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We suggest a method for calculating the diffusion coefficient x, (6) for a scalar field (density, 
temperature, and so on) in a stochastic, uniform, isotropic, incompressible medium. The method 
enables us to calculate x ,  (S) up to the most encountered case [= 1 ({ * = (u2) 7:/3R :,where 
(u2)  is the mean square average of the velocity, and T, and Ro are characteristic time and spatial 
scales of the velocity fluctuations). The relative error in calculation ofx, ({) for{=: 1 is 10-2092 
and decreases when the parameter [ decreases. The method is useful also for non-Gaussian 
ensembles of a random velocity field. 

I. INTRODUCTION 

In many problems in physics and astrophysics one en- 
counters the problem of the transfer of a scalar field in a 
medium with random velocities or forces. Amongst them, 
for instance, is the problem of the transport of particles or 
heat in a medium whose velocity field is random and is deter- 
mined by the correlation tensors ofdifferent ranks. A similar 
problem is that of finding the distribution function of parti- 
cles in a random force field. Related to this type is the prob- 
lem of the magnetic field diffusion. Notwithstanding the fact 
that the magnetic field is not a scalar, we can apply to it the 
method proposed below. 

It is well known that one obtains for averaged scalar 
quantities (temperature, density, distribution function, and 
so on) diffusion equations with a diffusion coefficient which 
depends on the characteristics of the medium. Many papers 
have been devoted to evaluating these diffusion coefficients. 
For instance, the diffusion coefficient for the average mag- 
netic field in a medium with velocities assumed to be 6-corre- 
lated in time was found in Ref. 1. The analogous problem for 
a scalar field was solved in Refs. 2-6 without assuming a 6- 
correlation. In all papers it was assumed that the ensemble of 
random velocities or forces was Gaussian. The important 
role of the higher correlators of the random field was shown 
in Refs. 7 and 8. A theoretical study of the temperature of the 
ocean surface when the inflow of heat from the atmosphere 
has a stochastic nature was given in Ref. 9, where also the 
intermittency effect was predicted, i.e., the presence of spo- 
radically appearing rare and strong temperature peaks. 

We choose in what follows, for the sake of argument, 
the temperature as the scalar field. The random medium is in 
our problem determined by two parameters. The first of 
them is 7 = R,,(4xm 7,)) - 'I2, where R,, and 7,) are character- 
istic space and time scales of the correlation of the random 
velocity field u(r , t ) ,  and x, is the molecul&r diffusion coeffi- 
cient. The parameter 7 is equal to the ratio of the correlation 
scale Ro to the length for eq!ializing the temperature over a 
correlation time T,, through the molecular heat conduction 
mechanism. In the majority of actual cases ~ $ 1 .  The other 
parameter is [ = u,,~,/3R,,, where uO = ( (u2)  ) "' is a char- 
acteristic rate of the velocity fluctuations of the medium. 
Most papers are restricted to the case { < 1, which corre- 
sponds to weak random velocity fluctuations, and also to a 

medium with 6-correlation in time. However, in many actu- 
al situations the characteristic dimensions of the correlation 
region are of the order u,,T,,, i.e., {=: 1. The study in Ref. 3 
comes closest to this case; in it the turbulent diffusion coeffi- 
cient x T  is calculated through the use of the Green function 
of the usual heat-conduction equation, where instead of the 
molecular coefficient x, the required quantity x, itself is 
substituted. This gives integral equations from which x ,  is 
determined. As a result one obtains for x,. a series whose 
convergence is not proven. For && 1 this series gives 
K T  -6 - I  which contradicts the result obtained from an 
analysis of the initial equations (see below). 

In contrast to the above mentioned-papers we have cal- 
culated the diffusion coefficient in a stochastic medium 
without restricting ourselves to the 6-approximation or to 
the approximation {< 1. The proposed calculation method 
is applicable also for non-Gaussian random velocity ensem- 
bles. 

2. STATEMENT OF THE PROBLEM 

The transfer of heat in an incompressible medium with 
a given turbulent velocity field u(r , t )  is described by the 
equation 

We write the temperature field T(r, t)  as the sum of an aver- 
aged and a fluctuating component T = ( T ) + T ,  , ( T, ) = 0. 
Averaging Eq. ( 1 ) we get 

( ( / /d l -z , , , \ - ' ) (T)= j , , ( r .  1 ) .  !,,(I-, t ) = - ( i ~ ( r .  t ) \  T,(r. / ) ) .  

( 2 )  
The angle brackets ( . . .) indicate averaging over an ensem- 
ble of stochastic fields u(r , t )  where we assume that the medi- 
um as a whole is at rest, i.e., (u) = 0. We assume the velocity 
field to be statistically isotropic, uniform, and stationary. 
Using the Green function of Eq. (1 )  for an infinite medium 

whereB(r)  = 1 f o r r > O a n d B ( r )  = O f o r r < O ,  weget an 
integral equation for T(r, t) :  
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HereR = r  - r ' , ~  = t  - t  'and the temperatureat timet = 0 
is given by the field T ( r , O ) .  

Subtracting from Eq. ( 4 )  its averaged part we get an 
integral equation for the fluctuations T I  ( r , t ) :  

m 

T , ( r . f ) =  l d t f  ~ d r r ~ ( ~ . ~ ) [ - u ( r ' . t r ) ~ r t ~ ( r ' . t ' ~ )  
0 

+ < u ( r r ,  t ')  V ' T ,  (r', t l ) ) - u ( r l ,  t ' )  V I T i ( r ' ,  t ' ) ] .  ( 5 )  

It is clear from this expression that T I  ( r , t )  depends on the 
gradient of the averaged temperature. 

It is convenient to use in what follows a diagram nota- 
tion. Let a line connecting r , t  and r ' , t l  correspond to the 
Green function G ( R , r ) ,  a small circle corresponds to the 
operator ( - u V ) ,  and we denote the average temperature 
( T )  by a cross and the fluctuating temperature T I  by a rec- 
tangle. Equation ( 5 )  takes the following graphical form: 

The arched line indicates statistical averaging over the ve- 
locity field for all quantities which stand under it. One inte- 
grates over the coordinates r l , t  ' corresponding to the right- 
hand ends of the straight lines. 

We write T l ( r , t )  as the sum of two quantities: 
T I  = T, + T, ,  where T, (To ) is a quantity which is even 
(odd) in the number of velocity components. The even part 
of T I  ( r , t )  can according to Eq. ( 6 )  be expressed in terms of 
the odd one: 

m 

( r ,  t )  = j d r f  j d t f  G ( R ,  TI [ ( u ( r f ,  t l )  V ~ T ~ ( ~ / .  t t )  ) 
0 

Using Eq. ( 7 )  we get from (6)  an equation for solely the odd 
part of T I  ( r , t )  : - 

+ dr" j d i f f  [ u ( r t ,  I t )  V  'G ( r t - r f f .  t f - t f f )  u ( r r t ,  t f f )  Vf'T.(r", t f f )  
0 

- u ( r f ,  t ' )  V'G(rf--r".  t ' - t f f )  ( ~ ( r ' ' ,  t f f )  V " T a ( r N ,  t f f )  ) 
- ( u ( r f ,  t f )  V f G ( r f - r f f ,  t ' - t t f ) u ( r f f .  t") Vf'To(rf' ,  t t f )  ) ]  ). 

( 8 )  
It is convenient to regard the terms with averaging as a part 
of the free term of Eq. ( 8 ) .  Introducing the notation 

we seek the solution of ( 8 )  in the form 

~ ~ ( 1 ) -  -5 d Z l ( l . 2 )  [ u ( 2 )  \ 7 , F + ( 2 ) + F - ( 2 ) ] ,  ( 1 0 )  

where we have introduced the two-point resolvent function 

M (  1 , 2 )  = M ( r , , t l , r Z , t Z )  which we shall denote in diagrams 
by an oval and which satisfies the equation 

If we know the function M we get, by substituting ( 10) into 
( 9 ) ,  a set of ordinary, rather than stochastic, integral equa- 
tions for the functions F+ and F-: 

V , $ ' + ( 3 ) + ( u ( l )  V i G ( l ,  2 ) u ( 2 )  V 2 M ( 2 ,  3 ) ) F - ( 3 ) ] .  

Since the velocity field u ( r , t )  is uniform and stationary, the 
kernels in ( 1 2 )  are functions of the coordinate and time dif- 
ferences, i.e., they can easily be solved explicitly if we use a 
Fourier transform with respect to the coordinates and a La- 
place transform with respect to the time. Finding the fluctu- 
ating part of the temperature has thus been reduced to deter- 
mination of the auxiliary function M ( 1 , 2 )  which has, 
however, a fundamental value. The function M (  1 , 2 )  has the 
meaning of a Green function and describes the propagation 
of temperature fluctuations in the medium. We note that 
owing to the presence of the O ( 7 )  function in ( 3 )  the func- 
tion M contains O ( t ,  - t , )  and we can integrate in Eq. ( 1 1  ) 
f r o m t l =  - t o t f =  + W .  

Knowing the function M ( 1 , 2 )  makes it possible to 
write down the term f , ( r , t )  = - ( u ( r , t ) V T ( r , t ) )  [which 
occurs on the right-hand side of Eq. ( 2  ) 1 for the average 
temperature: 

o 

x u ( r r ,  t ' )  V J > F +  ( r ' ,  t ' )  

+ ( u ( r ,  t )  V M  ( r ,  t , r ' ,  t ' ) ) F - ( r ' ,  t ' )  I 
i 

-v,v,J~TJ~Ro.,(R,T)(T(~-R.~-~)). ( 1 3 )  
0 

One easily finds the explicit form of cP,, ( R , T )  if one writes 
down the graphical expression in analytical form. I t  is im- 
portant to note that the tensor cP,, ( R , T )  is obtained after 
averaging expressions such as ( u ,  ( 1 ) M (  1 ,2)u ,  ( 2 )  ) and 
differs significantly from zero inside a spatial scale - R, ,  and 
a time scale -T(),  as does the correlator ( u ,  ( 1 ) uJ ( 2 )  ). In 
contrast, the average temperature ( T (  r , t )  ) , which really 
means the temperature averaged over scales L $ R o  and 
times > T ~ ,  is clearly a smooth function over scales R ,  and 7(). 

To a good approximation we can thus put in ( 1 3 )  
( T ( r  - R , t  - T ) )  z ( T ( r , t ) )  and we get 

J , ( r ,  t ) = i t 7  ( t )  V L ( T ( r ,  t ) ) ,  ( 1 4 )  
t 

In this approximation it is sufficient to take 

F + ( I ) = ( T ( l ) ) ,  

F - ( I ) =  -1 d 2 j  d3(u(i)~~G(I,2)~(2)\~~M(2.~~)~(3)? 
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i.e.,f;,(r,t) takes the form 

The tensor QiJ (R,T) is in this case approximately equal to 

For brevity we have used here the notation 
ui ( r , , t , )  =ui ( l ) ,  G ( r ,  - r2,tl - t2)  -G(1,2), and so on. 
The second term in ( 17) is odd in the number of u, compo- 
nents and vanishes for mirror-symmetric turbulence, i.e., for 
a medium with zero helicity. Since the function M(1,2)  is 
even in the number of ui components, the second term in 
(17) also vanishes for Gaussian ensembles of the velocity 
field. 

Expression ( 15) for x, ( t )  is practically independent of 
the time for t > r 0  since the tensor QiJ (R,T) is rapidly 
damped at T > 7,). The turbulent diffusion coefficient (ther- 
mal diffusivity) is given in that case by the expression 

We can integrate in Eq. (18) over T from - to + a, 
since the tensor Q, (R,T) contains 8(r). We actually evalu- 
ate it for a Gaussian ensemble u(r , t)  when all odd correla- 
tors of the velocity field vanish while the even ones are ex- 
pressed as a sum of all possible pair correlators. For this case 
we have 

m 

Substituting (14) into Eq. (2 )  gives a diffusion equation for 
(T(r, t)  ) with a renormalized diffusion coefficient: 

Practically always we have x, >x, , i.e., v - a and we re- 
strict ouselves in what follows to just that case. As v +  a the 
coefficient x, is a function solely of the parameter {. 

It is interesting to establish the {-dependence of x, (g )  
for g> 1. We can do this directly from Eqs. ( 1 1 ) and ( 19). 
We introduce dimensionless quantities M = MR i, - - 
G = G R ~ , K , = R ~ U , ~ K , , ~ ; = T ~ ~ ~ T , ~ ; = R , % ~ , ~ ~ -  
noting them with a superior bar. Here 
Kl (3 ,4 )  -u(3)V3G(3,4)u(4)V4 is the kernel of Eq. (11). 
In dimensionless form, Eq. ( 1 1 ) becomes 

Hence it is clear that a( 1,2) E 6 -* as {+ co, and thus 

x ,  ( c )  -uir0/{ if the medium has no helicity and if the 
velocity ensemble is Gaussian. When there is helicity and if 
the ensemble is non-Gaussian, x, ({) - U;T,,/{ as {- m . 

3. CALCULATION OF THE TURBULENT-DIFFUSION 
COEFFICIENT 

For the evaluation of ::, ({) we need explicit expres- 
sions for the velocity pair correlator 

B!," ( R .  T )  =6, R-(K. T )  + (13,  (8, T )  -BL ( I f .  T )  ) I~ , l j , / l< '  

where R = r - r', r = t - t ', and e,,,,, is the antisymmetric 
unit pseudotensor. The quantities B ,  and B, determine the 
velocity correlations along and at right angles to R, respec- 
tively. The incompressibility condition div u = 0 gives the 
relation B, = B ,  + (R / 2 ) d B ,  /dR. The term with C ( R , r )  
describes the turbulent helicity (2RC(R,r)  
= (u (  1 ) X ~ ( 2 ) ) ) .  It is convenient to use a Fourier trans- 

form 

where the tensor E,,,, (p , r )  has the form 

I?,,,, (p. t) =I1 ,,,,, (1)) t ( p ,  T )  +ic , , , , , r  p , l ) ( ~ .  7 ) .  

J ( p )  =h, , , , /~'-p,,p~,~, (23 

For the actual calculations we take 

B ,  ( R ,  r )  =R, csp  ( -R2/R, , ' -  I TIIT,,), R , , = ' / ~ < U ? = ~ / , U , ~ ,  

/ T )  = ' n ' l l '  p [ -  ( R , , ) / -  T T ]  , (24) 

The correlators 

were also used in Refs. 3,5,6.  The correlator (24) decreases 
monotonically with increasing R while the correlators (25) 
and (26) oscillate and decrease more slowly than (24) .  For 
this reason the spatial scale - p i  ' is less rigorously defined 
in (25) and (26) than for the correlator (24).  

We shall perform all concrete calculations for Gaussian 
velocity ensemble u (r , t)  and for the case x,, --O(r1- co ) . If 
we iterate Eq. ( 11 ) : 

and substitute the series (27) in Eq. (19) for x, ({), we 
obtain a series of approximations for x, (l). We get (if there 
is no helicity) for the correlators (24)-(26) 
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The terms with f results from allowance for fourth-order 
velocity correlators, terms cc f from sixth order correlators, 
and so on. Expressions (28)-(30) are asymptotic (diver- 
gent) series and can be used for the calculation of x, ({) 
only for 6< 1. The accuracy of the calculation for x, (6)  is 
determined by the first discarded term. For instance, taking 
the first two terms in (28) into account gives x,(f)  for 
f = 0.05 with an error of20%. For realistic situations f 1 
and the series (28 )-(30) are completely useless for calculat- 
ing x T  (f ) . Comparison of the terms oc f : and a f : with the 
term 56 ' shows the same level of turbulence development 
corresponds to f ,  z 5 for the correlator (25) and to <2 ;=. 3.16 
for the correlator (26) when f = 1. 

The reason why the iteration of Eq. ( 11 ) is so inefficient 
for calculating x, ( f )  is that the kernel of this equation con- 
tains Green functions G(R,T) that describe the transfer of 
heat by the molecular heat-conduction mechanism and not 
by the convective heat-transfer mechanism. In what follows, 
we obtain from the initial Eq. ( 1 1 ) a new equation for the 
random function M (  1,2) the kernel of which describes more 
directly the convective heat transfer mechanism. Iteration of 
this new equation enables us to obtain for x, a new asympto- 
tic series which is suitable to find x, (6 )  up to the most inter- 
esting easel=: 1(6,-5,  f 2 z 3 . 1 6 ) .  

The formal solution of Eq., ( 11 ) can be written down if 
we use the resolvent operator R,,(1,2): 

We introduce here a new auxiliary equation with a kernel 
depending on the differences R = r - r' and T = t - t ', the 
solution of which can be obtained using Fourier transforms 
in R and T: 

We can in principle choose the kernel in (32) arbitrarily 
(but damped at infinity). 

We shall look for the solution of Eq. ( 11 ) in the form of 
a sum M = M +  + M-. Subtracting Eq. (32) from ( 11) [or 
from (31 ) 1 we get an equation with the same kernel as the 
initial Eq. ( 11 ). The solution of this equation can be ex- 
pressed in terms of the same resolvent: 

- K ( 4 , 5 )  l M + ( 5 . f ! ) .  (33 

Using the fact that according to ( 3  1 ) RG = M - G we get 

Adding to both sides of (34) the function M +  we get a new 
equation for the function M: 

Instead of the single Eq. ( 11 ) we have thus introduced two 
Eqs. (32) and (35) which are equivalent to the initial Eq. 
( 1 1 ) . The value of such a replacement consists in that one 
can solve Eq. (32) exactly and, through a physically based 
choice of the kernel of the function (32), we can take into 
account the characteristic features of the convective heat 
transfer. It is clear that the replacement of one equation by 
two may be accomplished in an infinite number of ways. We 
denote by M, (R,T) the solution of the equation 

(36) 
The function M I  (R,T) is a relatively good approximation to 
the average value ( M )  which one can graphically write 
down (for a Gaussian velocity ensemble) in the form of a 
sum of all possible graphs: 

(37) 
The function M ,  ( R , r )  which is the solution of (36) corre- 
sponds formally to a summation in (37) of ladder type 
graphs: 

(38) 
We note that the ladder type graphs (38) are much larger 
than other graphs of the same order in the velocity correla- 
tors, since they possess a larger symmetry in the angular 
variables than the non-ladder graphs. Ww now give the ex- 
plicit form ofM, (R,T).  It is convenient to us a Fourier trans- 
form 

rn 

Substituting (39) into Eq. (36) and bearing in mind that 
G@,w) = ( z , p 2  + iw)-I we get 

iCll ( p .  (a) = ( x , , , p 2 f  S ( p ,  o) f io)-', (40) 
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We next take x ,  - 0  and use the fact that then 
G ( R , r )  - O ( r ) S ( R ) .  In that case 

For actual calculations we take the correlators ( 2 4 )  and 
( 2 6 ) ,  i.e., B I 1  ( 0 , ~ )  = B, exp( - ( r j / r O ) :  

S ( p ,  o )  =Botop2 ( l + i o r o ) - ' .  ( 4 3 )  

I t  is convenient in the calculations to take the inverse Four- 
ier transform with respect to the frequency: 

( 4 B o ~ o Z p L i )  " T + (4Boto2p2-I)  'h cos 
2 T O  

1. ( 4 4 )  

Taking the inverse Fourier transform in the variable p we get 

- - 0 ( z )  exp ( - T / ~ T o )  [ 6 (H-rB.") +2r0 - 6 (R-rBi l>)  r )  

8nRroB,'- r )  T 

The function $ ( R , T )  = 0  for 0  < T < R  / B  A/2, while for 
T > R  / B  A'* we have 

where I, ( x )  is a modified Bessel function. The term with the 
derivative of the 6-function arises when T g r ,  for any T-de- 
pendence of B  ( 0 , ~ ) .  We get from ( 4 5 )  the normalization 
condition 

d~ M ,  ( R ,  T )  =R,  (0 ,  T )  =B ( T )  and MI ( R ,  0 )  =6 ( R )  . 
The term with the 8-function and its derivative describe the 
average convective heat transfer at a rate of - B  A'2. The 
appearance of these terms is completely natural if x ,  = 0 ,  
for in that case Eq. ( 1 ) become a wave-type equation. I t  is 
interesting that M I  ( R , T )  is independent of the scale R,. This 
means that the function M I  ( R , r )  describes convection as a 
superposition of jet flows damped in time, in which the 
length transversed by the jet is determined by the average 
velocity and the average damping time, i.e., R , - u , ~ , .  In 
contrast to G ( R , T )  the function M I  ( R , r )  thus describes the 
convective heat transfer directly, and iterations of the new 
Eq. ( 3 5 )  for M I  ( 1,2) thus enable us to calculate x ,  (6 )  for 
an appreciably larger range of values of the parameterg up to 
f  = 0.5. To extend the calculation ofx, ( 4 )  even further, up 
to 6 = 1, we can use the fact that the choice of the kernel in 
( 3 2 )  is not unique. In  particular, we propose to use the ker- 
nel K, = ( u ( 3 ) V , G ( 3 , 4 ) u ( 4 ) ) V 4 ,  K ,  = 2K, ,  K ,  = 3K, ,  
and so on, designating the corresponding solutions of ( 3 2 )  
by M I ,  M2, M,, and so on. We shall designate these functions 
graphically by ovals with one, two, and so on, vertical lines. 
The function M,, ( R , T )  is obtained from M I  ( R , T )  through 
the simple substitution B, -. nB,. 

Finally, the series of iterations for M (  1,2) is construct- 
ed as follows: in Eq. ( 3 5 )  with M I  ( R , r ) ,  we substitute in the 
integral term M (  1,3) from the same Eq. ( 3 5 )  but with the 
function M2 ( R , T ) ,  in the resulting integral equation, we sub- 
stitute ( 3 5 )  with M , ( R , r ) ,  and so on. As a result we get a 
series of iterations for M (  1,2) of the form 

Substituting this expression into ( 19) we get an asymptotic 
series for x , ( f ) : x , ( { )  = x,'"' + x,"' + x , . '~ '  + ... . The 
fact that the choice of kernels in ( 3 2 )  is not unique enables us 
in principle to look for another series for xT ( f )  which, pos- 
sibly, is more suitable than the one proposed in the present 
paper. 

We now give the results of the numerical calculations, 
assuming a Gaussian character of the random-velocity en- 
semble. The zeroth-order approximation is described by the 
formula 

m 

xi" ((a ='i3 J ~ R  J d r  MI ( R ,  T )  Bii ( R ,  r ) .  ( 4 8 )  

For the'correlator ( 2 4 )  it gives ( g  ' = B , , T ~ / R  i ) 

where 

is the error function. As 6 -  oo this formula changes into 
( 2 8 )  and as 6 -  w it gives xp' -B0r,/3f ', i.e., for large 6, 
x?' ( 6 )  o; 6 -' as we found earlier directly from ( 1 1 ) and 
( 1 9 ) .  

For the correlator ( 2 6 ) ,  Eq. ( 4 8 )  gives the simpler 
expression 

z,'") ( k )  =2Boto (2-kkz) -', E2=Bo~02poL. ( 5 0 )  

As 6 - 0  it changes into ( 3 0 ) .  
The second and third terms in ( 4 7 )  contribute for a 

Gaussian ensemble only when there is helicity ( h  = u  curl 
u#O): 

( 1 )  ( h e l i c i l y )  
ZT ( E ) = x T  ( k )  

v Lx - c . x  

X M, (q ,  T " )  D ( p ,  T + T ' )  D ( q ,  T+T")  . ( 5 1 )  

In the case of maximum helicity u / /  curl u, i.e., 
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D ( p , r )  = - yp f ( p , r ) ,  where y  characterizes the degree of 
helicity. For the correlator ( 2 4 )  we have 

Expression ( 5 2 )  reaches a maximum z 0.08y2B,.r, for 
g z 0 . 4 .  The relative contribution x$" as compared to x p '  
increases with increasing f and as {- ~4 reaches the value 
x$') /xF)  -r0.21y2. For the correlator ( 2 6 )  Eq. (51 ) gives 

In that case the maximum of x?' equals 0.086y2B,,.r0 for 
6' = 2'". The ratio x:."/x$" -0.25y2 as 5- ~ 4 .  

We have calculated from term x F ' ( { )  only for the case 
of no helicity ( C ( R , r )  = 0 ) .  For the correlator ( 2 4 )  it is 
equal to 

- - 4BoroE4 J dpl J dpr J dp3 exp ( - ~ , ~ - p , Z - p ~ ~ )  
3n" (2  1 p l + p 3 + p ?  1 2g2+3) (2ELpl2+ 1 )  

For simplicity we write p n 2 q r p i  n,, ( p z ) q j ,  and so on. The 
ninefold integration in ( 5 4 )  can be reduced to a threefold 
one, if we use formulae such as 

w 

( q 2 p z +  1) - I  = J dt exp ( - t  ( 2 t2p2+l )  ) . 
0 

For the correlator ( 2 6 )  we get instead of ( 5 4 )  
(6 ' = B,r;pi 

( 2 )  Bo~og' 
% T  ( t ) =  - 

2 n c ~ y g ~ + 2 )  ( 3 g ~ )  
J dn, J dn, 1 dn,  

One can find the integrals in ( 5 6 )  explicitly but the expres- 
sion obtained is too cumbersome. The terms xF' take into 
account the contribution from the sixth-order correlators. 
One must, however, bear in mind that using the functions 
M , ,  M,,  . means taking into account correlators of all 
order, but of the ladder type. 

An estimate of the next term x g ' ( { )  gives 
x?' z 0 . 0 3 B , ~ ,  for 6 = 1 .  The proposed procedure for calcu- 
lating x ,  ( 6 )  thus gives an error of 10-20% for f = 1 .  The 
error decreases as the parameter 6 decreases. 

According to the self-consistent theory of Ref. 3, the 
main contribution to x ,  (6) is given by Eq. ( 19),  where we 
have substituted instead of the exact Green function M( 1,2) 
the Green function ( 3 )  with the replacement xm -+x,: 

G,- (fl, T )  =e ( t )  [ ~ x T  ( E )  T ]  -" esp [-R2/4%,(E) t ]  , 
w 

From (57) it follows that x ,  (6 )  ccf - ' as f  - a, which con- 
tradicts the correct asymptotic behavior cc f  -2. For small {, 
Eq. ( 5 7 )  give smaller values than the correct asymptotic 
relations ( 2 8 ) - ( 3 0 ) .  

The results of calculating x p ' ( { )  and x F ' ( f )  for the 
correlator ( 2 4 )  are shown in the figure. It is interesting to 
note that xT ( 6 )  for the correlator ( 2 6 )  is almost the same as 
x ,  ({) for the correlator ( 2 4 )  if instead of 6 ' = B,~gpg we 
take { t, = B,,ripi/ lO [this choice of ce',, guarantees that 
the asymptotic behaviors of ( 2 8 )  and ( 3 0 )  are the same]. 

4. QUALITATIVE DISCUSSION OFTHE RESULTS 

It is clear from the figure that the value of x?' ( 6 )  calcu- 
lated from ( 4 8 )  is a good approximation for x ,  ( 6 ) .  To un- 
derstand this we qualitatively consider the turbulent heat 
transfer process. As we already mentioned in the Introduc- 
tion, this process is characterized by the parameters 7 and f .  
If 7 & 1, the temperature is practically constant in the region 
where the turbulent jets develop and are damped, so that in 
that case no turbulent heat transfer takes place. The velocity 
correlators with scales much smaller than ( 4 x ,  7,) 'I2--the 
length over which the temperature equalizes through the 
molecular heat conductivity mechanism-are clearly unim- 
portant for the description of the turbulent heat transfer. In 

FIG. 1. The turbulent diffusion coefficient ~ ~ ( 4 )  for 
the correlator Ell ( R , T )  = B,, exp( -R, /R - IT~/T(,)  
w ~ t h  6 * = B&/R i. The curves 1, 2, 3 correspond to 
K ( , ' " ( [ ) ,  K ( , " ) ( { )  + t ( ? ) ( { ) ,  and the solut~on (57). 
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the case which is most often met with, x, <x,  ( 7  -+ co ), it is 
apparently necessary to take into account correlators of all 
orders, but this is not always the case due to the presence of 
another parameter 6 which characterizes the role of the 
small-scale fluctuations inside the main correlation range 
-Ro.  The case64  1 corresponds to two situations: a )  turbu- 
lent jets are extensive and are damped by viscosity simula- 
taneously in the whole volume. Smaller scale jets can arise in 
that case at the boundary of the main jet and divert a relative- 
ly small amount of the transferred heat; b )  the lifetime of the 
turbulent jets is so short that they do not manage to break up 
into smaller jets. The condition (4 1 means that the motion 
inside the main correlation region - Ro is regular and can be 
described by the second-order velocity correlator. The series 
(27) leads in the limit as 7- co and 6-0 to the following 
expression for x T  : 

m 

This value is an upper limit for x ,  since: a )  as 
x ,  -+0(7  -+ co ) the turbulent jet does not manage during the 
time of its existence to change its temperature through mo- 
lecular heat conduction, and b )  as 6- 0 thejet does not man- 
age to break up into smaller jets. The breakup of the main jet 
into smaller ones can, clearly, only change the amount of 
heat transferred from one point of space to another. The very 
largest turbulent jet which are well described by the two- 
point velocity correlator B,j  (R , r )  are the most important 
ones for the convective heat transfer. Equation (48) takes 
into account the second-order correlators and determines 
the main part of the turbulent diffusion. According to (20) 
the transfer of the averaged temperature is described by the 
Green function GT (R,T).  It is natural to assume that the 
propagation of large-scale temperature fluctuations is also 

approximately described by the same function. Therefore, 
Eq. (57) for x, gives rather good agreement with the exact 
value of x T  ( 6 ) .  However, when &=: 1 it leads to significant 
errors. 

It is clear from the figure that the coefficient x, (6 )  for 
the case 6=: 1 most often met with, differs strongly (by a 
factor 5-10) from the usually made estimates on the basis of 
a mixing length, which corresponds to x, from (58) .  

We note that knowing the function M(1,2) [e.g., the 
series of approximations (47) for it] one can easily write 
down an expression for all possible correlators of the tem- 
perature fluctuations, (T, ( 1)  T, ( 2 ) ) ,  and so on. 

We did not use in the derivation of Eq. (35) and of the 
iteration series (47) the assumption that the velocity field 
has a Gaussian nature, and the method for calculating 
x T  (6 )  is thus applicable also for non-Gaussian ensembles 
u(r , t ) .  
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