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A frequency-degenerate four-wave polarization interaction in photorefractive crystals is 
investigated. This interaction is due to linear and circular photogalvanic currents and couples 
light beams with orthogonal polarizations. The properties of this interaction differ from that 
associated with the drift and diffusion of photoelectrons. The nonlinear equations are solved 
exactly for various experimental configurations. A study is made of the characteristics of phase 
conjugation. It is shown that the solutions are bistable when the nonlinearity is sufficiently 
strong and the distinguishing characteristics of the nonlinearity are determined. Studies are 
made of lasing due to the polarization interaction in the presence and absence of mirrors. 
Experiments on LiNb0,:Fe crystals are reported; they provide qualitative confirmation of the 
main theoretical ideas. The new effects are comparable in magnitude with those known 
previously. 

INTRODUCTION 

A giant optical nonlinearity, which can give rise to val- 
ues of the gain in the range 1-102 cm-' in interactions of 
light beams of intensities down to lop6 w/cm2, exhibited by 
photorefractive crystals (LiNbO,, BaTiO,, etc. ) with a qua- 
dratic nonlinearity of the refractive index has made these 
crystals the object of intensive investigations. l4 Experimen- 
tal and theoretical studies have been made of the nonlinear- 
ity and of its various manifestations, particularly in phase 
c~njugation.~ 

It has been found that spatial modulation of the optical- 
frequency permittivity A&(r), responsible for the interac- 
tion, is associated with charge separation because of the drift 
of inhomogeneously excited carriers in an external field,6 
their diffusion,' and photogalvanic From the phe- 
nomenological point of view the optical phenomena ob- 
served in photorefractive crystals can be regarded as a mani- 
festation of a frequency-degenerate four-wave interaction. 

It has been found that a very effective approach in theo- 
retical and experimental studies is provided by considering 
elementary nonlinear optical processes representing the in- 
teraction of two plane waves and the diffraction of light by a 
grating Ac(r) formed by these waves. An analysis of the 
dependences of the gain and of the diffraction efficiency on 
time, angle of convergence of light beams, their orientations, 
and the ratios of the intensities has made it possible to obtain 
detailed information on the mechanisms responsible for 
charge transport and on the fundamental parameters of 
crystals.' The feasibility of numerous applications has been 
demonstratedS4 An important feature of these investigations 
has also been the interaction of four waves in phase conjuga- 

for investigating a giant nonlinear interaction of waves with 
orthogonal polarizations, o and e waves. In this case the in- 
tensity of light is not modulated and the charge separation by 
drift and diffusion is impossible. The modulation of Ac ( r )  is 
due to specific photocurrents which oscillate in space and 
travel along directions that depend on the state of polariza- 
tion of light and not on its intensity.9911 Such currents always 
accompany the photogalvanic effect. The polarization inter- 
action of o and e waves and the writing of holographic grat- 
ings of Ac(r) by these waves were predicted in Ref. 12 and 
the experimental confirmation of these effects was first given 
in Ref. 13. 

The present paper describes an investigation of the four- 
wave polarization interaction in photorefractive crystals. 
The nonlinear equations describing the spatial behavior of 
the wave amplitudes are structurally different from those 
considered earlier,3 which is a manifestation of the gyrotro- 
py of a crystal affecting optical properties. In spite of the 
non-Hamiltonian nature of the interaction of the waves, 
these equations include a number of quantities which are 
conserved. They can be used to find the general solution of 
the nonlinear system of equations and to analyze in detail 
this solution in the case of specific experimental configura- 
tions. It is found that manifestations of the polarization in- 
teraction in two-beam interaction configurations, in phase 
conjugation, and in optical lasing are qualitatively different 
from those considered earlier. Experiments on LiNbO, crys- 
tals are reported: they confirm qualitatively the main theo- 
retical propositions and show that the magnitudes of the new 
effects are comparable with the already known effects asso- 
ciated with the diffusion-drift nonlinearity. 

tion  system^.^,^ Photorefractive crystals are among the most 
convenient and promising materials for this application. $1. PHOTOGALVANIC NONLINEARITY MECHANISM 

A great majority of the studies carried out so far have Let us assume that o and e waves of the same frequency 
been confined to waves of one type: ordinary (0)  or extraor- propagate in the plane of a crystal perpendicular to the polar 
dinary (e ) .  In this situation the effect of each of the three c axis (Fig. la) .  The complex amplitude of the field is given 
nonlinearity mechanisms-drift, diffusion, and photogal- by 
vanism-is related directly to spatial modulation of the in- 
tensity of light. E=exp (-id) [e,a, exp (ik,r) +e,a, exp (ik,r)] , ( 1.1 ) - 

Photorefractive crystals provide a unique opportunity where e , ,  = ez,  are unit vectors of the polarization. The 
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FIG. 1.  Experimental configurations used in the study of the polarization 
interaction of o and e waves: a)  two-beam interaction; b) opposed four- 
wave interaction (reversing mirror); c )  lasing in a linear resonator with 
one pump wave (self-pumped reversing mirror); d)  lasing in a semilinear 
resonator with two pump beams. 

change in the permittivity tensor responsible for the interac- 
tion is 

Ae,,(r)=Ae,,, exp [i(k,-k,)r] + c.c., p=x, y. (1.2) 

In view of the orthogonality of e, and e, ,  the total light 
intensity does not exhibit spatial oscillations with 
k = k, - k,. Therefore, neither the diffusion of photocar- 
riers nor their drift in an external field contribut,es to the 
formation of a grating of A E ( ~ ) .  However, the photocurrent 
associated with the photogalvanic effect has a spatially oscil- 
lating component, which is responsible for the interaction. 
The general phenomenological expression for the current is9 

where =PA:,, is the photogalvanic tensor. Not all the 
components of p glve rise to spatial oscillations of the cur- 
rent in our geometry. In crystals of C,, , C,, , C,, classes 
(and practically all the photorefractive ferroelectrics belong 
to these classes) the interaction is due to the following com- 
ponent of the current: 

Here, P,,, are independent components of the photogalvanic 
tensor described by s = ( 1 3 1 + l 1 3 ) / 2 ,  and 
Pa = - i(OIl3 - P131)/2. The constantfl, ofa photorefrac- 
tive material is associated with the gyrotropic properties of 
the medium; the corresponding contribution to j we call cir- 
~ u l a r . ~  Using Eq. ( 1.1 ), we find from Eq. ( 1.4) that 

j=2eolaoael [p, cos (kr+cp)-pa sin (kr+cp) I ,  cp=cp,-c~,, 

(1.5) 

where p , ,  are the phases of the o and e waves. It follows 
from Eq. ( 1.5) that oscillations of the current (arid of AE) 
governed by Ps and Pa are phase-shifted relative to one an- 
other by 77/2. The s and a spatial gratings can be regarded as 
unshifted and shifted, respectively. These gratings corre- 
spond respectively to the local and nonlocal non:linear re- 
sponse of the medium.' 

We shall now calculate the change in the permittivity 

A E , ~ ,  induced by the 'current of Eq. ( 1.5). It can be ex- 
pressed in terms of the electrostatic field g ( r )  = g 
exp(kr )  + C.C. and in terms of the constant r,, of the linear 
electrooptic effect2*12: 

where n is the refractive index. We shall ignore the small 
correct$ns associated with birefringence. In the determina- 
tion of O we must bear in mind that only the component of j 
parallel to the lattice vector k is respons5le for the charge 
separation process. Therefore, we have 8 = s 8 ,  s = k/k, 
and 

8 8  8 4n 
- -k - = - - (P;+ip.) (se,) a,a,*, 
at t* EL 

where t, = E~ / 4 m  is the dielectric relaxation time. In the 
milliwatt range of optical powers typical values of t, lie 
within the range lo-' - lo2 sec; a is the electrical conduc- 
tivity (including the photoconductivity ); E,  is the transverse 
static permittivity. Under steady-state conditions, we have 

We must mention two factors which distinguish the optical 
system shown in Fig. l a  from conventional 1) the 
conductivity a does not experience spatial oscillations; 2 )  
there is no spatially uniform component of $, . This enables 
us to obtain the above simple relationships ( 1.7) and ( 1.8) 
without additional assumptions about the low intensity of 
one of the light beams and about the nature of the boundary 
conditions (insulated or short-circuited crystal). 

The material equations ( 1.6)-( 1.8) describe the non- 
linear response of a photorefractive medium. Equations for 
the amplitudes of light waves are obtained from the Maxwell 
equations by going over to envelopes in the usual manner. 
The time derivatives of a , ,  can then be ignored for all practi- 
cal cases. This means that the light "follows" the adiabatic- 
ally slow changes of Ap(t). Calculations then give1' 

Equations ( 1.7) and ( 1.9) form a closed system. It follows 
directly from Eq. (1.9) that div(k, la, l 2  + k, la, 1') = 0, 
which is the law of conservation of energy. 

Under steady-state conditions we find from Eqs. (1.8) 
and ( 1.9) that 

(k.V)ao=iF(a.[2a,/2, (k,V)a,=iF'(ao(2a,/2, 

(1.10) 
where 

represents a coupling constant. 
The general nature of the system ( 1.10) is naturally the 

same as in the case of the two-wave interaction due to drift 
and diffu~ion.~ Energy transfer results from the photogal- 
vanic constant pa describing the circular photogalvanic ef- 
fect. Under steady-state conditions the constant 0, is solely 
responsible for the "phase pumping." The solution of the 
system ( 1.10) obtained for the geometry in Fig. la gives the 
standard expressions2 for the wave intensities: 
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The quantity r represents the gain: 

r =  F"(la.(O) 12+ lae(o) 1') 
k cos 0 

- o n"rSip.(eos)2 ( lao(0) 1 '+ Iae (0) 12) -- 
C 0 cos e 

We can see from Eq. ( 1.12) that the direction of energy 
exchange is independent of the ratio of the beam intensities 
(unidirectional energy exchange). If a weak beam is ampli- 
fied, its growth is exponential. 

The differences between the photogalvanic mechanism 
and the diffusion and drift mechanisms are associated with 
the dependences of F and r on the orientation of the c polar 
axis, and on the polarization and angle of convergence of the 
beams. It follows from Eqs. ( 1.1 1 ) and ( 1.12) that the rever- 
sal of the polar axis c- - c does not alter the direction of 
energy exchange, becausefl,,, - - flS,, and r,, - - r, ,. The 
direction of steady-state energy exchange is governed by the 
sign of the product r,, fla . If r,, flX > 0, energy is transferred 
from an ordinary to an extraordinary wave, whereas for 
r,, fl, < 0 the transfer is from an extraordinary to an ordi- 
nary wave. In the diffusion mechanism the reversal of the 
direction of the polar axis c- - c alters the direction of en- 
ergy exchange., When the polarizations are reversed in ac- 
cordance with o s e ,  we find that F-F *. 

The dependence of the coupling constant F and of the 
gain r on the angle 26' between k, and k, is given by the 
expression 

where An/n < 1 is the birefringence of the investigated crys- 
tal. Allowance for the birefringence is essential only in the 
range of small angles 26' 5 I An/n 1, where (se, ) -- (2n6' / 
An ) ,; outside this range we have (se, ) =: cos2 6'. Therefore, 
the opposed or antiparallel interaction [(n-/2) - 6'4 1] is 
weak compared with that in the parallel or concurrent direc- 
tion ($< 1 ) . This is also an important distinguishing feature 
of the photogalvanic nonlinearity mechanism. 

In addition to the steady-state regime, there is a consid- 
erable interest in the initial stage of kinetics, when t<t,, 
during which the field rises linearly with time: 

The results of optical measurements carried out during this 
stage can yield directly the photogalvanic constants fl, and 
Pa. Assuming that the nonlinear phase shifts in the length of 
a crystal 1 are small, we find from Eqs. ( 1.9) and ( 1.15) the 
change in the intensities 

61a,l"-6)a0)?= 8nzn3ralpo (se,) 
erho cos 0 

1 aOae 1 'lt9 
(1.16) 

where A, is the wavelength of light in vacuum. Therefore, 
measurements of Sja, ,  l 2  can yield directly the constant Pa. 

If at time t one of the beams is interrupted, the second 
beam is diffracted by a grating of A&(t) and this is accompa- 

nied by rotation of the plane of polarization. The diffraction 
efficiency 77 ( t )  = 16a/a l 2  deduced from Eqs. ( 1.9) and 
(1.15) is 

Determination of 77 yields fl + fl . It should be pointed out 
that Eqs. ( 1.16) and ( 1.17) do not contain the conductivity 
a of the medium. 

On the whole, Eqs. ( 1.7) and ( 1.9) describing the ki- 
netics of the two-beam energy exchange are simpler than in 
the case of the drift and diffusion rnechan i~ms . '~ , '~  This is 
due to the absence of a constant (in r )  component of the field 
and of an oscillatory photoconductivity. However, the quali- 
tative behavior of la,,, ( t )  l 2  remains the same as in the drift 
and diffusion mechanisms. Iffla $fls, then the steady state 
described by Eq. ( 1.12) is attained in a monotonic manner. 
If D, %Da, the unidirectional nature of energy exchange is 
manifested only after a long time t$t,. Before this happens 
the intensities la,,, ( I )  I 2  exhibit oscillations in time associat- 
ed withfl, and representing energy transfer from a strong to 
a weak beam; during the initial stage, t < t,, the weak beam 
grows quadratically with time. An analytic investigation can 
be carried out only in certain special cases (see Ref. 15). 

92. OPPOSED FOUR-WAVE INTERACTION 

We shall now derive a system of equations describing 
the interaction of four waves representing two pairs of oppo- 
sitely directed o  and e  waves (Fig. l b ) .  This system is ob- 
tained by generalization of the equations for two waves. 
Pairs of waves 1 ,4  and 2, 3 are formed by gratings of Ai.(r) 
with identical vectors k = k,  - k, = k, - k, (transmission 
gratings). These gratings determine the interaction. Reflec- 
tion gratings with the vectors k ,  - k, = k, - k,, responsible 
for the opposed interaction, will be ignored on the assump- 
tion that 8 2 <  1 (this condition is well satisfied in experi- 
ments). Using Eqs. (1.6) and (1.7), we can write down the 
equation which describes the grating amplitude %'. It will be 
convenient to use the following quantity, which is in one-to- 
one correspondence with this amplitude: 

We can easily see that 

(d/d.t+I)G=i(Fa,al*+F'a2'a3)/2k cos 0.  (2.2) 

where F is still given by Eq. ( 1.11 ) and the dimensionless 
time is r = t /t,. Note that the contribution of the pair of 
waves 2, 3 is characterized by the complex-conjugate cou- 
pling constant F * mflS - ifla. This is related directly to the 
presence of the circular component of the current described 
by Eq. ( 1.4), i.e., to the gyrotropic properties of the medium. 
It can be explained as follows: the grating vector k = k, - k, 
corresponds to the combination a,a:, in which (compared 
with a,a:) the o  and e waves are transposed. However, it 
follows from Eq. ( 1.4) that transposition of two orthogonal 
polarization vectors in a vector product reverses the sign of 
the circular current. In other words, we can say that the 
contributions made to the circular current by a ,a,* exp (ikr ) 
and a,a: exp(ikr) have to be subtracted. 

The equations for the amplitudes of the waves follow in 
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an elementary manner from Eq. ( 1.9). In the geometry of 
Fig. lb they are written in the form 

Oa,/dy =Ga,, Oa2*ldy=Ga3'. 

da3/dy=-Ga,, da('/dy=-Gal*. (2.3) 

Equations (2.2) and (2.3) form a closed system. Under 
steady-state conditions we can describe G explicitly in terms 
of the wave amplitudes: 

G=i [E'ala,*+F'a2*a3]/2k cos 8. (2.4) 

It should be stressed that Eqs. (2.2)-(2.4) do not re- 
duce to the equations describing the four-wave interaction 
due to drift and diffusion., The difference is associated with 
the imaginary part of the coupling constant Is: i.e., it is due to 
the circular photogalvanic effect. We shall show later that 
this difference gives rise to several new physical effects. 

We can easily show that the system (2.3) contains 
quantities 2, d ,,, , c, c, which are conserved: 

Apart from normalization, these quantities are identical 
with the integrals of motion of Ref. 3. The quantities 2, d ,,, , 
c, c, can generally be functions of time. They are not com- 
pletely independent because d l  + d, = 1 and lcI2 + Ic2I2 
= did,. The quantity 2 can be regarded as the total intensity 
of light in a crystal, whereas d ,,, are the total intensities of 
the beams traveling to the right and left, normalizecl to 2 .  

Under steady-state conditions we can use Eq. (2.5) to 
reduce the order of the system (2.3) and to obtain its exact 
solution. Following Ref. 3, we shall replace a,,,,,, with two 
complex quantities: 

The knowledge of A , ,  and A,, allows us to reconstruct the 
intensities of all the beams., Using Eqs. (2.3)-(2.6), we ob- 
tain two independent equations: 

The general solution of Eq. (2.7) is 

S+-S-Di2 exp ( 2 y y )  
A12 = 

2Fc' [ 1-DIz exp  ( 2 y y )  I ' 

A J 1 =  - S+-S-Da4 exp  ( 2 p y )  
2 ~ ' c ' [ l - ~ ~ , e x p ( 2 y y ) ]  ' 

where 

S,=P=t(P2+41 Fc12)'", P=Fd,-F'd,, 
p=-i(P2+41 FcI2)'"/4k cos 8, (2.9) 

and Dl, and D,, are the constants of integration. Together 
with the constants c and d ,,, , they should be determined 
using specific boundary conditions. The problem is thus re- 
duced to a system of algebraic equations. 

We shall later find it convenient to use the following 
notation: 
&=F'Z/k cos 0, r=F"Z/k cos 0, I,=la,12/Z, A=:d2-dl, 

(2.10) 

where T and are, respectively, the gain and the nonlinear 
frequency shift; I,,,,,,, are the normalized dimensionless 
beam intensities; A can be regarded as the relative difference 
between the energy fluxes. The expression (2.10) for T re- 
duces to Eq. ( 1.13) in the two-wave interaction case. 

$3. REVERSING MIRROR 

Let us assume that three waves, 1,2, and 4, are incident 
on a crystal (Fig. lb ) .  The boundary conditions correspond- 
ing to this case are 

Clearly, 

If we use Eqs. (2.8) and (3.1) to find the integration con- 
stant D,,, we obtain the following relationship for the ratio 
of the amplitudes of the reversed (3 ) and signal (4)  waves: 

A,$ ( 0 )  =21'c[P-(P2+41Fc12)"2 cth ( y 1 )  I-'. (3.2) 

Next, we can find Dl, making use of the relation 
A,,(l) = d l : .  Finally, the identity A,,(O) =I: [c* 
- A  F4 (o)I:] and some transformations yield the fol- 

lowing real algebraic equation: 

It describes an auxiliary quantity lcI2, important in subse- 
quent analysis, as a function of I:, I:, I: TI, fll. If the 
interaction constant is real ( T  = O), the system (3.3) is 
identical with the corresponding equation in Ref. 3. When 
we know lcI2, we can calculate the intensities of all the 
waves. The system (3.3) taken as a whole is very complicat- 
ed, so that we shall consider only the most important limit- 
ing cases. 

Approximation of a constant field of pump waves 

IfI: = 0, there is obviously a solution corresponding to 
two noninteracting pump waves: 

Therefore, if the intensity of the signal wave obeys I: <I:, 
I: and the medium I is sufficiently thin (the criterion for 
thinness will be given later), we can use the constant-pump- 
wave approximation and assume that 

Equation (3.2) yields the explicit expression for the experi- 
mentally observed quantity, which is the reflection coeffi- 
cient of a reversed wave M,, = la, (O)/a,(O) 1 ,: 

If TAI< 1 and f l l< 1, this coefficient is given by 
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For brevity, we shall call M,, the reversal coefficient. It is 
worth noting the divergence of M3, for RA-0 and TI-4. 
There is no such divergence in the diffusion mechanism of 
the nonlinearity.' In the case of a purely nonlocal response 
( R  = 0)  the divergence occurs even for finite values of A: 

It should be noted that Eqs. (3.5) and (3.6) represent even 
functions of A. Variation of /A/  from zero to unity increases 
the critical value r l / 4  from unity to infinity. The singularity 
(divergence) of M3, is retained also for R+O if A = 0; it 
corresponds to T = R cot(nl /4) .  The rise of I R / reduces 
(l-'OCI. 

Naturally, near such a singularity the constant pump- 
ing approximation is invalid. However, the very existence of 
( r l ) , ,  is an indication of bifurcation of the solution. This 
bifurcation is due to the possibility of lasing. In this case the 
noninteracting o waves 1 and 2 serve as the pump waves, and 
the e waves 3 and 4 appear spontaneously inside a crystal 
only if TI> (rl) , , ;  the intensities of the incident waves are 
I: = I = 0. The equation 

tli (rlA/4)cr = A ,  (3.7) 

corresponding to a singularity of M3, at R = 0 should be 
regarded as the lasing threshold. Lasing is also possible if 
R #O and A = 0. When pumping is provided by the beams 2 
and 4, there is no singularity ofM3, = 13(0)/I! and lasing is 
impossible. 

Note that in the diffusive nonlinear response a diver- 
gence of M,, does not appear and lasing is impossible. The 
principal difference between the photogalvanic nonlinearity 
mechanism and the diffusive mechanism is due to the feature 
mentioned above, which is the phase-synchronizing nature 
of the gratings of A& (r)  created by the pairs of waves 1,4 and 
2, 3 (see also Ref. 16). 

An investigation of the state above the lasing threshold 
and of the reversal coefficient M3, will be made below on the 
basis of the exact equation (3.3) without recourse to the 
constant-pumping approximation. 

Stationary states in the case of a nonlocal response 

If R = 0, Eq. (3.3) can be written in the form 

We shall investigate the behavior of lcI2 as a function of the 
nonlinear parameter x = r1/4. Graphical analysis of Eq. 
(3.8) establishes that there always is a main branch jc(x) 12, 
which decreases monotonically from the finitie value to zero 
as x increases from - co to co . We can also show that if Ix 1 is 
sufficiently large, there may be an additional double-valued 
branch which does not intersect the main branch. Therefore, 
there can be three solutions for the same boundary condi- 
tions (3.1). 

The asymptotic behavior of Ic/ * in the limit 1x1 - rn and 
the conditions for the appearance of an additional branch 

can be determined analytically. Let us assume that TI = w 

and 4 1 ~ / ~ + l  ( f  #O). Then, if tanh( fx) = 1, Eq. (3.8) 
yields the following fourth-degree equation for f :  

The solution of Eq. (3.9) given by f 'O' = 1 ( Ic / = 0)  corre- 
sponds to the mzin branch. The nature of the approach of 
lc2 / to zero in the limit TI- w can be found more accurately 
using Eq. (3.8): 

( ~ ( ~ ~ ~ , ~ 1 , ' [ 1 , ~ ( 1 - 1 ~ ' ) ]  -' exp ( -42 ) .  (3.10) 

In the case of the additional solutions of Eq. (3.9) we can 
easily see that either two or none are real and positive. If 
A > 0, there is always a pair of positive roots f 'I '  = I ': - I y 
+ [(I: - Iy)2+A]112,and  f'2'=A.Ifthesignalwave4 
is weak, I! <I:, I:, then f " ' z 1  - 21!/1:. If A<O, then 
thepositiveroots f " s 2 ' =  I: -I: [(I: -I!)2+A] '12 
exist only in the range defined by the inequality 
2(1y)'I2< 1 - lA1'12. In the limit A- - 1 this range con- 
tracts to a point: I: -0, and I: -0. If the wave 4 is weak, 
then f "' is still given by 1 - 21 !/I i ,  and we also have 
f '2) = - A. 

We shall now consider the behavior of lcI2 in the limit 
x -  - a. The equation for f is obtained from Eq. (3.9) by 
the substitution f- - f. It then follows that if A > 0, there 
isone positiveroot f ' O ' = I !  -I: + [(I: - I ! ~ + A ] ' / ~  
corresponding to the main branch. If A < 0, we know there is 
a solution f = IA/. If the additional condition 2(1? ) ' I2  

< 1 - lA1"2 is satisfied, there are further positive roots 
f = I: - I :  + [(I: - I!)2 + A]'I2. If the wave 1 being 
amplified is weak, we find that in the case of the main branch 
we have f 'O' = 1 - 21 :/I:, whereas for the additional 
brancheswehave f" '= /A1 and f '2 ' z lAl ( l  -2I:/I:), 

The domains in which the various regimes exist are 
plotted in Fig. 2. The condition for the appearance of multi- 
valued solutions implies qualitatively that the signal wave 
should be the one which is amplified and it should be fairly 
weak. 

We now consider the behavior of the solutions of Eq. 
( 3.8 ) in the case of intermediate values of the nonlinear pa- 
rameter x = Tl/4. Figure 3 shows typical results of numeri- 
cal calculations demonstrating the behavior of the branches 
of I c ( x )  li. 

FIG. 2. Ranges of the input parameters corresponding to single-valued 
and multivalued stationary states: I )  r > 0, triple-valued solution; 11) 
r < 0, triple-valued solution; 111) single-valued solution. 
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If r > 0 ,  then for a fixed value of A we find that 
x,, = (rl),, /4 corresponding to the appearance of an addi- 
tional branch decreases on reduction in I:. In the limit 
I! -0, corresponding to lasing x,, is given by Eq. (3.7). If 
I: = 0 and A = 0, then x,, = 1. This is the minimum 
threshold (corresponding to R = 0)  of the formation of the 
additional branch (and the minimum lasing threshold). If 
I: = 0, the branches f(x) ,  as demonstrated by Eq. (3.8), 
obey the equations 

We can see from Fig. 3a that an increase in the nonlinear 
parameter x may result in a smooth transition from the main 
branch to an additional (lasing) branch of the solution. This 
corresponds to "soft" lasing. The main and additional 
branches diverge (Fig. 3a) for any value I: # O  no matter 
how small. Therefore, the additional branch can be regarded 
as the lasing curve "disturbed" by the beam 4. 

It follows from general considerations that, no matter 
how small the value of I!, the approximation of constant 

- - 

pumping ceases to be valid sooner or later as x approaches 
x,, , which is demonstrated clearly in Fig. 3a. The value of 
M3,(x) reaches saturation as the waves 1 and 2 are depleted. 
Using Eq. (3.8) corresponding to I: 9 1 and Ix - x,, I <x,,, 
we can investigate the behavior of closely spaced branches of 
Ic(x) l 2  and determine the range of validity of the constant 
pumping approximation. It is then found that for larger x,, 
on increase in I: obeys the law Sx,, cc (1:)'13, i.e., the in- 
crease is very rapid. The order of magnitude of ax,, is given 
by the separation between the main and additional branches. 
The condition of validity of the constant pumping approxi- 
mation is then (x,, - x)/x,, % (I ) 'I3. This is a very strin- 
gent condition. 

The behavior of an additional branch for r < 0 is clearly 
unrelated to lasing. The values of I TI I,, are in this case rela- 
tively high (Fig. 3d) and they increase rapidly as the width 
of the branch f, - f2 = 2 [ ( I :  - - IAI ] 'I2 mcreases. 

Reflection coefficient of a reversed wave 

We shall use the results obtained for branches of Ic(x) I 2  
to calculate the observed characteristic M,,. The general 
expression for M3,(x) obtained for In = 0 from Eq. (3.2) is 

fil,.=(l-i") [ I - /  cth (fx)]-'. (3.12) 

In the limit of large values of the interaction parameter 
x -  + a ,  we find that M,, = (1 f f ) / ( I  f ). Obviously, 
we have M3,(co)>l and M,,( - ~ ) ( l .  In Eq. (3.12) we 

should substitute the appropriate values of f (x) .  In the case 
of the main branch we find from Eq. (3.10) that 

An increase in I :  and in the ratio I:/It results in a mono- 
tonic increase of the reversal coefficient M ::' ( co ). It should 
be stressed that M,, has no upper limit because energy is 
acquired from the pump waves. It can also be shown that 
when x is increased, the limiting value given by Eq. (3.13) is 
attained monotonically when the values of I:, I i ,  and I: are 
fixed. Figure 4 shows the dependence of M,, on A i= 21; - 1 
for various values of the interaction parameter. Already for 
xz0 .8  the dependence M,,(A) is strongly asymnietric and 

FIG. 3. Branches of the function 4jc/'(x) obtained for different input 
parameters. The dashed curve in Fig. 3a corresponds to I !  = 0 [see Eq. 
( 3 . 8 )  1 .  The lasing curve corresponds to x > xzn(A) .  Parameters: a )  I :  
~ 0 . 4 9 9 ,  1: =0.5, 1: =0.001, A =O; b) I :  =0.35; 1: =0.55, 1: 
=0.1, A=0.1; C )  I y=0 .4 ,  1:=0.3, 1:=0.3, A =  -0.4; d )  I :  
=O.Ol, 1: =0.2,1! =0.79, A = -0.6. 

is not described by the constant pumping approximation. 
The limiting values M,,( co ) for the additional branch 

are easily obtained from the limiting values of f found ear- 
lier. The ratio of the values of M,, for the main and addi- 
tional branches can be arbitrary and depends on the relation- 
ship between the quantities I : ,  I:, I:. In other words, the 
function M,,(x) calculated for the main branch may inter- 
sect the function M,,(x) for the additional branch. Natural- 
ly, the branches of lc(x) 1 '  do not intersect. 

We shall now consider in greater detail the reversal co- 
efficient M,, for an additional branch in the case when the 

FIG. 4. Dependences of the reflection coefficient M,, on A plotted for 
different values of the interaction parameter. The dashed curves represeni 
the constant pumping approximation. In the case of r l =  1 and 2 the 
difference between the exact and approximate solutions is negligible. The 
points represent the experimental results. The value TI = 3.2 corresponds 
to the lowest dashed curve. 
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signal wave 4 is weak. Substitution of the values of f ' ls2'  

found above gives 

Usually the intensities of the pump beams are given by 
I: cc I k . Then, we find that M ::' $ M ::' > 1. If terms up to 
I: are included, then M ::' = M 34 ' O ' .  

Stability of stationary solutions 

The existence of triple-valued stationary solutions 
makes it necessary to consider the problem of stability. In 
the case of a purely nonlocal response it is possible to investi- 
gate the stability of the actual wave amplitudes against small 
perturbations on the basis of the time-dependent equations 
(2.2) and (2.3) (see the Appendix). The results of this in- 
vestigation are as follows. A stationary solution correspond- 
ing to the main branch of (c(x)  l 2  is stable against small per- 
turbations. The additional double-valued branch of lc(x) l 2  
always has a point corresponding to an instability threshold 
near the bottom of the parabola (Fig. 3) and it separates the 
stable from the unstable parts. The stable part of the addi- 
tional branch reduces in the limit I: -0 to the lasing curve 
(Fig. 3a). 

It therefore follows that in the ranges of the input pa- 
rameters shown in Fig. 2 we can have both stable and bista- 
ble solutions. The nature of the transient process determines 
which of the bistable solutions is observed experimentally. 

$4. OPTICAL-FREQUENCY LASING 

Several lasing regimes are possible when one or two 
noninteracting beams are incident on a crystal. If the nonlin- 
ear parameter is greater than a certain threshold value, three 
or two coupled secondary waves are formed and these can be 
detected at the exit from a crystal. In this section we consider 
above-threshold stationary states corresponding to different 
types of boundary conditions. 

Mirror-free regime 

This regime corresponds to the boundary conditions 
I: = I: = 0 (Fig. lb).  The waves 1 and 2 represent the 
pump. The threshold value of the interaction parameter x,, 
and the dependence f(x)  are described respectively by Eqs. 
(3.7) and (3.1 1 ). The output intensities of the lasing beams 
I: r I, (0) and I: -I4 ( I )  can be expressed directly in terms 
of f (x)  using the conservation laws (2.5). If x > x,, , then 

f"A2 Is0 = ---- f -A" 1,' = - 
2 ( I - A )  ' 2 ( l + A )  ' 

The polarization of the output beams is orthogonal to the 
polarization of the pump waves. We can see from Eq. (3.11 ) 
and also from Fig. 3a that if a = 0, then above the lasing 
threshold the quantity f= ( 1 - 4/c  1 2, ' I2  increases from I A 1 
to unity. Then, the values of I:, I: increase monotonically 
from zero to the limiting values I: = I: and I: = I:. It 
follows that the energy of the pump beams is transferred 
completely to the waves 3 and 4 if TI is sufficiently large. 
This is a consequence of unidirectional energy exchange. If 
A = 0, i.e., if the pumping is symmetric, the lasing character- 
istics of the waves 3 and 4 are also symmetric. 

If A = 0, lasing is possible for an arbitrary ratio of T and 

R. As pointed out in 93, the lasing threshold is now less than 
for = 0 and A = 0. The behavior above the threshold can 
be investigated using Eqs. (3.3) and (4.1 ). It remains qual- 
itatively the same as for R = 0 and A#O. 

We shall stress once again the soft nature of the excita- 
tion of secondary waves and the fact that such a regime can- 
not occur in the diffusive nonlinearity mechanism. It should 
also be pointed out that the part of the branch f = I A I when 
x > x,, , which corresponds to an unperturbed state above 
the lasing threshold, is unstable against the growth of the 
waves 3 and 4. This follows from general physical consider- 
ations. 

Mirror regime 

This regime corresponds to boundary conditions of a 
new type. Let us assume that these conditions are 

where R ,,, are the reflection coefficients of mirrors in a reso- 
nator (Fig. lc) .  The pumping is provided by the ordinary 
wave 4. The subthreshold regime corresponds to 
I, = I, = I, = 0 and I, = I :. Above the lasing threshold, we 
have I ,,,, #O. In this regime a crystal can be regarded as a 
passive reversing mirror, characterized by the reversal coef- 
ficient M,, = IA34(0) 1,. 

The change of the polarization of the wave 4 to ordi- 
nary, i.e., the substitution of T- - r in the main equations 
of the system (2.7) is simply a matter of convenience. In Fig. 
lc  in terms of the notation adopted by us in Eq. (2.10) the 
lasing regime corresponds to T > 0. However,'if the pumping 
were provided by the e wave, we would have r < 0. 

A complete investigation of the nonlinear behavior can 
be carried out on the basis of the general solution of Eq. 
(2.8). As in 93, our task is to use algebraic equations to find 
the integration constants Dl, and D,, and the conserved 
quantities c and d ,,, (or A and Z). In contrast to the preced- 
ing case, none of the quantities c, A, 2, or d ,,, is determined 
simply by the boundary conditions. 

Using the self-evident identities lcj2R2 = (I ) 2  and 
I$ = (A + 1)/2, we readily obtain the following algebraic 
relationship from Eqs. (2.8) and (4.2): 

FIG. 5. Normalized intensities of output beams and the reflection coeffi- 
cient for a reversed wave in the lasing regime plotted as a function of the 
interaction parameters. 
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where I 

In principle, the above relationship can be used to find A as a 
function of rl and RI. Knowing A, we can calculate the 
reversal coefficient M,,: 

The output intensities of the lasing beams 1 and 2 can be 
expressed in terms of I :  using the formulas 

In the case of a purely local response, i.e., when .r = 0, 
Eqs. (4.3) and (4.4) are identical with the corresponding 
formulas given in Ref. 3. In this case there is no lasing: 
I 1 ~ 2 . 3  = M34 = O. 

We shall find first the lasing threshold on the basis of 
Eq. (4.3). At the threshold, we have I, = I, = 0, i.e., 
z E A + 1 = 0. We shall also obtain the expected relationship 
(TI),, = - ln(R ,R,). This relationship can easily be modi- 
fied to include the bulk losses also. We can see that lasing is 
due to a nonlocal response, i.e., due to the circular photogal- 
vanic effect. 

We shall now investigate a nonlinear response corre- 
sponding to R = 0. Equation (4.3) then separates into two 
independent equations: 

These equations differ greatly from those obtained in Ref. 3 
for the diffusive nonlinearity. We can show that the equation 
corresponding to the lower sign in Eq. (4.6) has no physical 
solutions, i.e., it has no solutions with I  ,,,, > 0. However, 
the equation corresponding to the upper sign always has a 
single-valued physical solution. Above the lasing threshold, 
i.e., in the range x>x,, , the value of A rises monotonically 
fromA[x,,) = - 1 toA(co )=  - ( I - R 2 ) / ( 1 + R 2 ) f o r  
R,(R, or to A(*) = - [ l  - 2 ( ~ , ~ , ) " ~ / ( 1  + R , ) ]  for 
R ,(R,. The reversal coefficient increases correspondingly 
from M,,(x,, ) = 0 to 

The maximum value of M,, is determined by the smallest of 
the mirror reflection coefficients. As expected, the energy 
flux is directed to the right, i.e., A < 0. 

The behavior of I :  (x)  and I ;  (x)  depends on the rela- 
tionship between R , and R,. If R, < R ,, then I ; (x)  reaches a 
maximum and falls to zero, whereas I  { (x)  rises monotoni- 
cally, approaching I : ( cc ) = I:. If R, > R , then all the 
limiting intensities of the lasing beams are finite: 

I , ' ( - )  =Z,OR,"(I-R1)/R, [I- (R,R,)' 1. (4.8) 

The functions I  { ( x )  and I ;  ( x )  reach the limiting values of 
Eq. (4.8) by generally nonmonotonic processes. Figure 5 
shows the results of numerical calculations. It is worth not- 
ing the rapid rise of I :  and I: in the initial region beyond the 
lasing threshold and the slow attainment of the limiting val- 
ue. Therefore, the intensity of the opposite lasing beam I: is 
low compared with the intensity of the forward beam I : .  

It follows from the above expressions that lasing disap- 
pears if even one of the mirror reflection coefficients vanish- 
es. This property is specific to the nonlinearity mechanism 
being investigated. In the diffusion mechanism, we can ex- 
pect lasing for R ,  = 0 (semilinear reversing mirror3). 

Finally, we must point out that other mirror lasing re- 
gimes may be based on the photogalvanic nonlinearity and 
these have boundary conditions different from those given 
by Eq. (4.2) (see, for example, Fig. Id) .  However, an analy- 
sis of these regimes is outside the scope of the present paper. 

95. EXPERIMENTS 

Experiments were carried out on iron-doped lithium 
niobate crystals. Samples withx and y cuts and several milli- 
meters thick were used. The concentration of iron amounted 
to a few hundredths of 1 wt.%. 

The radiation sources were helium-cadmium (0.44 
,urn) and argon (0.45-0.5 1 p m )  lasers. 

The precision of orientation of the c axis relative to the 
faces of a sample was 5' and the plane of convergence of the 
beams was set relative to this axis to within lo. These precau- 
tionary measures were taken in order to avoid or weaken 
considerably the influence of the usual recording (grating- 
formation) mechanism associated with the photocurrents 
j,, I I c .  A calibration experiment, which confirmed that this 
mechanism was practically completely suppressed, involved 
determination of the state of polarization of a beam diffract- 
ed by a recorded grating. The polarization of this beam was 
orthogonal relative to the polarization of the "read" beam to 
within 0.1 %. 

The diffraction efficiency of 10% was readily attained 
for a sample 3 mm thick. 

Two-beam interaction 

An investigation of the kinetics of changes in the inten- 
sities of interacting beams in accordance with the geometry 
shown in Fig. l a  demonstrated that, irrespective of the input 
values I,,, (O), the intensity of the extraordinary wave at the 
output increased, whereas the intensity of the ordinary wave 
decreased. The direction of energy exchange was not affect- 
ed by rotation of the crystal by 180" relative to the c axis or 
one of the transverse axes. Therefore, the antisymmetric 
component of the photogalvanic tensor Pa of Eq. ( 1.4) 
should be regarded as negative (Pa <O). The results of a 
direct experiment on the two-beam interaction confirmed 
the predicted existence and the relatively large magnitude of 
the circular photogalvanic effect in LiNbO,, deduced from 
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an investigation of the spontaneous transformation of 
modes, differing in their polarization in fiber waveguides," 
and also from the light-induced polarization anisotropic 
scattering. 

The fact that even a weak o wave (I,/I, -- de- 
cayed linearly with time while a grating was being written 
led us to the conclusion that there was no transient energy 
exchange associated with the local nonlinear mechanism 
(see $1 ). Hence, in the case of LiNb0,:Fe we found that 
pa $p,; this was in agreement with the experimental esti- 
mate of the ratio pa /ps made in Ref. 19. 

Prolonged exposures of LiNb0,:Fe crystals to laser ra- 
diation resulted in the development of significant light-in- 
duced scattering,*' which was responsible for part of the en- 
ergy of the interacting beams; moreover, the wavefronts 
were distorted because of the appearance of a strong nonlin- 
ear lens.*' These processes make it difficult to compare 
quantitatively the theoretical and experimental results for 
stationary states. 

Opposed four-wave interaction 

When two oppositeo waves were used for the purpose of 
pumping and a signal e wave was introduced in a plane per- 
pendicular to the c axis ( T > 0), a wave was produced which 
was reversed relative to the signal wave. It was polarized in 
the same way as the signal wave and was orthogonal to the 
pump waves. A change in the wave polarizations (corre- 
sponding to an e pump wave, an o signal wave, and T < 0 )  
reduced the reversal coefficient M,, considerably (from 11 
to 4% for one of the samples). 

When unfocused laser beams were used, the constant 
pumping approximation remained valid. The maximum val- 
ue of M,, was observed, in agreement with Eq. (3.5), when 
the intensities of the pump waves were equal, A = 0, as 
shown in Fig. 4. 

The measured steady-state values of the reversal coeffi- 
cient were always smaller than those calculated using the 
values of the gain T determined for the two-beam interac- 
tion. The maximum recorded steady-state value of the rever- 
sal coefficient was M3,--,0.3 < 1. On the other hand, in the 
presence of an additional mirror, it was possible to achieve 
lasing in the same sample (Fig. Id)  inside a resonator 
formed by the crystal itself and the additional mirror. The 
appearance of a lasing beam was a clear demonstration that 
the reversal coefficient exceeded unity. The reason for this 
could be that in the lasing regime an output wave could be- 
come adjusted in an optimal manner to the pump wave both 
in respect of the direction and the structure of the wavefront 
(the pump beams had a limited cross section, Gaussian pro- 
files, and optical inhomogeneities). However, the use of a 
Gaussian signal wave oriented precisely on a crystal and 
characterized by the same cross section as that of the pump 
beams prevented such self-adjustment. 

The competing nonlinearity of the self-focused field 
prevented high values of the parameter TI /4 from being at- 
tained in lithium niobate in the range where multivalued 
solutions and optical bistability were predicted theoretical- 
ly. However, in the case of small values of x = r 1 / 4  there 
was qualitative agreement between the theory and experi- 
ment. 

FIG. 6 .  Dependence of the normalized intensity of the lasing wave on the 
interaction parameter obtained for a 0.3 cm thick iron-doped lithium nio- 
bate crystal (0.02 wt.% Fe); R ,,, = 0.16. 

Lasing in a linear resonator 

It was reported in Refs. 22 and 23 that when an ordinary 
wave was used to pumping a crystal with plane-parallel ends 
polished to give optical surface quality, lasing e beams and a 
reversed o wave were generated. In this case the opportunity 
for self-adjustment of the wavefronts and optimization of the 
four-wave interaction was clearly the greatest, since a single 
pump wave created three additional waves: two lasing waves 
and one reflected wave (Fig. l c )  . 

Once again the experimental results were in good agree- 
ment with calculations. Firstly, a self-excitation threshold 
was observed: lasing appeared only beginning from a certain 
angle of incidence of the pump beam on a sample. This was 
associated with a strong rise of the gain at low angles, pre- 
dicted by Eqs. ( 1.13) and ( 1.14). Secondly, when the reflec- 
tion coefficients of the resonator mirrors were equal (identi- 
cal reflection by the crystal ends, R = 16%) the output 
lasing beams were very different in intensity: the forward 
beam obtained in the saturation regime carried more than 
35% of the pump beam intensity and the opposite beam rep- 
resented less than 2% of this intensity. Thirdly, the output 
energy of the forward lasing beam increased, in accordance 
with calculations, as the interaction constant increased 
above the threshold value (Fig. 6 ) .  

A method described in Ref. 23 was used to carry out 
measurements of the threshold value of the gain T,, of iron- 
doped lithium niobate for several specific lines emitted by 
argon and helium-cadmium lasers. Figure 7 shows the spec- 
trum of the gain T representing the spectral dependence of 
the antisymmetric component of the photogalvanic tensor 
pa. The values of r corresponded to a power density of the 
pump beam of - 10, W/cm2 in the sample (argon laser radi- 
ation beam focused on the sample). The spectrum of r was 
qualitatively similar to the absorption spectrum of divalent 

FIG. 7. Spectrum of the gain r for a lithium niobate crystal activated with 
0.02 wt.% Fe. 
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iron in lithium niobate and this impurity is usually assumed 
to form active photogalvanic centers. 

CONCLUSIONS 

Equations describing a four-wave polarization interac- 
tion in photorefractive crystals have been derived. This in- 
teraction is due to linear and circular photogalvanic cur- 
rents; its properties are different from those of the 
interaction associated with the drift and diffusion of photo- 
electrons. The exact solutions of the nonlinear equations de- 
scribing various experimental geometries were obtained. 
Multistability of the solutions has been established and its 
distinguishing features identified; the stability of multistable 
solutions has been studied. Optical-frequency lasing due to 
the photogalvanic nonlinearity has been studied and the 
characteristics of lasing beams above the threshold, as well 
as of the reflection coefficient of a reversed wave, were deter- 
mined. 

Phase conjugation has been achieved in LiNb0,:Fe 
crystals and frequency-degenerate optical-frequency lasing 
has been obtained in linear and semiopen resonators. The 
experimental results are in qualitative agreement with the 
calculations; a strong competing nonlinearity of the self-fo- 
cusing type made it difficult to carry out a quantitative com- 
parison in the steady-state case. Measurements of the thresh- 
old angles for lasing were used in a calculation of the gain 
spectrum, which gave information on the spectrum of the 
circular component of the photogalvanic tensor. 

Investigations of the effects of the giant photorefractive 
nonlinearity are of obvious scientific and practical impor- 
tance. The known interaction mechanisms are already used 
in several important applications.24-26 The discovery and in- 
vestigation of a new type of interaction offers new opportuni- 
ties for applications. 

APPENDIX 

In the case of a nonlocal response (F' = 0)  the real na- 
ture of the initial equations (2.2) and (2.3) justifies the as- 
sumption that the amplitudes ai are also real: Using the con- 
servation laws of Eq. (2.5), we shall adopt the 8, q, phase 
representation: 

cl=di'" cos 0, az=d,'l cos cp, a,=d,"? sin rp; 

InsteadofEq. (2.3), wenowobtaindO/dy = dq, /dy = - G. 
The phase shift independent of y a, = q, - 8 can be ex- 
pressed in terms of c and c,: 

~ = ( d , d ~ ) ' : ~  cos ao, ~ ,= (d ,d , ) ' ~  sin a,. (A.2) 

Introducing a new angular variable $ = q, + 8, we can final- 
ly write down the initial system of equations in the following 
simple form; 

where f = ( 1 - 4c2) ' I 2 ,  sin $, = f - ' sin a,, and 
cos $, = f - ' A  cos a, are y-independent quantities. The 
boundary conditions for $ are 

where a, = a,(r), whereas 8,=O(0) is a constant deter- 
mined, in accordance with Eq. (A. 1 ), by the input ampli- 
tudes a,,, (0).  

Assuming that the perturbations of $, G, and a, relative 
to their steady-state values are proportional to exp(w),  we 
find that the instability growth rate v is described by 

The quantity A (x)  and B(x can be expressed in terms of the 
stationary solution $(x): 

A=-f cos ($+*a), 
(A.6) 

f B = - - [ (1+A2) cos (I$+$~) + (1-A2) cos ($-$a) 1. 
2A 

It follows from Eq. (A.3) that $(x) satisfies the algebraic 
equation 

We can demonstrate the identity of Eqs. (A.7) and (3.8). 
Integrating Eq. (A.5) with the aid of Eq. (A.7) and assum- 
ing Y = 0, we find after algebraic transformations that 

sin (280+ao+go) 
f2+4+ (f+A) sin ( Q ~ - ~ ~ )  = 8fxccz sin (20,f uof $,) . 

The system of transcendental equations (A.7), (A.8) deter- 
mines the threshold point x,, for each of the single-valued 
branches a,(x) [or, equivalently, for each of the branches 
c (x)  I .  

By means of graphical analysis, we can show that in the 
case of the main branch a,(x) [or c ( x ) ]  Eq. (A.8) has no 
solutions. In other words, the main branch is stable against 
small perturbations. In the case of an additional double-val- 
ued branch a, ( x )  , we find that there is always a unique solu- 
tion. Calculations show that the point x,, is located in the 
direct vicinity of the base of the parabola, i.e., x,, zx,, (Fig. 
3). In the limit 1: -+O the unstable part of the additional 
branch corresponds to the unperturbed state of two pump 
waves above the lasing threshold (see $3 ) . 

The authors are grateful to B. Ya. Zel'dovich for a valu- 
able discussion of their results and to A. I. Chernykh for 
numerical calculations. 
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