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A microscopic theory is developed for calculating the frictional force at a moving interface 
between the A and B phases in superfluid helium-3 to first order in the velocity. 

1. INTRODUCTION 

The superfluid A and B phases in helium-3 can coexist 
over a comparatively wide range of temperature and pres- 
sure, because it is possible to supercool the A phase well 
below the equilibrium temperature TAB (P) when the helium 
is cooled from the A to the B phase. This supercooling is 
made possible by virtue of the extraordinarily high energy 
barrier for critical nucleation of B-phase in the bulk of the A- 
phase. ' This has the consequence that under certain condi- 
tions, a boundary (AB interface) may form between A and B 
phases occupying different regions of the containing vessel. 
If the AB interface is not pinned at inhomogeneities on the 
vessel wall or immobilized by some other means, it will move 
and its motion will be accompanied by a transition between 
the A and B phases. The motion of the AB interface has the 
following important property. The thickness of the interface 
is of the order of the coherence length 6 and is much less than 
the mean free path of the quasiparticles. The quasiparticle 
distribution function is therefore essentially constant over 
distances comparable to the thickness of the interface (at 
least if the latter moves slowly enough), and the quasiparti- 
cles do not collide with one another. Since this situation is 
analogous to an object moving in a rarefied gas, the interface 
can be pictured as a moving structure (a  relief pattern super- 
imposed on the order parameter) with a stable topology, 
while the resistance to the motion is caused by scattering of 
excitations by the moving structure. 

Studies of the motion of the AB interface moves may 
give valuable insight into the kinetic processes in superfluid 
helium-3. Experimental studies along these lines were begun 
in Ref. 2. The qualitative model proposed in Ref. 3 corre- 
sponds to the general scenario outlined above. In the present 
paper we develop a more rigorous microscopic theory for the 
motion of the AB interface. As in Ref. 3, the key idea is to 
regard the interface as a moving relief pattern superimposed 
on the order parameter A(r);  at large distances to either side 
of the interface, A ( r )  approaches the equilibrium values A, 
and A, for the A and B phases at the given temperature. The 
normal excitations are assumed to be in equilibrium with the 
walls of the vessel, and collisions between quasiparticles over 
distances comparable to the interface thickness are neglect- 
ed. As might be expected, these starting assumptions lead to 
a moving interface of the type described above; the motion is 
driven by the difference in the thernodynamic potentials for 
theA and B phases, while the frictional force results from the 
scattering of quasiparticles by the moving hills and valleys in 
the potential. The final result of this paper is an expression 
for the viscous friction coefficient. It is similar in form to the 
result in Ref. 3 and gives the same order of magnitude for the 

friction coefficient. Unlike the result in Ref. 3, however, it 
does not involve any unknown quantities (such as the quasi- 
particle transmission coefficient across the AB interface, 
which appears in Ref. 3) and can be used to calculate the 
viscosity for arbitrary values of the parameters that describe 
the state of the system. The calculations in this paper are 
valid to first order in the velocity u of the interface. 

The above formulation obviously requires that all hy- 
drodynamic fluxes vanish at large distances from the AB 
interface. Problems related to the presence of such fluxes are 
considered in Ref. 4. 

2. GENERAL EQUATIONS 

We will derive an equation which describes the uniform 
motion ô f a two-dimensional relief pattern in the order pa- 
rameter A, ( r ) .  We first examine the steady-state case. The 
thermodynamic potential of the system is equal to5 

where 
l / T  

T, is the time-ordering operator, .r is the "time," ( . . . ) de- 
notes a statistical average, and the Hamiltonian is 

Here $, ( r )  are the one-particle operators, R < 0 is the inter- 
action constant, V(r,rl) is the normalized interaction opera- 
tor for the p-pairing interaction (see below), Tr denotes a 
trace over the spin indices, and Asp is the order parameter. 
The latter is regarded in Eq. (3)  as an external field satisfy- 
ing the following self-consistency equation, which results 
from equating the variation SH,,, to zero: 

The temperature Green's function in (4)  
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is expressed in the momentum and frequency representa- 
tions relative to the spatial coordinates and the time r - 7'; 

in this representation we have V(p,pl) = 3(pp1)/p;. The 
h 

function F, in Eq. ( 4 )  has been analytkally continued along 
the real frequency axis E,  and the hat ( ) denotes a matrix in 
spin space. Writing 

for the variation of the thermoiyn~mic potential (1 )  with 
respect to the external fields SA, 6A* and using Eqs. (2) -  
( 5 ) ,  one can show that 

Here we have introduced the matrices 

in function space, and Sp denotes a trace over the matrix 
indices. Equation ( 6 )  makes use of the mixed coordinate- 
momentum representation 

In a few cases we will also use 

i.e., the coordinate representation with respect to both sets of 
spatial variables. 

In the time-dependent case the concept of thermody- 
namic potential is meaningful only if tke system is nearly 
steady-state. In ibis case one must take 9, in ( 6 )  to be the 
stationary part 9: of the complete Green's function 

@:nt,-=%,st2n 6 ( o )  +5::fe., 
h h h 

where E +  = E i: w/2. Substituting 9" = 9'"' - 9"" in 
( 6 )  and recalling the equation 

for the order parameter in the time-dependent case, we find 
the following expression for the change in the thermody- 
namic potential due to time-dependent processes: 

Equation (8)  is similar to the one used in Ref. 6 for moving 
vortices in a type-I1 superconductor. 

The method in Ref. 7 for calculating the motion of vor- 
tices in a pure type-I1 supercond~ctor can also be used to 
calculate the nonstationary part 9""  of the Green's func- 

tion. We will assume that to first order the interface moves as 
a whole and set 

L(r, t)=&,(r-ut) exp (2imur)+k,, 
- R ( A )  (P+, P-) =G:~~J~~ (p+-mu, p--mu) 6 (cl1-k~) +G(, )  - R ( a )  , 

+ R ( A )  
F c + , e -  (P+, P-1  

Similar definitions, with p - mu replaced by p + mu, hold 
- - 

for G,+,,- (P+,P-1 and I;,+,,- (p+,p.-). Here P ,  = P 
+ k/2, and the unperturbed functions Gf;<)(p+,p-) and 
h 

Ff;<)(p+,p-) satisfy the statknary equations, in which the 
unperturbed order parameter A = A, ( k )  appears. Formulas 
( 9 )  have the virtje thak the corrections to the regular 
Green's functions G f f ) ,  Ff,((::), etc., are expressed in terms 

h h 

of A, and A: only and do n2t involve any time derivatives of 
the unperturbed function A,(r - ut) .  This is easily seen by 
using the equations for the regular Green's functions. We 
stress that this result is valid only for pure materials (super- 
fluid helium with negligible wall effects, pure superconduc- 
tors7,*). 

The complete Green's function is of the form9 

This assumes that the normal excitations are in equilibrium 
(at rest) with the walls of the vessel. In the coordinate repre- 
sentation, the second term in ( 10) can be written in the form 

If we neglect inelastic collisions between the quasi-particles, 
the anomalous part of the Green's function has the form9 

h 

In Eqs. ( 1 1 ) and ( 12), 9 f;<' are regular stationary Green's 
functions. In what follows we will drop the subscript ( 0 )  
from regular functions depending only on a single frequen- 
cyiSince the interface moves as a whole, the quantity 
wP(w,r )^  in (1  1) and (12)  should be understood 
as - i u V Z o ( r ) .  We now use the equations 

for the regular Green's functions, where the inverse matrix is 

and a, is the Pauli matrix in function space. Recalling the 
relation 
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we transform expressions ( lo)-( 12) into 

h 

where p = p f m u .  The function 9: is more conveniently 
expressed using the coordinate representation: 

,. i 1 
3esc (r, r r )  = - ~ h - '  (&) )S d s i  {[@eR(r7r1) 

4T 

- g e ~ ( r l ,  r') l - ~ ~ g ~ ~ ( r ,  r i )  ( u V i )  [ g e A ( r l ,  r') - gcR(r l ,  r J )  I}. 

(16) 

Here the integration is over a surface at infinity (cf. Ref. 7) .  
! 

We now consider the expression 

In the integration over dp3 in the first term we have made a 
translation p -p in momentum space and used the definition 
of the unperturbed functions. The first term in ( 17) gives the 
stationary contribution, since it does not contain the velocity 
u or any nonlocal operations invoking t h e m  coordinate. 
To use Eq. (8) one m2st thus take 9""' = 9"" as the nonsta- 
tionary part, where 9" is given by Eq. ( 16). 

We assume that the Hamiltonian is perturbed by an in- 
finitesimal displacement d of the system along the normal n 
to the AB interface; then 6 X  = d V R  and (8) becomes 

Here R +  and R- are the thermodynamic potential densities 
far from the interface, on the positive and negative sides of it 
relative to the nokmal n; S is the cross section of the contain- 
ing vessel. Since 9: is proportional to the velocity, Eq. ( 18) 
takes the form 

and thus defines the frictional force F, = - ru acting on 
the moving AB interface. A 

Using once again the relation n ~ p  = nV 9; ' and the 
equation of motion ( 13) for the Green's functions, one can 
show that 

+ ( n V )  v i'3R (r, rr)  V k  ( u V r )  [ @ A  (rr, r )  -sR (r'. r) 1). 

(20) 

Here the integrals over the spatial coordinates r and r' are 
over two infinitely remote surfaces such that the r coordi- 
nates lie inside the surfaces '. It is evident from (20) that the 
frictional force acting on the moving AB interface is deter- 
mined by the behavior of quasiparticles whose distance from 
the interface is large compared to its thickness, i.e., by the 
transmission and reflection (scattering) of the quasiparti- 
cles by the interface. This situation corresponds to the model 
considered in Ref. 3. 

3. INTERACTION OF QUASIPARTICLES WITH THE 
INTERFACE; FRICTIONAL FORCE 

To calculate the frictional force, we expand the Green's 
functions in terms of eigenfunctions of the Bogolyubov equa- 
tions. We emphasize that since only the behavior of 
9 ,~" ) ( r , r ' )  at large distances matters in (20), in the expan- 
sion it suffices to keep only the eigenfunctions belonging to 
the continuous spectrum: 

Here the sum on s is over all linearly independent func- 
tions with the same values ofp, ,p, , and E, thex axis is taken 
along the normal n to the interface. We have 

where the spinor 

satisfies the Bogolyubov equation 

(p: = p i  - p: - p: ) and the normalization conditions 
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where 

1 - &:("' (x)  0~2;") (x)dx=2n6 (E-Er) 6$$, .  
z 

In addition, Eq. (22) and its Hermitian conjugate imply the 
"flux density" conservation equation 

for any pair of funttions z:' and zz' belonging to the same 
quantum numbers p,, ,p, ,E. 

Since the states in the A and B phases far from the AB 
interface are unitary, i.e., 

the functions z, at large distances must be expressible as 

Here the pair of quantum numbers s = (p,k),p = 1,2, labels 
the linearly independent states in spin space, and e?' are two 
orthogonal spinors: 

for which explicit expressions will not be required. Far from 
the interface the functions 

satisfy the equations 

(dZ/dx2+p,Z) u-2ml A (p) I u=-ZmEu, 
(26) 

(d2/ax2+p:) u+Zm I A (p) 1 u=2mEu, 

and can hence be expressed as a linear combination 

" ("- [T!:)$:O) +Sio) " 
w, - ~k wk'(O) 1 

k = t , 2  
(27) 

of any four linearly independent solutions of Eqs. (26): 

" (0)- " 
LL'k -Ck!3kei~*r and Lk*(O) ,C (k=l, 2), 

[ I* (EZ- 1 A (p) I ') '"/El '" 
~ , , ~ = 2 - " (  

-[1T(E2-lA(p) 12)1'z/E]'ia 

In these formulas (A(p) ( is the absolute value of the order 
parameter in phase A or B far from the interface. Together 
with their complex conjugates, the functions in (27) fur- 
nish a system of linearly independent solutions of the Bogo- 
lyubov equations (22). We note that the matrix elements 
S $" describe particle scattering with a momentum transfer 
of order 2p, z2pF by a potential lA(p) 1 &EF. Since the 
quasiparticles move semiclassically, the matrix elements 
S!f', which correspond to "reflection over a barrier," are 
exponentially small of order exp( -pF&) and may be set 
equal to zero. The matrix elements Tjf' describe Andreev 
reflection of quasiparticles by the AB interface. 

Let us first consider states with energies satisfying the 
condition 

for a given p. The system of linearly independent solutions 
for each p = 1,2 then consists of four functions: the two 
functions $P' in (27) and their conjugates zjp'*(i = 1,2). 
The normalization conditions (23) require that 

From the flux conservation conditions (24) we find that 
*(P) .(PI (0) T~~ T:!) -Ti2 Tk2 =const. (29) 

at the AB interface. 
For states with energies 

min {IA,(p) 1 2 ,  IAB12)<EZ<mas { ~ A A ( P )  12, IABI') 

each p = 1,2 corresponds to a pair of linearly independent 
functions: 

The matrix elements T, satisfy the normalization and flux 
conservation conditions: 

To calculate the frictional force, we substitute expan- 
sion (21) for the Green's functions into the right-hand side 
of Eq. (20). The integrals over the energies d E  for each of 
the terms in the sum are calculated by moving the path of 
integration into the upper (lower) half plane, according to 
whether the function zF '(x ' )  or zLO'*(x') with x'- + 
or x;-. - co is analytic in the upper (lower) half plane 
of the complex variable E. In this process the contour of 
integration moves past the zeros of the denominators as 
E = E f is, respectively. As an illustration of one of the in- 
termediate steps in the calculations, we obtain, e.g., for 
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4. DISCUSSION 

1 inuS -d spj [n~ i%.9 /~  (r, r') I=*=. d3r=- 
2 4m2T 

piklm 

where (F)' = F ( x =  + a ) - F ( x =  --a).  We next 
calculate that 

the last relation holding through terms of order A/EF. Since 
by (29) we have 

_+= 0, 

we find that the right-hand side of ( 3  1 ) is equal to 

Recalling the identity 

one gets the final expression for the friction coefficient de- 
fined by (19): 

x {(&Z- 1 Amin (p) 1') 0 (e2- 1 Amin (P) 1') 

+ ('2- I A,%, (p) I ') 0 (8'- 1 Amin (P) 1 0 ( 1 Ama=(p) 12-E2) 
+ (&2- 1 Am,,(p) (')€I (8'- 1 Amaz(p) 12)-2[~2-1 Amin (P) 12]'11 

X [ e ~ -  (Am..(p) 1 2]'1y0 (c2- 1 A ~ = ( P )  I ') 1. 

Here ~ ( 0 )  = mpF/2v2 is the density of states, and the quan- 
tities 

I A , ~ , ( ~ )  \=rnin { l h ~ ( p )  1, ( A s \ ) ,  

are chosen to be the maximum and minimum values of 
\AA (p) 1 and I A, I for each p; they depend on the direction 
of p. 

In discussing Eq. (33) we first note that the viscosity 
coefficient r is readily seen to be essentially positive, so that 
the AB interface moves toward higher thermodynamic po- 
tentials. Moreover, r is very small because the leading terms 
in (32) cancel by virtue of the flux conservation condition 
(29). We have r -v (O)  A2/v, in order of magnitude; this is 
smaller by a factor of (A/E; than the value r would have 
if the excitations were scattered in the ordinary way (i.e., 
with a change in sign of the momentum p, ). This result 
agrees with the estimates given in Ref. 3. Since the scattering 
matrix T, is unitary, the remaining terms in r are indepen- 
dent of the detailed structure of the AB interface and depend 
only on the properties of the superfluid phases far from the 
interface (namely, on the orientation of the anisotropy vec- 
tor 1 in the A phase relative to the interface, and on the abso- 
lute values of the order parameters in the A and B phases). 

Equation (33) for is similar in form to the result ob- 
tained in Ref. 3. However, it does not involve the quasiparti- 
cle transmission coefficient across the AB interface, which 
remained undetermined in Ref. 3. 

Because the viscosity coefficient is so small, the velocity 
u should increase rapidly as we move away from the phase 
equilibrium curve TAB (P) ,  on which f l A  = R, . Indeed, in 
the experiment in Ref. 2, u began to exceed the critical veloc- 
ity v, quite quickly. 

The phase equilibrium curve TAB (P) also depends on 
the magnetic field and may extend over a very wide range of 
temperatures. It will therefore be useful to study how r de- 
pends on temperature over the entire interval from 0 K 
to T,. 

At low temperatures, for which T< [AA I ,  [A, I, most of 
the contribution to the angular part of the dp integral comes 
from directions parallel to the anisotropy vector 1. If we set 

I A, (p)  1 = A, sin6 is the angle between 1 and p, we have 

r=7nkv (0) T'/30vpAa21 cos XI, 

wherex is the angle between 1 and the normal n to the inter- 
face. This formula breaks down when 1 is parallel to the AB 
interface (X = v/2), in which case the logarithmic diver- 
gence in (33) for smallp, becomes important. In our model, 
the cutoff for this divergence should lie at momenta 
p2 -m(c2 - lA(p)12)1'2. F o r x  = 77/2 we then get 

at low temperatures. We see that when 1 is parallel to the 
interface, the friction coefficient is proportional to T rather 
than to T 4  and falls off more slowly with temperature. 

It is difficult to calculate I? in closed form for large T. 
For T- T, an estimate gives 

Such orders of magnitude are in qualitative agreement with 
the experimental results2 (see Ref. 3 for more on this point). 

I am grateful to G. E. Volovik and M. Salomaa for help- 
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