them (exchange of momentum 
can be disregarded, since the phonon system is responsible 
for t h ~ s  process). From the total energy (2.3) we separate 
out the interaction energy: 

which, in accordance with our ideas, we model by means of a 
Langevin source, starting from the requirement that for free 
plasmons we obtain the Rayleigh-Jeans distribution. Of 
course, when the effects of scattering of plasmons by solitons 
are taken into account, the plasmon dispersion law and, con- 
sequently, density of states are changed. We shall neglect 
these effects. 

The simplest source that leads to the Rayleigh-Jeans 
distribution has, in terms of the interaction energy, the fol- 
lowing form: 

Here u, is the amplitude of the linear "oscillator" with fre- 
quency 

and y, ( t )  is a Fourier component of the Langevin force 

k 

with 

<yk(t){/k'*(tf) )=l)ks(lc-k')6 (t-t ') ,  

The Fokker-Planck equation is obtained from the equa- 
tion of motion 

where y, is the effective damping constant that models the 
exchange of plasmons between the given state and other 
states. For the distribution function f(n, ) we have (see, e.g., 
Ref. 8) 

In the stationary state, assuming that the Einstein rela- 
tion 

D k = y k T  

is fulfilled, we have 

Taking into account the normalization condition, we have 

From (2.17) and (2.18), for the average number (n,) of 
plasmons in the state k we indeed have the Rayleigh-Jeans 
distribution 

In this case the concentration of plasmons is equal to 

The relation (2.20) clarifies the meaning of the param- 
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eter p, introduced in (2.12): It is the chemical potential of 
the plasmons, which makes it possible to ensure a finite value 
for the total number of plasmons in the plasma-wave subsys- 
tem and, as we shall see below, in the system as a whole. The 
introduction of the chemical potential corresponds to the 
traditional way of taking into account the possible exchange 
of quanta between subsystems. 

3. THE SOLITON DISTRIBUTION FUNCTION 

We shall now examine to what distribution the source 
(2.11 ) leads in the case of the soliton. If its frequency de- 
pends on its amplitude in the same way as for the standing 
soliton (2.6)-(2.9): 

where 

is the number of quanta in the soliton, then all the spatial 
Fourier harmonics oscillate with the same frequency. In 
(3.1 ), as in (2.12), we have introduced the soliton chemical 
potential p,. For the solitons in (2.11 ) it must be assumed 
that u, depends only on J and p, i.e., that the nonlinearity 
ensures rapid establishment of the soliton spectrum. Thus, 

Here, in place of (2.14) we have 

Here 

if we assume that y, depends only on k and does not depend 
on the frequency of the formation under consideration. 

Assuming the condition (2.13) to be fulfilled, for the 
soliton distribution function fc (J) we have 

where the soliton diffusion coefficient 

By means of simple calculations this expression can be trans- 
formed to the form 

Thus, in analogy with (2. IS), we have 

or, for the stationary state, 

J 

fc (J) = zC-l ~ X P  (-Pi J 1 mc ( J )  a]), (3.9) 
0 

A fundamental feature in (3.9) is the presence of Iw, I- 
the absolute value of the frequency; i.e., irrespective of 
whether the soliton energy increases or decreases with in- 
crease of J, rapidly oscillating solitons are improbable. Qual- 
itatively, this is entirely obvious if we note that such solitons 
interact weakly with the thermostat (for more detail, see 
Sec. 5). We also draw attention to the fact that (2.18) is a 
general expression that does not depend on the specific na- 
ture of the dependence w, (J) ( 3.1 ) . Therefore, the subse- 
quent calculations and estimates, given for Langmuir soli- 
tons with wc - pc - - P, are only a concrete example. 

4. THERMODYNAMICS OF STRONG LANGMUIR 
TURBULENCE 

Having obtained expressions for the distribution func- 
tions of free plasmons and solitons, we can now seek the 
parameters of stationary turbulence-the concentration n, 
of plasmons in the solitons, the concentration n, of free plas- 
mons, and the dependences of the chemical potentialsp, and 
p, on the temperature T (2.16) and on the "pumping" 
n = L - ' J 1 u 1 'dx (the total number of plasmons in the sys- 
tem per unit length). Here L is the length of the system. 

First of all we shall discuss the relation between the 
chemical potentials p, and pp in the state of equilibrium 
between the soliton and plasmon subsystems. With increase 
of the number of quanta in the plasmon subsystem its energy 
per quantum averaged over the equilibrium distribution 
function (i.e., the plasmon chemical potential) is positive. 
Analogously, it follows from the decrease of the energy of 
the soliton subsystem with increase of the number of quanta 
in it that p, < 0. Since the distributions (2.17) and (3.10) 
have the form of Gibbs distributions, in the equilibrium state 
the usual relation9 p l  /TI = p,/T, is fulfilled, and, since Tp 
= - T, = T >  0, we have 

We find the chemical potentialp ( T) from the condition 
fixing the total number of plasmons in the system: 

where n, is determined by the relation (2.20) and n,, in the 
approximation of an ideal gas of solitons, can be expressed in 
terms of the partition function 2, (3.10). For this we note 
that in the equilibrium state the probability of realization of 
N solitons with numbers of quanta Jl , J,, . .., J ,  in the inter- 
vals dJl  , ..., dJ, is, by virtue of the statistical independence, 
equal to 

N N 

where N! takes account of the fact that the solitons are identi- 
cal. Hence, the partition function of the soliton distribution 
is 
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Z N c =  (LZ, )  NIN! (4.4) 

Minimizing the free energy 7, = - TlnZ & with respect to 
N for a fixed number of quanta in the solitons, i.e., assuming 
that the chemical potential of the gas of solitons is equal to 
zero, we have, for N% 1, as usual,9 

This implies that the density of solitons is determined by the 
partition function of one soliton. From (4.5), for the con- 
centration of plasmons in the soliton subsystem in state of 
equilibrium we obtain 

since - 

Knowing n, and np (2.20), we write the equation for p :  

We note that the expression (3.10) of interest for Z,  has at 
w, = - $ /16 -p (here we have taken into account the 
sign of pc (4.1 ) ) a nontrivial dependence on only one pa- 
rameter 

It can be seen that the functiong(y) decreases monotonical- 
ly and has the following asymptotic forms: 

Herec, = r(4/3)=0.893, andc, = (1/3)r(2/3)=0.451. 
With allowance for (4. lo),  Eq. (4.8) can be conveniently 
transformed into 

which makes it possible to find the dependence of the chemi- 
cal potential on the temperature: 

In this representation the function F1',(x) is everywhere of 
order unity and has a characteristic scale in x = n3"/T that 
is also of order unity; the asymptotic values of the function 
both at small and at large values of the argument are equal to 
unity. By means of this function one can also write the 
numbers of quanta, namely, 

Taking (4.12) into account, we obtain from (4.16) 

or, in the variables n and T, 

It follows from this expression that the maximum value n, 
- n of the plasmon concentration in the solitons is reached at 
a temperature 

The dependence of the soliton-number density on the tem- 
perature has an analogous appearance. Moreover, at all tem- 
peratures it is found that 

N,/L=nC1"K (x) , (4.20) 

where K ( x  ) - 1. 
The decrease of the number of solitons at high tempera- 

tures is in agreement with the well-known result of Ref. 10 
concerning the suppression of the modulation instability in 
the case of a sufficiently high noise density of the plasma- 
wave subsystem. Estimates performed with the use of the 
results of Ref. 10 in the case of a Rayleigh-Jeans distribution 
of plasmons withp from (4.14) show that the characteristic 
temperature threshold for the creation of solitons (the 
threshold of the modulation instability) is of order n 3'2. 

5. CONCLUSION 

The most important feature of the soliton-distribution 
function (3.9) obtained in the Langevin-source model is its 
apparent difference from a Gibbs distribution (the tempera- 
tures of the subsystems have different signs). In fact, if H, 
- - J3, then it would appear that in the equilibrium state 

jc (I) -exp (-H,IT,) -exp ( + J 3 / T , ) ,  

i.e., a configuration with one soliton that has collected a 
large number of quanta is the most probable. But we ob- 
tained f, - exp( - J3 /Tp ), which, in the language of the 
Gibbs distribution fc - exp(H, /Tc ), corresponds to nega- 
tive temperatures T, = - Tp for the soliton subsystem. 
Formally, this is a consequence of the essentially nonlinear 
dependence of the (negative) soliton frequency on the num- 
ber of quanta in the soliton, as can be clarified as follows. 

We shall consider the soliton subsystem separately and 
shall assume that its equilibrium distribution function corre- 
sponds to the maximum of the entropy S = - (In f, ) for 
fixed integrals of motion. Then the standard derivation of 
the distribution function by the method of undetermined 
multipliers leads us to the usual expression In f, - T ,  ' (H, 
+ ,ucJ), where T and p, are found from the condition of 

conservation of the energy and number of quanta in the soli- 
tons. Here, since the problem under consideration is essen- 
tially nonlinear, we can convince ourselves that it has two 
different solutions: with T,, > 0 and with T,, < 0. The final 
choice of the value of T, of interest to us should be made 
using the entropy-maximum principle. At T,, the entropy is 
lower than at T,,, since the principal contribution to the 
integration over J in the expression for the entropy at T,, is 
made by large values of J ,  i.e., a configuration with a small 
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number of solitons is the most probable. For T, < 0 the upper 
limit of integration is unimportant, and, consequently, from 
the point of view of the entropy-maximum principle, the sit- 
uation with a negative temperature of the soliton subsystem 
is preferable. 

At first glance, this contradicts the condition for equi- 
librium of the soliton and plasma subsystems, in which Tp 
>O. However, the condition T, = T, used in traditional 
thermodynamics is justified only in the case when the energy 
of the subsystem depends linearly on the number of particles 
in all the allowed states, for then the only process that 
changes the state of the subsystem for a fixed number of 
particles is heating. In a system in which the energy depends 
nonlinearly on the number of particles in the bound state, 
there arises a further channel for variation of the state of the 
system-the channel arising from the creation (disappear- 
ance) of quasi-particles of the soliton type. Allowance for 
precisely this channel of exchange of energies in our case 
makes it possible to establish a relation between the tempera- 
tures. 

In order to find this relation, we shall determine the 
change AS, of the entropy of the soliton subsystem with 
allowance for the change of its temperature and of the num- 
ber of solitons in it upon transfer of an amount of heat AQ 
from the plasmon subsystem to the soliton subsystem. The 
chemical potential pC in the following relations will be as- 
sumed to be equal to zero, since here we shall not consider 
changes of the number of plasmons in the soliton subsystem. 
Let the parameters N and T, of the soliton subsystem be- 
come N + AN and T, + AT, after transfer of a quantity of 
heat AQ. The internal energy of the AN newly created soli- 
tons is equal to TcAN/3, while the change of the energy of 
the initial solitons as a result of their change of temperature 
is equal to NAT, /3. In this case the total change of energy of 
the soliton subsystem with allowance for the constancy of 
the number of plasmons [A(NTE,/3) = 0]  is equal to - 2E, 
AN/N and to AQ, from the law of conservation of energy. 
Here, EN = NT, /3 is the internal energy of the solitons for 
,Ll =o .  

We shall express the change of entropy in terms of AN 
and T,. Since the free energy of the soliton subsystem (see 
(4.4) and below) is equal to NT,, the entropy S, = 2N/3, 
and consequently, its change AS, = 2AN/3 = - AQ/T,. 
Here we have taken into account the relationship between 
ANand A& obtained above. Because of the fact that the total 
entropy change ASp + AS, = 0, while the change of the en. 
tropy ofthe plasmon subsystem is ASp = - A Q  /T, , we fin- 
ally have T, = - T,. 

We emphasize that the entropy gain on account of the 
formation of new solitons owes its origin to the nonlinear 
dependence of the soliton energy H, ( J )  on the number of 
quanta in the soliton, and for power dependences of the form 
H, - - J" entropy gain occurs for n > 1. In particular, in our 
example (2.9), n = 3. 

We shall discuss now the condition for applicability of 
the model considered. First of all we studied the equilibrium 
spectrum. As for weak turbulence," this is justified if the 
rate of pumping of energy into the system is small in com- 
parison with the effective frequency of the "collisions" re- 
sponsible for the establishment of equilibrium. This frequen- 
cy, evidently, must be compared with the mod- 

ulation-instability growth constant estimated for a given 
intensity of the spectrum. Usually, this condition is easy to 
fulfill, although an exact answer can be given only be experi- 
ment (model or numerical). 

Another restriction is associated with the assumption 
that the interaction is weak. The point is that, as follows 
from (4.20), the ratio of the soliton width ( - ) '  ) to the 
spacing between the solitons ( - Z  ,- '), equal to K2(x),  is of 
order unity at all temperatures. Generally speaking, the lack 
of dependence of the duty factor on the parameters is well 
known12 from numerical experiments and, in the regime of 
strong Langmuir turbulence, is consistent with the small- 
ness of the interaction energy in comparison with the self- 
energy of the solitons. In fact, forced acoustic oscillations 
excited at the beat frequency fl-a- '  have, according to 
(2.1 ), amplitude n,, -- 1, and for the interaction energy we 
have the estimate 

while the soliton energy is -a - 3 .  This implies that even for 
close packing of solitons we have the small parameter a 2 g  1. 

It should be noted that not all the results stemming 
from the proposed model agree with intuitive ideas. For ex- 
ample, the decrease of the number of solitons at high tem- 
peratures is understandable from the point of view of the 
theory of the modulation instability of the noise spectra of 
plasmons; the fractionation (coalescence) of solitons has al- 
ready been obtained in the numerical experiments of Ref. 13 
and was used in the theory of Ref. 14; the proportionality of 
the soliton-number density to the quantity n:" was also ob- 
served in the numerical experiments of Ref. 12. Not entirely 
understandable is the decrease of the number of plasmons in 
the solitons at low temperatures [see (4.18) 1. Formally, this 
result is evidently connected with the hypothesis of the va- 
lidity of the Rayleigh-Jeans distribution for free plasmons 
even at low temperatures. If we assume that free plasmons at 
low temperatures are "frozen out" (e.g., n, 
-exp [ - (aj + p ) / T  ] ), then it turns out that the number 
of solitons approaches a maximum, equal to n as T+ 0. 

In conclusion, we note that from the standpoint of the 
general theory of distributed Hamiltonian systems the separ- 
ating out of coherent states into groups by a method based on 
the Langevin equation, as shown in this paper, makes it pos- 
sible to find the equilibrium distributions of the fields even in 
the case of Hamiltonians that are not bounded from below, 
and this cannot be done by the known methods. l5  
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