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We consider a roughening phase transition on a surface whose imperfection can be described as 
the presence of random surface tension, as well as of random slopes. It  is shown that only the 
latter can alter the character of the critical behavior. In the case of sufficiently strong 
correlations (defects of the random field), the system remains rough at all temperatures. If the 
correlation function falls off more rapidly than l/r2, the phase transition has the same 
character as for uncorrelated random slopes. The latter case is analyzed by the 
renormalization-group method. It is shown that a universal relation exists between the 
transition temperature, the surface tension, and the variance of the random slopes. On the 
other hand, the relation between the transition temperature and the surface tension becomes 
non-universal. It  is shown that the variance of the random slopes has a limiting value above 
which the surface is rough at all temperatures. A second low-temperature transition into a 
rough phase is possible in a certain variance range. Quantum effects, which possibly play an 
important role at low temperatures, are not taken into account. 

Experimental research into the roughening phase tran- 
sition is still in its initial stage. This transition was directly 
observed only in a few cases: for surface solid-helium crys- 
talsI4 and for certain In a number of organic crys- 
tals there were observed evidences of this transition, such as 
vanishing of the faceting8 and a change in the morphology of 
growing crystak9 From the viewpoint of further study of 
the roughening transition, considerable interest attaches to 
the character of this transition on an imperfect crystal sur- 
face. Note that, despite the large number of theoretical pa- 
pers dealing with the roughening transition (see, e.g., Refs. 4 
and 10 and the literature cited therein), the influence of de- 
fects on this transition has, to our knowledge, hardly been 
discussed. There are, to be sure, a number of papers dealing 
with related systems, viz., two-dimensional isotropic mag- 
nets with various defects (see Ref. 11 and the literature 
therein) and solid films with impurities. l2  It is natural to use 
the results of thes studies to examine the influence of defects 
on the roughening transition. We shall show below, how- 
ever, that the last question must be analyzed separately. The 
present paper is devoted to an investigation of this kind. 

HAMILTONIAN OF A SYSTEM WITH DEFECTS 

We shall study the roughening transition using hereaf- 
ter the so-called discrete Gaussian model (see, e.g., Ref. lo),  
but it is more convenient at first to start from a continuous 
Gaussian model corresponding to a rough surface. The 
Hamiltonian is then of the usual form 

Here a is the surface-tension coefficient, and f the deviation 
of the surface from a certain reference plane. If the surface is 
imperfect, it is necessary to separate the "frozen" part of the 
displacement from those displacements which are due to 
thermal fluctuations. As a result we have 

where G a  ( r )  and p ( r )  are random functions. The function 

p(r)  can be called a random slope. The statistical properties 
of the random surface tension Sa ( r  ) and of the random slope 
p ( r )  depend on the type and placement of the crystal defects. 
We discuss below several possible cases. Since a ( r )  is per- 
fectly analogous to the "random temperature," the results 
obtained for defects of the "random temperature" type in 
two-dimensional spin systems" remain in force. It is shown 
in Ref. 11 that for a correlation function 

defects of this type are immaterial. In other words, all the 
universal relations of the theory of a phase transition in an 
ideal crystal remain in force also for crystals with defects of 
this kind. Using the so-called Harris criterion,13 we can 
show that for a roughening transition, when the correlation 
length diverges more rapidly than any power of the reduced 
temperature, this conclusion remains valid also for any pow- 
er-law decrease of the correlation function (Ga ( r  )Sa (r' ) ). 
Note that an analysis carried out for random surface tension 
is valid for all terms of even powers in $ with random coeffi- 
cients. 

We turn now to the study of the defects that produce the 
random slope. It will be shown below that they can in princi- 
ple also eliminate the phase transition. Indeed, the presence 
of a face corresponds to allowance, in the Hamiltonian, for 
the fact that the surface displacements (in units of the lattice 
constant) are whole numbers. Random slopes violate the 
absolute preference of whole-number displacements and at 
(p2) - 1 one can expect the surface to be rough. The exact 
conditions for the vanishing of the roughening transition, as 
will be shown below, are determined not only by the quantity 
(p2) but also by the form of the correlation function of the 
random slopes. What is actually important is only the longi- 
tudinal part of the correlation function. The characteristic 
form of this function for small k is 

of wka-', aZ2, 
< ~ i ( k ) ~ i  ( -k))  = 6ii{ 

o-wlnk,  a=2 ,  

where a is the exponent in the coordinate dependence of the 

1004 Sov. Phys. JETP 65 (5), May 1987 0038-5646/87/051004-04$04.00 @ 1987 American Institute of Physics 1004 



correlation function, and u and w are positive. We empha- 
size that when random slopes are considered, we are dealing 
with a large class of defects. Thus, defects of the random- 
field type might be taken into account by adding to Eq. (2)  
the term - h(r)$(r) ,  where h( r )  is the "random field." 
However, integration by parts reduces to the same form the 
term p$ contained in (2),  where h = div p. By considering 
correlation functions of the general form ( 3 )  we automati- 
cally take into account also such a possibility. Thus, corre- 
sponding to a random field is a slope correlation function of 
the form l/k 2. 

We introduce now a discreteness in our model. Replac- 
ing in (2) the integral by a sum over the lattice sites, and the 
gradient by a vector discrete difference, we obtain 

Here n are integers specified at the lattice sites. The partition 
function for the Hamiltonian (4)  can be expressed, using as 
for an ideal systemlo the Poisson summation formula, in the 
form 

m 

z = e rp  (-  &z (An(r) )' - a x  p ~ n )  

where 5 = a/T. This transformation is convenient because 
the discrete variable n is now replaced by the continuous 
variable p .  

Changing to a Fourier representation in the long-wave 
approximation, the sum over r in the argument of the expo- 
nential is transformed into 

Here k is the wave vector and q, , , P ,  , and m, are the Fourier 
components of the corresponding quantities. We can now 
integrate with respect top ,  and p ,*. Accurate to an insigni- 
ficant pre-exponential factor, this integration is equivalent 
to finding the minimum of the expression under the summa- 
tion sign in (6) and substitution of this minimum in the 
exponential. This operation changes the argument of the ex- 
ponential into an expression whose integral form is 

where J= I/5 = T/a.  The first term reduces in the usual 
fashion to the Hamiltonian of a two-dimensional Coulomb 
gas1' (this gives rise to an additional quantity y connected 
with the self-energy of the charge), while the second has the 
form of the Hamiltonian of the interaction of Coulomb 
charges with random dipoles, having imaginary dipole mo- 
ments. An effective Hamiltonian similar to (7) appears in 
problems dealing with the influence of random Dzyalo- 
shinskii-Moriya interactions on the critical properties of a 
two-dimensional isotropic magnet" and with the influence 
of random impurities on the melting of solid films. l2 There 
is, however, a substantial difference: in the last two cases the 

second term of (7 )  is preceded by an additional factor iJ. It 
will be shown that this influences the results substantially. 

ANALYSIS OF RECURRENCE RELATIONS 

Using the results of Ref. 11, we can obtain for the case 
w = 0 the renormalization-group equation 

I=-4n3~zyz, (8a) 

y=(2-nJ-no) y, (8b) 

a=-8n3Jayz. ( 8 ~ )  

At a = 0 Eqs. (8) reduce to the known Kosterlitz-Thouless 
equations (see, e.g., Ref. 10). 

Note that uis renormalizable, unlike in Refs. 1 1 and 12. 
Equations (8) must be solved with initial conditions a = a,, 
yo = exp( - r 2 J d 2 )  (Ref. 10). If the initial point, moving 
in accordance with (8), lands on they = 0 plane, the surface 
is rough, but if y begins to increase without limit, such a 
regime corresponds to a smooth surface." It can be seen 
from (8) that if the point is initially in the plane (y, J )  or 
(y,a), its trajectory does not leave the respective plane. At 
J = 0 ( T  = 0) the system (8) reduces to 

Obviously, its trajectories are straight lines parallel to they 
axis. Thus, the system undergoes at absolute zero a transi- 
tion from a smooth state to a rough one at the universal value 
a = 2/77. It is possible, of course, that allowance for quan- 
tum effects will change this result. 

It follows from (8a) and (8b) that the following rela- 
tion holds for any trajectory: 

The constant in (10) depends on the initial conditions. 
Thus, the system trajectories lie on the cylindrical surface 
( lo) ,  and their projection on the (J ,a)  plane is a parabola. It 
can be seen from (8b) that y decreases in the region 
a + J >  2/77 and increases in the region a + J <  2 / ~ .  If the 
initial point, starting from the region a + J >  2/77, lands on 
the line a + J = 277 in the y = 0 plane, the system is at a 
phase-transition point. The observable values a ,  and J, 
are obtained from the relations 

where a, and Jo are the corresponding initial values. We 
have hence for J, and a, 

The universal values J, = 2/n and a, = 2/77 are reached 
respectively only in a pure system and at absolute zero. How- 
ever, the sum of the observable values a, and J, at the 
phase-transition point remains universal. We note that it is 
precisely this sum which enters in the factor preceding the 
logarithm in the correlation function for the surface dis- 
placement 

Recall that in a defect-free system this factor is equal to T /  
a, . In our case it is necessary to relate J, to the surface 
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FIG. 1 .  Phase trajectories of the system (9) .  The dashed lines mark the 
positions of initial points, and the arrows the direction of motion. 

tension and not the sum J, + a, . Indeed, there are two 
sources of surface fluctuations, thermal motion and the pres- 
ence of defects. The latter lead to fluctuations even at T = 0 
and are manifested in elastic scattering of light by a surface. 
They can be easily singled out when considering a spatiotem- 
poral correlation function that takes at G T ,  the form 
6 ( W  )a, / k  + 2J?/(r2k 4/J, + w') , where I? is a measur- 
able transport coefficient (see, e.g., Ref. 10). The surface- 
tension coefficient, as the rigidity of the system to changes of 
its surface area, is related just to the second term. 

Linearization, with the aid of Eq. ( lo) ,  of the system 
(8 near the point a, , Jm , y = 0 reduces the system of three 
equations into a system of two of the Kosterlitz-Thouless 
form. The only difference is that the slope of the correspond- 
ing separatrices does not remain constant but increases con- 
tinuously from a certain constant value in the a = 0 plane to 
infinity in the J = 0 plane. Both equation systems, however, 
correspond to the same class of critical behavior. Summariz- 
ing all the foregoing, we can visualize the trajectories in the 
following manner (Fig. 1). 

In the (y, J) plane we have the usual Kosterlitz-Thou- 
less diagram. On moving along the line a + J = 2/77 this 
diagram is deformed: the trajectories lie on the cylindrical 
surface ( 101, and the slope of the separatrices increases con- 
tinuously. In the (y,a) plane they merge into the straight 
line a = 2/77, and we arrive at the system (9).  If the initial 
point is on a separatrix, the system is at a phase-transition 
point. Since the slopes of the separatrices increases on mov- 
ing along the line a + J = 2/77, it is clear that the ao(Jo) 
curve that constitutes the geometric locus of the transition 
points comes ever closer to the line a + J = 2/77 and they 
have a common point at J = 0, a = 2/77. It follows from the 
analysis ofthe system (8) that da&+ + oo as Jo-0. The 
a,( Jo) curve lands on the Jaxis at Jo = JR (at the transition 
point of the pure system). It can be easily shown that doo/ 
dJo<O as uo+O, Jo-J,. The initial growth of oo(Jo) is 
stopped by the weakening of the role of the initial conditions: 
yo = exp( - dJO/2) ,  and subsequently the slope of the 
curve is close to the slope of the line a + J = 2/72. 

Consequently, the function uo(Jo) has a maximum at a 

FIG. 2. Phase diagram in the variables u and J. The shaded region corre- 
sponds to the smooth phase. 

certain a, = a, > 2/77. The numerical value of a, is univer- 
sal. The positions of the phase-transition points and of the 
end points of the trajectories ( a  + J = 2/77, y = 0) are 
shown schematically in Fig. 2. 

At a, > a, the surface is rough at all temperatures. At 
2/77 < a, < a,, on moving from the high-temperature region, 
a transition first takes place into a smooth state, and then at 
lower temperature back to a rough state. 

We examine now how the results change if w+O. It is 
necessary to add to the recurrence relations (8) ,  which now 
contain also w, an equation for w. Following Ref. 14, we can 
verify that at small w this relation is 

This shows that at a >  2 the fixed point corresponds to 
w = 0, i.e., the critical behavior of the system reduces to the 
one described above. At a(2, w becomes substantial and the 
critical behavior changes. To assess its character we must 
turn to the perturbation-theory series iny, which was used to 
obtain the recurrence relations. Recall that this series di- 
verges in the parameter region corresponding to a smooth 
surface. At a(2 this series does not diverge. This means that 
the surface is rough at all temperatures. In particular, it 
turns out to be rough in the presence of defects of the ran- 
dom-field type. 

DISCUSSION OF RESULTS 

We comment now on the main results of the paper and 
discuss the feasibility of verifying them in experiment. Re- 
call that the essential role in the roughening transition is 
played by defects that produce random slopes. If the correla- 
tion function of the random slopes decreases slowly enough 
with distance (e.g., for defects of the random-field types), 
there is no roughening transition, and the surface is always 
rough. A strong correlation of the slopes can take place if the 
random slopes are produced by dislocation lines that pass 
through the entire crystal. If the decrease of the correlations 
is rapid enough, the character of the phase transition is the 
same as in the case of uncorrelated random slopes. The ran- 
dom slopes become uncorrelated, for example if dislocation 
dipoles are randomly distributed in the bulk of the crystal. 
Note that in this case the phase transition takes place also on 
a highly imperfect surface, all the way to (p2) - 1. Note also 
that the variance a, of the random slopes depends on the 
temperature. Near the phase-transition point it behaves like 
I/&, (Ref. 4) [Eq. ( 10) 1, i.e., on the rough-phase side we 
have the relation 
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This relation can be verified by investigating elastic scatter- 
ing of light by the surface. 

We note also that in our case the universal relation be- 
tween the surface tension and the transition temperature, 
which obtains for an ideal surface," no longer holds. None- 
theless, the sum of u and J, measured at the phase-transition 
point, is universal. At absolute zero there exists the universal 
value u = 2/?r above which, neglecting quantum effects, the 
surface is always rough. There exists a certain value uc > 2/ 
?r above which the surface remains rough at all tempera- 
tures. At 2/?r < uo < a,, as the temperature is lowered, a 
transition takes place from a rough to a smooth state, and 
then from a smooth to a rough one. Similar results for two- 
dimensional spin systems in solid films were obtained in 
Refs. 1 1 and 12. 

If the random-slopes correlation function differs from a 
delta function (but decreases rapidly enough with distance), 
the form of the correlation function changes substantially 
near the phase-transition point. Namely, the long-range- 
correlation amplitude on a smooth surface decreases expo- 
nentially rapidly to zero as the phase transition point is ap- 
proached, and remains equal to zero in the rough phase. 

This evolution of the correlation function is naturally 
reflected in the change of the character of the dependence of 
the elastic scattering of light on the scattering wave vector. 

We note in conclusion that in the case of a boundary 
between two phases in a solid, or in the case of a domain wall, 

it is important to take into account the defects that deter- 
mine the position of the boundary. For a crystal-melt (va- 
por) interface, however, they can hardly be regarded as fro- 
zen. We did not consider such defects. 

The authors thank A. A. Chernov for elucidation of this 
question. 
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