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The time dependence of the localization of a quantum particle in a disordered system is 
considered. It is assumed that the particle is placed into the system at the initial instant, and 
the character of its transition to a stationary localized state is tracked. In the one-dimensional 
case this problem can be solved exactly in all of time, starting with the atomic scale. The final 
dependence is found to be quite simple and reflects some new features of one-dimensional 
localization. The ensuing physical properties of the observable quantities are indicated. In the 
case of systems of large dimensionality, the spreading is discussed within the framework of 
perturbation theory and of the Mott description of the resonance states. 

I. INTRODUCTION 

A feature of a disordered electronic system is the onset 
of localized states.' The elucidation of the nature and char- 
acter of these states has been the subject of a large number of 
studies. We wish to call attention here to another aspect of 
this phenomenon, namely, the dynamic features of the tran- 
sition into a localized state, i.e., to the manner in which the 
electron becomes localized in time from an almost free state 
(see below). Clearly, such characteristics determine many 
important properties of the system, for example the transient 
injection current, the hopping kinetics,' and others. 

The standard formulation of the problem is the follow- 
ing. Assume that an electron was placed on site n of a disor- 
dered lattice at an initial instant of time t = 0. The question 
is: what is the probability W(t) that it will remain on the 
same site at an instant t > 0. Strictly speaking, the localiza- 
tion criterion is the behavior of W(t) as t- w (Ref. 3). In 
the case of localized states W(t-+ co ) tends to a finite limit 
W,. The time by which W(t) reaches values on the order of 
Wo can be defined in the general case as the localization time 
T,,, . It was in just this formulation that the localization 
problem was investigated numerically for the one-dimen- 
sional state in Ref. 4, and TI,, was estimated at T,,, =: 20r, 
where T is the Boltzmann time between collisions. Actually, 
the very character of the behavior of ~ ( t )  is still a question 
for which an answer has not yet been found within the frame- 
work of analytic theories. We have found in the present 
study that W(t) approaches Wo in as a power-law function 
(r/tI3. 

We turn first to the one-dimensional case, since this 
problem can be solved exactly. Naturally, we use a continual 
version of the model with an infinitely broad band. Next, as 
indicated in Ref. 5, we must change to a description in terms 
of wave packets, assuming that the spatial dimension of the 
packet is Ax <L ,, , where L ,, is the localization radius. The 
disorder will be taken into account mainly by the Berezinskii 
m e t h ~ d . ~  This approach led to a number of exact  relation^'.^ 
(see also the review in Ref. 9).  They touch upon mainly, 
however, the coordinate dependence of the first asymptotic 
expansion in the frequency w -+ 0 of several correlators. Our 
task is, technically, to study the entire frequency dependence 
of the two-particle correlation function, subject to certain 
constraints on the coordinates. This principal and procedur- 
ally new result is contained in Eq. (17) [with allowance for 
(21), (22) and (23)-(25)l. It creates a unified rigorous 

mathematical base for the treatment of the great variety of 
physical problems touched upon in the present paper. 

2. FORMULATION OF THE PROBLEM 

Let the state of the electron at the instant of time t = 0 
be described by the function $, (x)  . Its evolution in the suc- 
ceeding instants of time t > 0 is then specified by the function 

where $, and E,  are the eigenfunction and eigenvalues of the 
total Hamiltonian, with allowance for impurities. The corre- 
sponding amplitude of the transition to a state with $,- (x)  
will be 

where the advanced Green's function is defined in standard 
fashion: 

iet ~ - ( x , Y ; t ) = j ~ e  G-(x,y;e), 

We obtain the physically observable transition probability 
after averaging lA(t) l 2  over the random potential. It can be 
written in the form 

K(x, y; r', y'; E, e')=<G-(x, y; e)G+(xl, y'; E')), 
G+(x, Y ;  E)=(G-(x, Y; el)', (5) 

where the angle brackets denote the sought-for averaging. 
We can similarly express in simple fashion the electron-den- 
sity distribution probability p(y,t) at the instant of time t, if 
initially ( t  = 0) the state of the electron was described by the 
wave function qi (x) .  According to ( 1) and (5)  we have 
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As to $, ( x ) ,  we assume that they constitute a spatially 
bounded wave packet of size Ax 4 L ,,, with a carrier fre- 
quency E ,  = mv;/2.  According to the exact s o l ~ t i o n , ~ ~  the 
localization radius is L ,,, = 2 ~ , v ,  = 24 ,  where T ,  and I ,  are 
the time and length of free path with respect to backward 
scattering. The energy width A, of the packet is found in 
turn to be such that 

where At is the time of the ballistic decay of the wave packet. 
It is convenient to represent $ ( x )  in the form 

where p ( k )  is centered relative to + k,  with a width of 
order Ak =: l / A x .  By way of example, we consider a Gaus- 
sian packet of the type 

(8  
where k , / a  $ 1 ;  then 

2Na ( a x ) 2  
$0 ( 2 )  = cos (kFx)  exp [ - . 

In the absence of disorder, the spreading of such a wave 
packet follows the law ($i ( x )  = h ( x )  = $ , (x )  ) 

This justifies the definition of At as the ballistic-decay time. 
Strictly speaking, Eq. ( 1 0 )  is valid so long as 
t < t  = A t ( k , / a ) .  At t ) i  the function W ,  falls off like l / t ,  
but here W o ( t )  turns out to be already exponentially small, 
since k , / a )  1 .  We shall consider hereafter also asymmetric 
wave packets of the type 

Q + ( x )  = X - ' ~ N C I  esp ( ikFx)  exp [ - ( a x )  '121, +-(XI = ~ ~ * ( x ) .  

The presence of impurities makes possible transitions 
between two states with $+ ( x )  and $- ( x ) .  

The problem consists thus of calculating the function 
K ( x ;  y; x', y'; E ,  E ' )  in the general case for arbitrary values of 
the coordinates and energies. We, however, confine our- 
selves to a region of coordinates that are close to one another 
with the difference between each pair of coordinates not 
larger than Ax < I , ,  although the approach developed below 
uncovers a possibility of calculating K  also in an arbitrary 
case." It will be shown below that this dependence can be 
divided into a fast one of the type exp( ipx)  and a slow one in 
the form exp ( - x / l ,  ) . Since Ax 4 1, the second dependence 
can be neglected. After integrating over the fast dependence 
with $ , / . ( x )  in the form (7 ) ,  we relate the internal energies 
( E  and E ' )  with the specified energies of the wave packets ( k ,  

and kf ). Naturally, they turn out to be close. The problem of 
finding the coordinate dependence of K  becomes substan- 
tially simpler if no distinction is made in it between the ener- 
gies E and E ' .  This is valid if p  -p '  = w/u,< l / h ,  or for 
t $  h / v ,  =:At. 

4. CALCULATION OF FOUR-POINT CORRELATION 
FUNCTION 

We turn to perturbation theory, choosing as the starting 
point the free Green's functions 

G- (x ,  y ;  E )  = % e-E(p)-iO v 

where 

and regarding the scattering by the impurities as a perturba- 
tion. The corresponding technique of summing the essential 
perturbation-theory-series diagrams obtained in this man- 
ner was proposed by Berezin~kii.~ It is based on the idea of 
spatial ordering of the diagrams. Details of this technique 
can be found in the  review^.^.^ According to this approach, in 
diagram notation, the sought-for object breaks up in the co- 
ordinate representation, by drawing sections through the 
outer vertices, into a product of individual blocks with fixed 
numbers of incoming and outgoing electron lines. The outer- 
most blocks R ,  (z) produced in this manner obviously coin- 
cide with the left- and right-hand sides which were intro- 
duced already earlier by Berezinskiy (see Fig. l a ) .  Their 
distinguishing feature is that the number of pairs of single 
(G- ) and double ( G ,  ) lines coincide. The corresponding 
equation for Rm ( z )  is of the form 

where s = 2 i ~ ~ w  and w = v ( p  - p ' )  - iO. To consider the 
central part of the diagrams we must introduce new blocks, 
where the numbers of single and double lines are different. It 
is easy, however, to determine the explicit coordinate depen- 
dence of each such Consider, for example, the 
block Tm ( z )  shown in Fig. lb, with 2m + 1 single and 
2 ( m  + 1 ) double lines. An example of a diagram that con- 
tributes to Tm is shown in Fig. 2. Following the standard 
derivation,'-%e can find the following equation for Tm : 

FIG. 1. 
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y- 

FIG. 2. 

where we have separated the explicit (rapid) dependence of 
Tm on z. Clearly, the remaining dependence of T, on z is due 
to the boundary condition, its scales are 1/1,, and 
p -p' = W / U Z  l/ut, and can be neglected compared with 
the small parameter Ax/l, or At /t. In fact, the boundary 
condition for T, (z) is 

In the region of small z - x the function T,,, ( x )  can then be 
represented in the form 

- 
whereTm(x) = E m + , ,  andaccording to (12) and (13) we 
have 

In the region of small s4  1 the last equation can be rewritten 
in the form 

where f. = ms. Since f.aE (f.) [see ( 19a) 1, the sec- 
ond term in ( 14) can be neglected compared with the first if 

I Z  - x1/Z2< 1. In the regions) 1 we have for R m  (s) the high- 
frequency expansion Ern (s) = O( l/sm), and according to - 
( 12) (m + l ) X m  ZSR, + , . Consequently, the condition for 
neglecting the second term compared with the first at ss 1 is 
the inequality s / z  - xl/12g 1. The estimates s ~ ~ , / t  and 
Iz - xl =Ax allow us to rewrite this condition in the form 
t$At. 

This approach can be used to analyze also other blocks 
that enter into the problem. In particular, for the block S, 
(see Fig. l c ) ,  which contains 2m + 1 single and 2(m + 1 ) 
+ 1 double lines, we obtain the following equation: 

S,,,(z) =esp [-2i (p-P')  mz] S,, ( z ) ,  

d 
2 i  (p-p') mS,, - - Sm = - 

d z  

It can be noted that in the limit as s-0, but with 
f. = ms - const, Eq. ( 15) becomes equal, after a simple sub- 
stitution, to the corresponding equation for the central part 
of Z ,  (z),  introduced by Berezinskii. As a result we have 

The main conclusion that can be drawn from the fore- 
going analysis of the blocks T, and S, is that no dangerous 
dependence, say of the form exp (ipmz), appears in blocks in 
which the numbers of double and single lines are not equal. 
As to the dependence of type exp[i(p -pl )mz] ,  it is can- 
celled out in the usual manner6-' when the blocks are joined 
together in the derivation of the complete expression for the 
correlator K. Thus, even by proceeding directly to calculate 
the function K and following the foregoing analysis of the 
blocks it contains we can establish the complete form of the 
coordinate dependence of K at all possible arrangements of 
the coordinates. As already stated, the difference betweenp 
andp' can be disregarded. After separating the rapid depen- 
dence, all the coordinates in the remaining part of K can be 
regarded as equal, and this part becomes simply equal to the 
autocorrelator. This is valid again for the parameter Ax/l,. 
We ultimately obtain for K the expression 

K ( x ,  y; x', y'; E ,  E ' ) = v - ~  exp [ k i p (  ~ x - Y I - I x ' - Y ' I )  I 
+4vw2 cos [ p ( x - y )  ] cos [ p ( x r - y ' )  ] A ( o )  

+2u-' cos [p(x+y-5'-y') ] B ( o ) ,  (17) 

The following interpretation of ( 17) and ( 18) can be 
proposed. In a region where the coordinates x, y, x', y' differ 
by less than I,, there is no impurity scattering. The preceding 
analysis was in fact devoted to a proof of this statement. In 
this case the numbers of pairs of lines in the right-hand and 
left-hand sides are equal or differ by unity, and the coordi- 
nate dependence stems only from the outer vertices. The 
term with A in ( 17) corresponds to the case when the elec- 
tron lines in each pair of outer vertices, x, y or x', y', are 
oppositely directed, and the term with B corresponds to the 
variant in which the electron lines are connected to all the 
outer vertices from one side. The first term in (17) corre- 
sponds to free propagation of the electron. 

Equation ( 12) is a functional form of the confluent hy- 
pergeometric equation, l3  and its solution, which satisfies the 
condition R,(s) = 1 and decreases as m - cc is of the form 

R,(s)=sr(m+l)  Y ( m + l ,  2; s ) ,  (19) 

where I? is the gamma function and Y a confluent hypergeo- 
metric function. The validity of the relation can be verified 
by substituting ( 19) in ( 12) and using the known relations 
for functions associated with T (Ref. 13).  In the limit as 
s - + O a n d m -  W ,  but with{=ms-const, Eq. (19) takes 
the form of the known solution".' 

where Kl(f .)  is a modified Bessel function. To calculate A 
and B it is convenient to use in ( 18) an integral representa- 
tion for R, (s ) ,  in the form 
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This form of the solution ( 12) was first indicated in Ref. 6. 
As a result, 

The functions A and B represent at x % 1 the first perturba- 
tion-theory orders: 

At low frequencies we have, besides the pole singularity cor- 
responding to localization, also a logarithmic singularity, 
and it is this which determines the localization rate. A and B 
take a rather simple form in the temporal representation: 

It is ofinterest to compare the present results with those 
of simple diffusion. The latter can be investigated also by 
using the present approach. In this case Eqs. ( 17) and ( 18) 
remain in force, and on the equation for R, changesI4: 

from which follows - 
R, = exp( -Am),  

wheres = sinh 2 ( / 2  /2), and 

Consequently, the behavior of these two processes in the re- 
gion t <r, (s $1 ) turns out thus to be similar, since it is gov- 
erned in both cases by the first perturbation-theory terms 
and turns out to be substantially different at times that are 
long compared with 7,. Here [cf. Eq. (24) ] 

1 
B, ( t )  = -( 2 ~ ~  L 2nt ) ' [ I + o ( ~  )] 

and A,  ( t )  are described by decreasing relations typical of 
one-dimensional diffusion. 

4. RATE AND PECULIARITIES OF ONE-DIMENSIONAL 
RELAXATION 

As seen from ( 17), the frequency and coordinate de- 
pendences of the function K were separated. It is clear from 
physical considerations that the frequency dependence re- 
flects the properties of the energy spectrum of the system. In 
fact, the density-of-states correlator introduced in Ref. 15 

where z = x - x ' ,  can be expressed in terms of K in the form 

Substituting here the expression for K from ( 17), we get 

COS ( 2 0 ~ 2 ~ )  
~ ( w ) = ( 2 o r , ) '  j 

, Y+I dy, 

where N(0)  = l/nu, is the one-electron density of states. 
The appearance of a term with Sw in (28) indicates that we 
are dealing with localized states.16 The function C(w) ad- 
mits of both high-and low-frequency expansions: 

With this expression for C(w), Eq. (28) yields, after averag- 
ing within the limits of the atomic scale, the first term ob- 
tained in Ref. 15 for the asymptotic expansion of F, (z) . 

On the other hand, the coordinate dependence of the 
function K reflects the structural singularities of the wave 
function of the localized state. According to ( 6 ) ,  the elec- 
tron-density distribution function at the instant of time t 
takes, for an initial state described by (9), the form 

Note that this expression contains an oscillating contribu- 
tion, thereby reflecting the conservation of the interference 
effects in a system with impurities. The result (29) was ob- 
tained under the assumption that 1x1 4 1, and t $ At. Actual- 
ly, however, the oscillating term indicated above is present 
also at larger x. Altogether, for the distribution function of 
the electron density in a localized state 6" we can obtain 

= p o ( s )  { l + ' l ,  cos ( 2 k F x )  exp [ -  1x1 ( 2 / 4 + f / l d  1 ), 

where an expression for p , ( x )  was indicated in Ref. 17. 
Equation (30) can be obtained by recognizing that for the 
density-density correlator (see Refs. 6-8) it is always possi- 
ble to add diagrams with rearranged outer vertices (an ex- 
ample of such a rearrangement is shown in Fig. 3, graphs a 
and b).  The equation for the central part corresponding to a 
sum of diagrams with permuted outer vertices coincides 
then with S,  from ( 15). According to ( 16), the function 
S,  (z) differs from the BerezinskiY central part Z, (z) only 
by a factor. Recognizing that permutation of the vertices 
gives rise to an exponential factor, we arrive directly at 
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FIG. 3. 

expression ( 3 0 ) .  Clearly, if we are interested in the integral 
characteristics ofp ( x )  with a scale larger than or equal to I,, 
the oscillating contribution to ( 3 0 )  turns out to be negligible 
in terms of the parameter l /k , l .  However, for quantities of 
order Ax, such that l / k ,  < Ax<l,,  the oscillatory increment 
becomes important. Such a situation arises, for example, if 
we describe localization processes in terms of Gaussian 
packets of size Ax 41,. The corresponding matrix elements 
of the function K can then be interpreted, according to ( 4 ) ,  
as transition probabilities. Using (4), ( 7 ) ,  and ( 17) we get 

wi - t ( t )=xaA(o )+xbB(m) ,  ( 3 1 )  

Choosing $i ( x )  = $f ( x )  = $ + ( x )  from ( l l ) ,  we get 

Wk, - k p  (t)=xoA ( t )  ( 3 4 )  

and for $i ( x )  = $ + ( X I ,  $f ( x )  = $ - ( x )  we have 

wherex, = x b  = (277) "2 /auF.  In the limit as t -  03 we have 

which has a clear meaning if it is recognized that the width of 
the packet is Ax = l / a .  

It is surprising that according to ( 3 4 )  and ( 3 5 )  
WkF- k F ( t )  turns out to be of the order of W ,  already at 
t g r , .  It is therefore of interest to trace the manner in which 
the other terms are produced. Clearly, perturbation theory 
can be used for times t  <r2, SO that we can confine ourselves 
here to first orders in the impurity scattering. We consider 
by way of example transformation of a packet with k ,  into a 
packet with - k,. The first-order graph corresponding to 
this process is shown in Fig. 3c. It is possible to determine 
directly from it the entire coordinate dependence of the func- 
tion K, no longer assuming that p = p ' .  After integration 
with respect to the coordinates in ( 4 )  we find that xb in ( 3 5 )  

depends now on w .  Omitting the details, we present the re- 
sults for a Gaussian packet: 

Using the convolution theorem, we can write for 
WkF- - k F ( t )  an expression that is valid in the entire time 
range t  % l / s ,  

t 

(37 
with B ( t )  from ( 2 4 ) .  Similar expressions follow also for oth- 
er transitions, particularly fork, - k,. It is necessary here to 
add one more term that describes a pure ballistic decay. As a 
result we can establish that the initial stage of the WkF-kF ( t )  
fall-off will follow a ballistic law [see ( 10) ] all the way to 
t z t ,  = At(1n a12)"2<~2,  and only at t  > t ,  is the behavior 
of WkF-kF ( t )  described by Eq. ( 3 4 ) .  We assume here that 
t ,  <?, where 7 is the upper bound of the validity of ( l o ) ,  or 
that l < a l , < e ~ p [ ( k , / a ) ~ ] .  

It follows from ( 3 7 )  that WkF- k F  ( t )  reaches values of 
order W, over ballistic-decay times and remains constant all 
the way to t .  The cause of this behavior is that for transfor- 
mation of a packet with k ,  into a packet with - k ,  a single 
reflection from the impurity is sufficient. Were we to consid- 
er the actual impurity distribution, the probability of such a 
transition, as a function of the time at t  5 r,, would exhibit 
only a spike at times corresponding to an electron negotiat- 
ing the path to the nearest impurity and returning to the 
starting point. This probability, averaged over the positions 
of the impurities, turns out to be constant so long as t  5 7 ,  and 
its order of magnitude is Ax/ l ,  = At / r , .  

5. CONSEQUENCES FOR OBSERVABLE QUANTITIES 

The function K can be used to analyze a number of ef- 
fects. Consider for example the influence of electron-elec- 
tron interaction on the density of states (see also Refs. 18 
and 19) .  In first order in d the interaction, the correction to 
the density of states, averaged over the length L, is equal to 

- 2 K ( z ,  x; Y, Y; 8, E ' )  I .  
Here E = i ~ T ( 2 n  + 1 ), E' = i.irT(2m + 1 ) are the Matsu- 
bara frequencies, and a nonzero contribution to ( 3 8 )  exists if 
ImaIm~'  < 0  and the correction has the same sign as I ~ E .  
The first term of ( 3 8 )  is the contribution of the exchange 
process, the second of the direct process, and u ( x )  is the 
interaction potential. Following an analytic continuation, it 
is possible to rewrite ( 3 8 )  in the form 

,.. 

d x - cD [ - 2 k 2  (z+iO) 1, 
zdz 
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where we have used the explicit expression for the function K 
and introduced the dimensionless constants g, andg,, which 
are used in the theory of one-dimensional interaction of a 
Fermi gas and correspond to forward and backward scatter- 
ing: 

N ( 0  j d  x gz=N ( 0 )  j d x  u ( x )  cos ( 2 k F x ) ,  

and the effective radius of the potential u ( x )  is assumed 
much smaller than the mean free path I,. From (39) we can 
ultimately obtain 

The substantial dependence of SN on T is due to the first 
term of (40), with SN a maximum at TZE and equal to 
SN/N(O) =: - (g, + 2g2)/&r2. Only the contribution of the 
second term of (40) remains at lower temperatures. 

It should be noted that although the result (40) was 
obtained in first order in the interaction, the disorder is tak- 
en here into account accurately, in contrast to approaches 
based on diffusion appro~imation'~ or on the self-consistent 
scheme. l9  

The function K obtained above enabled us to calculate 
also a number of the observable characteristics that describe 
the interaction of the nuclear spin with the conduction elec- 
trons. It is important to note that if we are considering in this 
interaction the scalar part corresponding to a contact term 
of type A (I,, , S, ), where A is the hyperfine interaction con- 
stant, I, the spin of the nucleus, and S, the spin density of the 
electrons at the site n, we must know the local characteristics 
of the electronic system in atomic scale. The function K cal- 
culated above contains in fact such information. In particu- 
lar, the time T, of nuclear spin relaxation via the conduction 
electrons is given by2' 

where Fm (z) is defined in (26), f(c) is the Fermi function, 
and w, = 2pH is the Zeeman splitting energy. Substituting 
(28) in (41 ) we can find that the rate of nuclear relaxation in 
the magnetic field, notwithstanding the localization, is de- 
scribed as before by the Korringa formula, just as in the case 
of free electrons: 

It follows, however, from (42) that it should increase sub- 
stantially when the field is turned off. To make expression 
(42) more understandable, we introduce the phenomeno- 
logical lifetime of the electrons in the localized state, a time 
that can be identified, under certain assumptions, with the 
inelastic-interaction time r in .  Equation (42) takes then the 
form 

where now rin (T) is the temperature-dependent time, and it 
is usually assumed that rin - l /TP(p)l) .  Note that the 
same time rin ( T) enters in the expression for the conductiv- 
ity*' 

(T ( T )  ~ 0 0 ~ 2 / 7 i n  (T) , (44) 

where a, is the Boltzmann value of the conductivity, and it is 
assumed that 7 2  -4 rin ( T )  . Thus, at low temperatures one can 
expect a substantial increase of the rate of nuclear relaxa- 
tion, and the appearance of a noticeable field dependence. 

The Knight shift can be similarly considered. It is deter- 
mined by the value of the spin density of the electrons at the 
n u c l e ~ s ~ ' . ~ ~  

This yields 

and the variance of the Knight shift k is thus 

where (k  ) is the Knight shift averaged over the volume. The 
total distribution function k was approximately calculated 
in Ref. 22. 

6. RELAXATION OF MEAN SQUARED DISPLACEMENT 

It is curious to ascertain how other characteristics, such 
as the mean squared displacement, vary during the spread- 
ing process. From the general relationsI6 we have 

where D(w) is the diffusion coefficient and d the dimension- 
ality of the system. The asymptotic behavior of D(w) is 
known in the one-dimensional case for low and high frequen- 
cieP9:  

2 v a 2 [ - i l o t  2 / 0 2 ' c 2 ] ,  o.tZB1, (47) 

21z2{iOC(3) + z z [ o  In (2072)  12) ,  w-c2<1, 
(48) 

where l ( 3 )  is the Riemann zeta function. Hence, inverting 
(46), we get 

2  ( ~ p t )  [ 1-2/Q~Ft/12] K 7 2 ,  (49) 
( )  = {  4 [ ( 3  - ( 2 )  ( 2 )  , 2 .  (50) 

It is clear that the logarithmic singularity in (48) is due to 
resonant transitions between localized states having energies 
that differ by values less than or of the order ofw, and spaced - 21, I ln wr, I apart. This physical picture of the resonance 
states was proposed by Mottl and verified by direct calcula- 
tion in Ref. 19. Actually, the asymptotic behavior found 
above for the autocorrelator [see, e.g., Eq. (34) ] can also be 
interpreted in terms of resonance transitions. In fact, for a 
given arrangement of the impurities, the function WiAi ( t )  
can according to ( 1 ) be written in the form 

~ ( t ) a ( ~ x ) ' Z  (yo) I '+   AX)'^ I $ n ( ~ o ) $ m ( ~ o )  1 2  

n n,m 

~ e ~ p [ i ( & ~ - e ~ ) t ] ,  (51) 
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where use is made of the fact that Ax (the spatial dimension 
of the wave packet with center yo) is much less than 1, (the 
scale of the eigenfunctions of the total Hamiltonian). The 
first term in (51) corresponds to the value to which W(t) 
tends as t - W ,  and the second describes the law in accor- 
dance with which this takes place. At large t the contribution 
to (51) ensures only states with close energy: 

I E ,  - E, 1 = w < l/t. If it is assumed that these states are 
randomly distributed over the energy scale, their number as 
a function ofthe time decreases like l/t. States with different 
energies correspond to wave functions with different posi- 
tions of the center, so that according to Ref. 15 we have 

%"Y) )X12-' exp [- (y-R,) /21,] . 

On the other hand, as indicated in Refs. 1 and 15, states with 
close energies are located at a distance larger than or of the 
order of IR, - R, I = 21, ln ( l/wr,). As a result, the term 
under the second summation of sign in (5 1 ) turns out to be 
proportional to l/t *, and on the whole this ensures a de- 
crease of W(t) - Wo like l/t 3, as follows from (34). 

A conclusion that can be drawn from the presented 
analysis of the time dependence of the localization in the 
one-dimensional case is that in this case there is no time 
region corresponding to diffuse spreading, and the transition 
proceeds directly from ballistic spreading to localization. 
The reason is that the localization radius L ,,, can substan- 
tially exceed the mean free path 1 and a diffusive spreading 
regime should be observed. The corresponding time interval 
can be estimated at T < t < TI,, , where TI,, = L zlo, /2dD,, 
and Do = uF2r/d is the diffusion coefficient. 

For a two-dimensional systemz3 we have 
L,,, z l  exp(m,.r), and consequently TI,, zrexp(2.rreFr). 
The behavior of (x2 ( t ) )  at a time t < TI,, can be determined 
by perturbation theory. According to Ref. 24, the diffusion 
coefficient, with account taken of the first correction in the 
parameter ~ / E ~ T ,  is equal to 

and accordingly 

We can similarly find for the autocorrelator in the two-di- 
mensional case at t < T,,, 

The character of the approach of (x2(t))  to a stationary 
value after a time t )  TI,, can be determined by using the 
Mott picture of resonance states. According to Mott, 

D (o) = - i o ~ ; ,  ( E )  
(54) 

where rc (E) = N(E) [L,,, (E)  I d  and N(E) is the density of 
states. For d = 2 we have T, ~ E ~ T T , , , .  This yields for the 
mean squared displacement 

where (xZ( w ) ) z L ,,, . An attempt can be made to obtain, 
from similar considerations, the character of the approach of 
W(t) 20 its stationary value Woz ( l/k,L,,, )d at t )  TI,, . 
The foregoing analysis of Eq. ( 5  1 ) can be repeated also for 
d >  1 by making the substitution 21,-L,,. The distance 
between resonance states with energies that differ by 
w = E, - E, turns out to equal in this case 
R = 1 R, - R, I z L,,, I In CUT, I. Estimating the factor 
I $, (yo) $, (yo) 1 from its maximum value, equal to 
exp( - R /L ,,, ), we can conclude that W(t) is transformed 
into W, again in proportion to l/t or possibly faster because 
of the logarithmic factor. 

In the case of a three-dimensional system, localized 
states correspond to the energy region E < E,, where E, is the 
mobility edge, estimated at E, z 1 / ~ .  Interest attaches here 
to states near the threshold, where 
L,,, (E)  z 1 I & , / ( &  - E, ) 1,1. The law according to which 
(x2 ( f )  ) increases to values of order L :,, can be found from 
scaling  consideration^^^: 

Consequently 

The present results are valid so long as 
r < t & r ,  ~ T I E , / ( E  - &,)I3, and for t>.r,, while Eq. (55) 
holds for (x2 ( t )  ). 

7. CONCLUDING REMARKS 

Thus, using as an example a one-dimensional system 
with weak disorder we succeeded in obtaining, for the first 
time ever, exact analytic expressions for the functionsp (x,t) 
[see (29) 1 and WkF+ * k F ( f )  [see (34, 35, 37) 1,  which de- 
scribe the time evolution of the localization process. Inci- 
dentally, such a power-law dependence on the time cannot 
be obtained in the self-consistent approach in the spirit of 
Vollhardt and WolfleZ3. As t- w these functions character- 
ize the properties of the stationary localized state. For exam- 
ple, Eq. (30) forp (x )  is a specific expression for the distribu- 
tion of the electron density in the region l/k, < x  < 1, i.e., 
where the quantity 21p(x) changes from 1 to 2/3 (see, e.g., 
the figure in Ref. 15). Similarly, Eq. (28) for the correlator 
of the density ofstates F, (z) describes in the same region the 
transition from n2(0) to (2/3)N2(0) (see the figure in Ref. 
15). 

Note that the presence of a &function contribution to 
Eq. (28) for F, (z) is not a property unique to the one-di- 
mensional model. In fact, using Eqs. (5) ,  (5') and ( 7 ) ,  (7 ' )  
from the paper of Berezinskii and Gor'kov,I6 which are suit- 
able for any dimensionality d of the space, and recognizing 
that the dependence on q should enter in the form of the 
dimensionless combination qL,,, , we reach the conclusion 
that 

where C is a certain constant, b ( ~ )  is a function of E, and 
T(E)  = A'(&) [Lloc (&)Id. The obtained scale r ( ~ )  accords 
therefore with the one used by us in the framework of Mott's 
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phenomenological approach to discuss the relaxation of the 
mean squared displacement. 

For z#O and a 6-function contribution, the constant C 
should be replaced by some dimensionless function 
f(z/L,,, ). Comparing (28) and (30) of the present paper 
with Eq. ( 11 ) of Ref. 15 we find that in the one-dimensional 
case at arbitrary z the singular contribution (as w - 0 )  
should be written in the form 

wherep(z) is described by Eq. (30). 
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