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A quantum-mechanical system described by an effective Caldeira-Leggett action in which 
dissipation is taken into account by means of a term that is nonlocal in imaginary time is 
considered. In the limit of large viscosity the probability of tunneling between minima of a 
sinusoidal potential with an arbitrary slope is calculated in the exponential approximation. The 
dependences found in various limiting cases agree with previously known dependences. 

1. INTRODUCTION tion (see, e.g., Ref. 4) : 

Although more than twenty years have passed since 
Feynman and Vernon' suggested that in the study of the 
effect of dissipation on the properties of quantum systems 
one can imitate the influence of the medium by interaction 
with a heat bath (an infinite set of oscillators), the applica- 
tion of this method to the study of the effect of dissipation on 
quantum-mechanical tunneling began only comparatively 
recently. It was first used for a calculation of the probability 
of tunneling in a dissipative system by Caldeira and Leggett, 
who studied the decay of a metastable state at temperature 
T = 0. Subsequently, this type of approach was extended to 
finite  temperature^^-^ and also to the case of a degenerate or 
quasidegenerate potential.G14 In all these papers a system 
describable by an effective Euclidean action 

was considered, where the propagator Go in the Fourier rep- 
resentation has the form 

(a quantum system with "nonlocal" dissipation). Here and 
below, m is the effective mass, 77 is the effective viscosity, and 
the Planck constant fi, like the Boltzmann constant k,, is set 
equal to unity. 

A systematic calculation of the tunneling probability 
(with allowance for the pre-exponential factor) has been 
carried out previously only for a potential V(q) in the form 
of a cubic pa rab~ la ,~  corresponding to the decay of a meta- 
stable state into the continuum. For a degenerate potential 
only the case of low viscosity (v2(m 1 V" 1 ), when the influ- 
ence of the viscosity on the form of the extremal trajectory 
and on the pre-exponential factor can be neglected, has been 
c o n ~ i d e r e d . ~ ~  In the present paper the tunneling probability 
will be calculated for a sinusoidal potential with arbitrary 
slope (see Fig. 1 ) : 

in the limit of large viscosity 

To calculate the tunneling probability we shall make 
use of the well known formula of the exponential approxima- 

where 

A=A[OI -ATq,], 

in which Q ( t )  is the cyclically closed extremal trajectory 
(bounce trajectory) constituting the saddle point in the 
functional space of trajectories, and q, is the value of q at the 
minimum (corresponding to the initial state of the system) 
of the potential ( lc). In the calculation of one of the deter- 
minants the zero eigenvalue should be omitted, and this is 
indicated by a prime. 

We emphasize that in the case of a degenerate potential 
(F = 0) at temperature T-0 the tunneling will certainly 
have an incoherent character (purely exponential relaxa- 
tion) only if the dimensionless viscosity a = (qi/277)77 ex- 
ceeds unity.' Only in this case can we introduce a probability 
(rather than an amplitude) of tunneling, and for a)  1 this 
probability can be calculated using the formulas ( 3  )-( 5 ). 
As the temperature rises or the difference in the depths of 

FIG. 1. 
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neighboring minima becomes larger the region of applicabil- 
ity of this description is extended to lower values of the vis- 
~ o s i t ~ . ' ~ , ' ~  

Among real physical systems possessing an effective ac- 
tion close in structure to ( 1 ) we can mention a Josephson 
junction shunted by a normal re~is tance. '~ , '~  In this case a 
nonzero value of F corresponds to a finite current flowing 
across the junction. This application is of special interest, 
since recently there has been active experimental investiga- 
tion of macroscopic quantum tunneling in Josephson junc- 
tions." Another example is the motion of a particle interact- 
ing with a medium in a crystalline potential under the action 
of an external force. It is assumed, in particular in Ref. 18, 
that such an approach makes it possible to describe the diffu- 
sion of muons in metals. 

2. THE EXTREMAL TRAJECTORY 

Variation of the action ( 1 ) leads to the following equa- 
tion for the classical (extremal) trajectories: 

d2 dq 
-m -- q+qT dtf ctg[nT (t- t ' )  ] - 

dt2 
-112T 

dt' 

The integral in the left-hand side of (6) should be under- 
stood in the sense of the principal value. The tunneling prob- 
ability is determined by the cyclically closed trajectory on 
which q passes twice through the maximum of the potential 
( lc).  When the condition (2 )  is fulfilled the first term in the 
left-hand side of (6)  can be omitted, after which the solution 
of (6) of interest to us can be found exactly: 

b + cos (2nTt)  F n  + arcsin - + -1 = Q ( 1 ) .  
a  V 2 

(7) 
Here 

a=sh 0 cos rp, b=ch 0 sin rp, 

On the trajectory (7) the action takes the value 

A [ Q ]  =a ln  
v 

F2+ (aT)'  

(where again we have omitted a small term proportional to 
m), while on the trajectory q = q, = - (qo/2.rr)arc- 
cos(F / V )  the action takes the value 

Subtracting (9)  from (8), we find the value of the exponent 
in (3):  

Here we also calculate the value of the normalization factor 
appearing in (5) : 

The quantity A was found for tunneling from left to 
right, to a lower-lying minimum (see the figure, in which 
F >  0).  In the calculation of the tunneling probability in the 
opposite direction to that in (10) we must add 2alF I/T, 
corresponding to another branch of the arctangent. 

An extremal trajectory of the form (7 )  exists only for 
T<To = (V2-~2)1'2/a.ForT>T,, ,andalsofor T =  To, 
the tunneling probability is determined by the trajectory 
q = q,, corresponding to the regime of thermal (activation) 
tunneling. In this case 

The quantity A,  whose temperature dependence in the 
ranges T< T,, and T> To is given by the formulas ( 10) and 
( 12), respectively, has a break at the point T = To. How- 
ever, as shown in Ref. 4, when one takes the fluctuations into 
account systematically by going beyond the limits of the 
Gaussian approximation, the singularity in T ( T) is 
smoothed out. Below we shall not be interested in the imme- 
diate vicinity of the point T = To. 

3. THE PRE-EXPONENTIAL FACTOR 

The calculation of the determinants appearing in (5)  
requires the second variation of the action and diagonaliza- 
tion of the resulting linearized operator. For the trajectory 
(7) the corresponding equation for the eigenfunctions has 
the form 

11ZT 

2 sh 0 [ch  0 + sin rp cos (2nTt)  
+ 2 n ~ q { c t g 0  - }P=2\q. (13) 

a2+ [ b + cos (2nTt)  ] 

Here we have kept the term proportional to m, which it will 
be necessary to take into account only for the large eigenval- 
ues. For m = 0 Eq. ( 13) has the following complete set of 
eigenfunctions and eigenvalues: 

cos - sin XO,, cos (2nTt)  
Po., = - 

a2+ [ b + cos (2nTt)  1' ' 

F2+ ( a T )  
v2 

sin (2nTt)  
P-'=a2+[b + c o s ( 2 n ~ t )  ]" 

A-*=o, 

sin cp 4- ch 0 cos (2nTt)  
@,, = cos[2nTt (n-2) -2 arctg 

sh 0 sin (2nTt)  
sin cp + ch 0 cos (2nTt)  

(n-2) -2 arctg 
sh 0 sin (2nTt)  

where 

A,  x [+ (ohz 0 - sin2 c p )  - (sh2 0 + sin2 cp)]} , 
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The eigenfunctions ( 17) and ( 18) are the wavefunctions of 
the semiclassical approximation, which, in the case under 
consideration (m = 0), gives the exact answer. The numera- 
tion of the eigenfunctions has been chosen in such a way that 
the absolute value of the label is equal to the number of pairs 
of zeros; negative labels correspond to odd eigenfunctions, 
and non-negative labels to even eigenfunctions. As we 
should expect, among the eigenvalues there is one negative 
(A, ) and one zero (A - , ) eigenvalue. The eigenvalues A * , 
with n>2 were found to be the same as in the problem of a 
cubic pa rab~ la .~  

For large labels of the eigenvalues one must include in 
the analysis the first term in the left-hand side of ( 13). In this 
case the last term in the left-hand side can be taken into 
account in the framework of perturbation theory,4 and this 
gives 

A,,=U+2nT (n-2) q+ (2nTn)'m. (20) 

Since for small n the expression (20) goes over into ( 19), 
following Larkin and Ovchinnikov4 we shall use formula 
(20) for all values n>2. 

For the trajectory q = q, the eigenfunction of the oper- 
ator SZA /Sq2 are ordinary sines and cosines, and the eigen- 
values are 

Substituting ( 1 1 ), ( 15), (20), and (21 ) into (5) ,  we obtain 

where n,,, and n ; ,  are the solutions of the quadratic equa- 
tions A, = 0 and A:, = 0, respectively. Expanding the gam- 
ma function in the limit of small m, we have 

4. DISCUSSION 

Thus, we have shown that, for a dissipative quantum 
system with the potential (lc), when the criterion (2) is ful- 
filled the exponential and pre-exponential factors in the 
expression (3)  for the tunneling probability are given by the 
formulas ( l o )  and (22), respectively. Of course, here the 
mass m should be not so small that the semiclassical approxi- 
mation ceases to be applicable. 

The problem considered allows us to pass to the limit of 
a potential of the cubic-parabola type. If we let qo go to infin- 
ity, having set 

the potential ( l c )  goes over into 

The potential (23) is a cubic parabola in which the mini- 
mum and maximum are at a distance q, from each other and 
the barrier height is egual to V,. In this limit process the 
expressions ( 10) and (22) go over into 

which coincide with the results obtained directly for a cubic 

parabola by Larkin and O v ~ h i n n i k o v . ~ ~ ~  
In the case of a degenerate potential (F = 0)  we shall 

have 

The power exponent 2a - 1 in the temperature dependence 
T (T)  coincides with that found earlier in the opposite limit- 
ing case (Ref. 8), and this indicates that this expo- 
nent is universal. We emphasize that the expression (24) is 
valid in the entire region O< T< To, and not only for T-0. 
The presence of the factor exp ( - 2a)  ensures for a 3 1 that 
r is also small when T- To, We note that, contrary to the 
assertion in Ref. 1 1, the expression (24) does not contain A: 
(where A, is the tunneling amplitude in the absence of dissi- 
pation) as a universal factor. This, incidentally, is fully un- 
derstandable, since the extremal trajectory (7)  differs 
strongly from the extremal trajectory in the absence of dissi- 
pation. 

In the incoherent-tunneling regime under considera- 
tion the diffusion coefficient can be expressed in a trivial 
manner in terms of the probability r of tunneling to the 
neighboring minimum: D = q:T (Ref. 9 ) ,  so that 
D ~ T ~ ~ - I .  

At T = 0 the r(F) dependence is determined by the 
same power exponent as the temperature dependence of the 
expression (24) : 

just as in the case of a low v i s c o ~ i t ~ . ~ - ~ ~  For F< V we can 
introduce a crossover temperature T. = F/a such that for 
T<  T, theexpression (25) applies, while for T. 4 T <  To the 
dependence (24) holds. 

Whatever the relative magnitudes of the parameters, 
the values of both A and B decrease monotonically with in- 
crease of the temperature; here r increases everywhere ex- 
cept in the small region 

where x ( a )  is the positive solution of the equation 

1 x3 
Z---- - arctg x. 

2a 1+x2 

Here, however, it is not entirely clear whether the related 
formulas (3)-(5) are applicable for at least a qualitative 
description of the behavior of the tunneling probability so 
close to the critical point a = 1, T = 0. 
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