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We obtain the wave functions ofthe ground states of group-V shallow donors in Ge and Si in the 
zero-radius center cell (ZRCC) approximation, with allowance for the anisotropy of the electron 
effective mass. The distances between the energy levels of odd excited states, calculated in the 
effective-mass approximation, agree with the distances between the corresponding spectral lines 
to within the same accuracy with which the locations of these lines have been measured. Two odd 
states (6P  + and 9P+  ) previously unobserved in the spectra were found in the doors for Ge, and 
served to refine the identification of the spectral lines. The line intensities depend strongly on the 
depth E, of the ground level of the impurity. Orthonormalized wave functions of the continuous 
spectrum were calculated and used to determine the spectra of the cross sections for 
photoionization of donors with different E, .The polarizability of the donors were also obtained in 
the ZRCC approximation, as well as the changes of the valley-orbit splittings 4A of the ground 
levels with change of the magnetic field. The accuracy ( 5 10%) of the ZRCC approximation was 
estimated for the ground levels of the donors in Ge and Si was estimated by comparison with the 
experiments. 

1. INTRODUCTION 

Shallow impurity centers in semiconductors are known 
to be described in the effective-mass approximation 
(EMA) .  I.' It is also known, however, that the ground-state 
energy of a shallow impurity center differs from the lowest 
eigenvalue of the corresponding EMA equation, and this dif- 
ference is not the same for different impurities of the same 
type in one and the same semiconductor.' This effect was 
named the chemical shift. Obviously, its cause is that the 
condition for the validity of the EMA (smoothness of the 
perturbation introduced by the impurity into the crystal) is 
violated in the region of the crystal central cell that contains 
the impurity atom. The chemical shift is therefore also re- 
ferred to as the center-cell correction (CCC).  The theoreti- 
cal calculation of the CCC for the ionization energies of shal- 
low impurities in semiconductors is the subject of many 
studies (see, e.g., the review paper"), but the problem still 
remains unsolved. 

Many characteristics of shallow impurities (in contrast 
to the ground-state energy) are determined almost entirely 
by the behavior of the wave function outside the center cell- 
in a region where the potential of the impurity is smooth and 
the wave function satisfies the EMA equations. These quan- 
tities include the oscillator strengths (intensities) of optical 
transitions, the photoionization cross section, the polariza- 
bility, and the diamagnetic level shifts in a magnetic field. 
The first three quantities are expressed in terms of the matrix 
elements of the dipole moment between the ground state 
(even) and odd excited states, whose wave functions are 
close to zero in the region of the central cell. In addition, the 
product of the radial functions of the ground and excited 
states is multiplied in these matrix elements by r' ( r  is the 
distance from the central cell). The diamagnetic shift is ex- 
pressed in terms of integrals with respect to r ,  which contain 
r4. This suggests that the center-cell region (small r of the 
order of or less than the dimension a, of the unit cell of the 
crystal) makes a small contribution to the quantities listed 
above. 

This raises the question of calculating the wave function 
of the ground state in the EMA outside the central cell, with 
allowance for the true level energy, which can at present be 
obtained only from experiment. Since the ground-level ener- 
gy is not equal to an eigenvalue of the EPM equation, in view 
of the CCC, the sought wave function should diverge as r -0  
(the bound as r- m remains unchanged). If the shallow 
impurity is hydrogenlike (the corresponding band edge is 
not degenerate and the effective mass is isotropic), at a given 
ground-level energy, the EMA equation has a single solution 
that is bounded as r - cc and diverges as r - 0 (for a nonzero 
CCC), and this solution diverges like r-I, i.e., is normal- 
i ~ e d . ~  In the case of hydrogenlike shallow impurity centers 
(donors in multivalley semiconductors, acceptors in semi- 
conductors with degenerate valence-band edge, i.e., in all 
cubic semiconductors), a host of bounds exist on the solu- 
tions of the EMA (at nonzero CCC) . Indeed, in this case the 
expansion of the wave function of the donor ground state in 
the spherical harmonics Y,, (in the L - S coupling func- 
tions in the case of acceptors) contain not only terms with 
L = 0, but also terms with even L > 0, so that the EMA equa- 
tions have solutions that diverge as r--0 approximately like 
r - ~ -  I . Strictly speaking, a unique solution could be ob- 

tained by matching the solution outside the central cell 
( r )aO) ,  where the EMA is valid, to the solution in the cen- 
tral-cell region ( r  5 a,,). The latter, however, is not known at 
all. 

We use the fact that usually the dimension a,, of the 
central cell is small compared with the effective Bohr radius 
a even in the case when the CCC to the ground-state energy 
is appreciable. In the limit ao/a -0 the normalized solution 
should increase as r-0 not faster than r-I. This condition 
singles out the only solution of the EMA equation. For the 
reason indicated above, it can be called the zero-radius cen- 
tral cell (ZRCC) approximation. It is similar to the quan- 
tum-defect method. 

The ZRCC approximation was used earlier for calcula- 
tion of shallow acceptors in the spherical appr~x imat ion .~  In 
this case the problem reduces to solution of a system of only 
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two ordinary differential equations (ODE) of second order, 
which made it possible to find all the fundamental solutions 
near r = 0 and readily eliminate the one that diverges like 
rp' .  We show in the present paper, with shallow donors in 
multivalley semiconductors as the example, how to find the 
solution needed in the ZRCC approximation in the general 
case, when the EMA equation is a partial differential equa- 
tion with nonseparable variables, or a system of such equa- 
tions. Besides the donors in semiconductors with anisotropic 
effective mass, such systems include also acceptors in those 
cases when account must be taken of the nonsphericity of the 
hole bands, and also all the shallow impurities in a magnetic 
field. In addition, shallow donors in multivalley semicon- 
ductors are rather important objects in semiconductor phys- 
ics, and their detailed quantum calculation in the present 
paper is of interest in itself. 

We shall see that many characteristics of shallow do- 
nors depend strongly on the ionization energy of these im- 
purities. It is therefore important that it is possible to deter- 
mine, within the scope of the ZRCC approximation, the 
characteristic of each specific shallow impurity, if its ioniza- 
tion energy is known (from experiment). It is important, 
that in these calculations there is no possibility whatever of 
adjusting the parameters of the center-cell potential. The 
accuracy of the ZRCC approximation must be estimated by 
comparing the calculated values with those experimental 
data whose accuracy is high enough. This permits an assess- 
ment of the accuracy of the results of this approximation and 
of those obtained when there are no sufficiently accurate 
measurements and the calculation results are absolutely nec- 
essary. We shall calculate the polarizabilities of various do- 
nors in Ge and Si (Sec. 5) and the dependence of the valley- 
orbit splitting of the donor levels on the magnetic field (Sec. 
6 ) ,  and verify by comparing the results with experiment that 
the accuracy of the ZRCC approximation is high enough. 
This permits an assessment of the accuracy of the oscillator 
strengths calculated in Sec. 3 for the optical transitions in the 
same impurities ( to  our knowledge there are no quantitative 
experimental data) and of the cross sections calculated in 
Sec. 4 for the donor photoionization (the accuracy of their 
measured absolute values is as yet low). 

2. SYSTEM OF EQUATIONS 

The EMA Hamiltonian for donors in a multivalley sem- 
iconductor is 

Here m , and mz are the transverse and longitudinal effective 
masses, and x is the dielectric constant of the semiconduc- 
tor. The variables in the Schrodinger equation with Hamil- 
tonian ( 1 ) do not separate and no analytic solution is possi- 
ble. 

We transform to a deformed coordinate frame and to 
dimensionless variables (as in Ref. 6 )  

~ = y ' l e ~ / a ,  y"=y"oy/a, ~=y-" 'z la,  

a=y'"AZx/mre2, y=ml/mI, 
j== (5 Z+y"2+f ') '", COS 0=IIF". 

In this notation the EMA equation takes the form 

where E is the dimensionless energy in units of Ed = m, e4/ 
fi'tc2, and 

Equation (3 )  differs from the equation with Hamiltonian 
( 1 ) in that the anisotropy of the problem is transferred in it 
from the kinetic-energy operator to that of the potential en- 
ergy. This will be shown below to simplify the calculation. 

We represent the sought wave function as an expansion 
in spherical harmonics with definite parity P and projection 
M of the angular momentum: 

The summation in (5 )  is over quantum numbers Lof a defi- 
nite parity that coincides with the parity P of the state, 
Lmi, > IM / is the minimum value of L,  and R yM' (7 )  are 
radial functions that satisfy, as follows from (3 ) ,  the ODE 
system: 

Here qi:Y' = (LM jq(8) IL 'M ) . In the choice of the Y,, 
phases we follow Ref. 7. 

In the expansion (5 ) ,  the terms with large L describe 
fast angular oscillations of the wave functions. Since a high 
positive energy is associated with these oscillations, these 
terms should be small and must not be in highly excited 
states. This allows us to discard in ( 5 )  all the terms contain- 
ing L exceeding a certain sufficiently large L,,, that de- 
pends on the considered energy level. The system (6 )  be- 
comes finite, and the number of second-order ODE in it will 
be designated N. 

The same problem can be solved also without changing 
to the deformed system of coordinates (2 ) .  To this end, the 
Hamiltonian must be represented in the form 

In a spherical-harmonics basis the matrix H "" is diagonal, 
the matrix H '" is tridiagonal, and calculation of their matrix 
elements is elementary. The results are, naturally, the same 
as when the system (2)-(6) is used, but a large basis is re- 
quired in the latter to obtain the same accuracy. 

We solve the system ( 6 )  by a non-variational method of 
transferring the condition of finite solutions from the singu- 
lar point (see the review paperX and also Ref. 9; the idea of 
the method as applied to our problem is described in Ref. 10 
and in the Appendix ) . 
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3. ENERGY AND INTENSITY OF THE LINES IN THE OPTICAL 
ABSORPTION SPECTRA 

If the impurity center is shallow, the rates of the optical 
transitions between its states under the influence of an elec- 
tromagnetic wave with photon energies hv<E, (E, is band 
gap) are determined by the smooth (macroscopic) part of 
the electric field of the wave. The cross section for the dipole 
optical absorption connected with transitions from the 
ground state of energy E, to excited states with energies E, is 
equal to (e  is the polarization unit vector) ' ' 

We consider first the cross section for optical transi- 
tions in one valley of the conduction band. This cross section 
a, (e ,hv)  ( v  is the number of the valley) depends on the 
orientation of e relative to the valley axis. If practically the 
entire absorption by the shallow impurity centers is exhaust- 
ed by the photon energies hv(E,, the area under the entire 
spectrum of the cross section a, (e,hv) is equal toll 

2n2he' 
dhvo, (e ,  hv) = - f CX'" e i m i k - l e k ,  

i.e., it is determined by the reciprocal effective mass in the 
radiation-polarization direction (m, - '  is the reciprocal-ef- 
fective-mass tensor). The sum rule ( 10) is determined by the 
mass m, and by the mass m, respectively, for the cross sec- 
tions O, and a, in the case of longitudinal and transverse 
polarizations. 

The ground state of an undeformed multivalley semi- 
conductor is known to be a symmetric superposition of func- 
tions of all nu valleys. By virtue of the cubic symmetry, the 
observed absorption cross section is equal to 

o (hv) = (201+oi)/3. (1 1) 

It follows from ( 10) that it satisfies the sum rule 

where E -  ' is the average reciprocal effective mass (8) .  
The sum rules ( 10) and ( 12) are valid also if the center 

cell is represented in the effective-mass equation by some 
short-range potential. In particular, they are valid also in the 
ZRCC approximation. 

The fraction of the entire area (12) allotted to the a 
given line (the oscillator strength) can be expressed in terms 
of integral of the radial functions RL ( F )  of the initial ground 
state (L = 0,2, . . .) and of the radial functions F LMfM' (F) the 
final state (L = 1, 3, . . .): 

rn 

4 
f(nP,) = -- [E (nP,) -Eo] I 5 dii3FF1 ( i )  R:" ( i )  I I .  

2t-Y L a 1  0 

Odd states with M = 0 are designated here by nP0 ( n  = 2, 3, 
. . .) and those with M = + 1 by n P +  . It is assumed that the 
radial functions have been calculated in the system (2) .  For 
brevity, we have introduced in ( 13) the notation 

Tables I and I1 list the level energies E(nPM ) and the 
oscillator strengths (0s) f(nPM ) obtained by us for shallow 
donors in Ge  and Si. For more reliable identification of the 
experimentally observed lines, the solid lines in Fig. 1 show 
the dependences of the energies E ( n P +  ) on y = m,/m, 
while the dashed lines show the dependences obtained by 
FaulknerI2 by a variational method (the interpretations of 
all experiments since 1969 were based on the results of Ref. 
12). The solid horizontal strokes on the left show the mea- 
sured values of the levels in Ge, and the dashed ones show 
the levels obtained by us but not noted in the experiments. 

With decrease of y, the energy levels calculated in Ref. 
12 deviate increasingly from our calculated values (Fig. 1) .  
In the case of Si, the inaccuracy in Ref. 12, while higher than 
experimental, was nevertheless smaller than the distances 
between the neighboring levels and therefore did not lead to 
incorrect line identification. At y = y,, the deviation of the 
energies E ( n P *  ) calculated in Ref. 12 from those calculat- 
ed by us and from experiment at n > 5 become of the same 
order of and larger than the distances between neighboring 
levels. This led in fact to an incorrect identification of all the 
transitions, starting with 6P+ . The erroneous interpreta- 
tion of the donor spectra in ~e on the basis of Ref. 12 re- 
mained unnoticed," in particular, because the transitions to 
6P+ and 9P+ were left out of the experiments, and some of 
thelevels calculated in Ref. 12 for Ge (5f + and 6f, in the 
notation of Ref. 12) turned out accidentally next to the ex- 
perimental points (Fig. 1 ) corresponding actually to other 
states (6p, and 7p, in the same notation). On the other 
hand, the lines 6P+ and 9P+ were left out because the cor- 
responding OS were several times smaller than the OS of the 
neighboring lines 5P + and 8P+ (Table I ) .  The OS, how- 
ever, are not so small as to makethese lines practically unob- 
servable, as for example in the case of 12P + in Ge and 9P. 
in Si (Tables I and 11). 

Following Ref. 12, we obtained the dielectric constant x 
of germanium from the condition of best agreement between 
the calculated levels and We obtained 
x = 15.40, somewhat higher than the 15.36 obtained in Ref. 
12 from the experimental 2P+ - 2P0 energy difference. At 
x = 15.40, i.e., Ed = 9.352  me^, the n P +  levels of the do- 
nors in Ge, obtained by us, agree with allthose measured in 
Refs. 14 and 15 within the limits of experimental error 5 5 
peV (for a comparison with experiments see Ref. 16). 

It can therefore be concluded from a comparison of the 
results of Table I with experiment that the odd donor states 
in Ge are described in the EMA with accuracy not worse 
than that of spectroscopic experiments. 1 4 . ' "  

In Table 111 are gathered, for comparison of the theory 
with experiments on Si, data obtained by various workers for 
the differences E(nPM ) - E (  2P, ). It can be seen that the 
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TABLE I. Energy levels E  of odd states of shallow donors in Ge and oscillator strengths of 
optical transitions from the ground level Is ( A ,  ) .  The parentheses contain the level designations 
used in Ref. 12; the number under the impurity symbol is the ionization energy in meV 
( E d  = 9.352 meV). 

Levels 

lowest odd 2P0 levels of different donors differ possibly by as 
much as - 100,ueV. The differences of the higher levels for 
different donors are of the same order as the difference 
between data of different workers for one and the same do- 
nor ( - 10 - 20,ueV). As seen from Table 111, the odd states 
of donors in Si above 2P,, are described by the EMA with the 
same accuracy, which amounts to less than 10W3 of the do- 
nor ionization energy in Si. 

We proceed now to analyze the line intensities. Transi- 
tions to the nPo level are produced in each conduction-band 
valley by the radiation electric-vector component parallel to 
the valley axis, in the direction of which the effective mass is 
a maximum. Therefore the oscillator strengths ( 0 s )  of such 

lines are lower than the OS of lines corresponding to transi- 
tions to n P +  levels having approximately the same or even 
higher energy. This effect is particularly large in Ge, viz., the 
OS of the transitions to levels nPo with n > 4  are negligible. 
For example, f (4P") is one-third as large than the OS of the 
last of the identified lines ( 11P + ) . This explains why only 
two nPolines (n  = 2 and 3 )  as can be seen in the donor spec- 
tra of Ge. While the effect in Si is less pronounced because of 
the lower effective-mass anisotropy, it is nontheless signifi- 
cant: f(nPo) < starting with n = 7 (but also at n = 5) .  

The oscillator strengths f ( n P +  ) vary nonmonotoni- 
cally with increase of the numberPn(~ables I and 11), in 
accord with the experiments. It should be noted that Ge do- 
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FIG. 1. Dependence of the energy of odd states nP, on the effective- 
masses anisotropy parameter y. Solid curves-present calculation, 
dashed-result of Ref. 12. The arrows correspond to the values of y for Si 
and Ge. The solid and dashed horizontal lines mark respectively the ex- 
perimental'4,'s values of the level energy and the levels to which transi- 
tions were not observed. 

nors have, above the last level identified in experiment 
( 1  1P+ ), levels transitions to which have OS that are also 
large to permit their identification ( n  = 13, 14, 16). 

The OS of the brightest lines (2Po and nP+ ) decrease 
greatly with increased depth E, of the groundlevel of the 
impurity, since its wave function is in this case more and 
more concentrated in a region near the center cell, where the 
wave function of the final state for a dipole optical transition 
(odd) is close to zero, and the matrix element of the dipole 
moment decreases. This effect is very strong (see Tables I 
and 11) and must be taken into account in applied spectros- 
copy ofshallow impurities. It is ofinterest, however, that the 
dependence of f(3P,,) on E, is relatively weak (and is even 
nonmonotonic in Ge)  . 

Since the intensities of different lines depend differently 

on E,, their ratios are also subject to a significant "chemical 
effect." For example, in Si the ratio f(3P0)/f(3P + - ) is 
~0.14 for Li impurity atoms and -0.24 for As impurities. 
The analogous ratio is ~0.057 for Sb inGe and -0.10 for As 
in Ge. 

4. SPECTRA OF PHOTOEFFECT FROM DONOR ATOMS 

The spectra of the cross sections for photoionization of 
non-hydrogenlike impurities are of considerable interest 
both for spectroscopy of shallow impurities and for physics 
of IR receivers based on doped semiconductors. The pho- 
toionization spectra of donors in multivalley semiconduc- 
tors was never calculated before, since there was no general 
method whatever of calculating orthonormalized wave 
functions of the continuous spectrum of non-hydrogenlike 
quantum systems. Such a method, using the condition of 
finite solutions at infinity, was developed by us earlier."'."' 

The known degeneracy of the continuum states is mani- 
fest by the fact that at each energy E > 0, parity P the compo- 
nents of the angular momentum M along the valley axis 2, 
and number u of the valley there exist N different mutually 
orthogonal solutions of the Schrodinger ( N  is the number of 
terms retained in the expansion of the wave function in 
spherical harmonics, see Sec. 2). Let 1 = 1, . . . N be the num- 
ber of each such solution, and let the continuum functions 
$'EPM"') be normalized to 6 ( E  - E '). I t  follows then from 
(9)  that the cross sections a, and a, of the intravalley dipole 
optical transitions are equal to 

x 

o. (hv) =od(C+E.) I z j d i i ' ~ : ~ ' "  ( 7 )  R:" (i) 1 ' . 
1 L a 1  0 

01 (hv) =ory (E+Ei) z ( J i l i i ' ~ ~ ~ "  (i) R:' (i) I '. 

The cross section is here 

PEM" ( F )  ( L  = 1,3, . . .) are the radial functions of the con- 
tinuum, R LM)  are combinations of radial functions of the 
ground state [see Eq. ( 14) 1, E = h - E,,  and E and E, are 
dimensionless energies in units of Ed .  

TABLE 111. Measured energy levels E(nP, ) of donors in silicon relative to the level 2P. (in 
meV). 

2po 
3Po 
4P" 
3P* 
5P, 
GPO 
4P* 
5P* 
7po 
RP, 
7 P ,  
XP, 
10P* 
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It follows also from ( 9 )  that in an undeformed crystal 
the cross section of such a photoionization process, in which 
the electron lands in a definite valley v ,  is equal to (nu is the 
total number of valleys) 

The total cross section of the photoeffect in the absence of 
deformation is given by ( 1 1 ) . 

The spectra, calculated from ( 11) and ( 15), of the 
cross sections for photoionization of shallow donors in Ge  
and Si, are shown in Fig. 2. With increasing ionization ener- 
gy E, , the cross section o(E,  ) on the red boundary decreases 
(this effect was considered for the hydrogenlike model in 
Refs. 21 and 22) and at the same time the decrease of u (hv)  
with increase of hv becomes less steep. We put 
n = ( E  EMA/Ei ) 'I2, where E FMA is the ionization energy in 
the EMA. As seen from Fig. 3, in Ge at n > -0.7 (and in Si 
at n > -0.6) the maximum of ~ ( h v )  is on the red boundary 
hv = E, and the cross section decreases monotonically with 
increase of hv (this takes place, in particular, for all donors 
of group V). At lower values of n the cross section passes 
through a maximum at hv > E, and the position of the maxi- 

0 20 60 IOU 
hv - E, , rneV 

FIG. 2. Cross section for photoionization of shallow Sb (solid curve), P 
(dashed, and As (dash-dot) donors in Ge ( a )  and Si ( b )  vs the photon 
energy. 
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FIG. 3. Cross section for photoionization of donors to Ge vs the photon 
energy at different chemical shifts of the ground states. The curves are 
labeled by the values of the parameter n = (E, EMA /E, ) I i Z .  Solid curves- 
calculation with allowance for anisotropy, dashed-calculation in iso- 
tropic model. 

mum shifts towards larger hv with decrease of n. 
For the donors in Si, the theoretical and experimental2" 

values (given in Ref. 24) of the cross sections for the pho- 
toeffect at the maximum are respectively (in units of lO-I5 
cm2): 2.55 and 8.5 (Sb), 2.34 and 2.5 ( P ) ,  and 1.81 and 1.6 
(As).  For the same impurities in Ge, the theoretical values 
of o(E,  ) and those measured in Ref. 25 (and cited in Ref. 
26) are equal to (in units of 1014 cm2) 2.20 and 1.8 (Sb), 
1.64 and 1.5 ( P ) ,  and 1.40 and 1.1 (As).  I t  can be seen that, 
except for Sb and Si, the deviation from experiment is not 
worse than -20%. The experimental values are hardly 
more accurate. 

Since there was no method previously for calculating 
the cross sections of the photoeffect with allowance for the 
effective-mass anisotropy, it was calculated on the basis of 
the isotropic (hydrogenlike) model, using the electron mass 
determined from the known E FMA (Refs. 21 and 23). It is of 
interest to compare the results of this model with a calcula- 
tion that takes the mass anisotropy into account. Figure 3 
shows the corresponding photoionization spectra of donors 
in Ge at different n. At n = 1 the exact cross section is double 
the cross section in the isotropic model (approximately 1.5 
times larger in Si). With decrease of n, the exact cross sec- 
tion decreases more rapidly than the model value, so that the 
two cross section come closer together. The spectrum of the 
cross section, with anisotropy taken into account becomes 
nonmonotonic at larger values of n than in the spherical 
model. 

It is of interest to track the variation of the fraction of 
the line spectrum, and accordingly the fraction of the contin- 
uum, in the total area ( 12) under the entire absorption spec- 
trum with increase of the anisotropy and of the ground-level 
depth. In hydrogenlike atoms ( y  = 1)  it is known that the 
fractions of the line and continuous spectra are 0.565 and 
0.545 of the entire sum (unity) of the oscillator strengths. 
The sums, listed in Table 11, of the OS of the lines in the 
spectra of the donors in Si for the EMA, and for the Sb, P, 
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and As impurities, are respectively 0.47,0.27,0.24, and 0.18. 
The contribution of the transitions to even more excited 
states, estimated from the cross section for the photoeffect at 
hv = E l ,  is -0.01-0.02. The area under the calculated part 
of the continuum of the donors in Si (hv < 3 lE, ) yields ac- 
cording to (12) the respective values 0.52 (EMA), 0.71 
(Sb), 0.74 (P) ,  and 0.79 (As). It can be seen, first, that 
accurate to 1-3% the OS is equal to 1, thus providing an 
additional verification of the calculation accuracy. Second, 
with increase of El the fraction of the continuous spectrum 
in absorption increases, and the fraction of the line spectrum 
decreases. 

For donors in Ge, the sums of the OS listed inTable I are 
0.37 (JlMA), 0.33 (Sb), 0.22 (P), and 0.18 (As). For the 
calculated part of the photoionization spectrum (hv < 31 
Ed ) we have 0.60 (EMA), 0.65 (Sb), 0.76 (P), and 0.79 
(As).  With allowance for the transitions to highly excited 
levels with binding energies < 0.2 meV, the OS sum is very 
close to unity, just as in the case of donors in Si. The same 
regularity can be traced, viz, the fraction of the continuum 
increases with increase of El. Comparing the hydrogenlike 
atoms and donors in Si and Ge, it is easily noted that the 
fraction of the continuum also increases with decrease of y. 
It must be borne in mind that in the limiting case of a two- 
dimensional hydrogenlike atoms its value is 0.72 1. 

It is.known2 that if a multivalley semiconductor is un- 
iaxially deformed along a direction corresponding in the 
Brillouin zone to a minimum of the conduction band, the 
ground state of the donor can be made to correspond to only 
one valley of the conduction band (in Ge) or to two valleys 
located on the same axis (in Si). To this end, the lowering 
SE,,, of this valley by the deformation must be large com- 
pared with the valley-orbit interaction A. The cross section 
for optical absorption of the donors is then anisotropic, i.e., 
it depends on the polarization of the radiation relative to the 
valley axis, and the principal values of the cross-section ten- 
sor are equal to a ,  and a,. Figure 4 shows plots of the ratio 
a ,  /a ,  of different impurities in Ge and Si as functions of hv/ 
El .  It can be seen that the anisotropy of the photoeffect cross 
section is tremendous, especially for impurities with small A, 
for which it is easiest to meet the condition ISE,,, I A.For 
example, the anisotropy of the Sb impurity in Ge exceeds 
100, while that of Sb in Si should reach - 8. With increase of 
El the ratio a ,  / a ,  decreases at all hv > E l ,  but it is large for 
all shallow donors, both in Ge and in Si. The fact that the 
cross section a ,  should be larger than a ,  follows from simple 
considerations: since m, > m, , the wave function of the do- 
nor is extended in the direction of the valley axis less than in 
transverse directions. According to the sum rule ( lo) ,  the 
ratio of the total areas under the spectra a ,  and a ,  (including 
the line spectra) is equal to y. The ratio a,  / a ,  in the contin- 
uum, however, is even less than y, for when y decreases the 
fraction of that area under the a,  spectrum that belongs to 
the continuous spectrum also decreases. It is equal to 0.1 1 in 
Ge (EMA), 0.17 in Sb, 0.32 in P, and 0.32 in As. The corre- 
sponding values in Si are 0.23 (EMA), 0.48 (Sb), 0.52 (P ) ,  
and 0.62 (As), i.e., much lower than the fraction of the con- 
tinuum in a,  (hv).  

The polarizability of an atomic system should equal, in 
order of magnitude, the cube of the effective radius of the 

FIG. 4. Anisotropy of the cross section for donor photoionization in Ge 
(solid curves) and in Si (dashed) vs the photon energy. 

wave function multiplied by the dielectric constant x .  Since 
the radius of the wave function depends on the depth of the 
level, one should expect different chemical impurities to 
have different polarizabilities. Measurements made on do- 
nors in Si (see Table IV) confirm this (only the polarizabili- 
ty of Sb was measured for Ge, Ref. 30). Calculation of the 
polarizabilities of shallow donors in Si and Ge in the ZRCC 
approximation is of interest, since it makes it possible to as- 
sess, by comparing the results with the experimental data, 
the accuracy of this approximation. In addition, this is a 
convenient example that demonstrates the general effective 
method of calculating the polarizabilities (and, in general, 
quantities given by second-order perturbation theory) of 
non-hydrogenlike systems. 

We consider the general equation for the polarizability 
tensor3': 

Here $, is the state of the system, and (d,  ) ,,,. are the matrix 
elements of the dipole moment for a transition from $, to 
other states $,, with energies En. . The task of calculating a,, 
from (18) reduces to calculation of practically the entire 
optical spectrum. Since we calculated in the present paper 
the oscillator strengths of all the intense optical transitions 
in shallow donors and the photoionization spectrum, we 
might consider it possible to calculate the polarizabilities of 
the donors directly from ( 18). However, the contribution of 
the unaccounted-for excited states and the decrease of the 
accuracy of the OS calculation with increase of the number 
of levels make it more difficult to monitor the accuracy of 
a, as calculated from ( 18). More effective is a method that 
does not require calculation of the entire optical spectrum 
and is suitable also for calculation of other quantities given 
by second-order perturbation theory. We rewrite ( 18) in the 
form 
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where 4:"' is the solution of the inhomogeneous Schrodinger 
equation 

We proceed to dimensionless quantities and to the de- 
formed coordinate frame in accordance with Eqs. ( 2 ) .  We 
confine ourselves for simplicity to calculation of the polariz- 
ability of the ground state (even, M = 0 ) .  Let 4, ( m  = 0, 
+ 1 ) be the solution of the equation - 

in which 2, is the component of an irreducible spherical 
tensor of first rank, is the solution of ( 3 ) ,  and H and are 
the dimensionless Hamiltonian ( 1 ) and the dimensionless 
energy. It follows from (2 )  and (19) that in a coordinate 
system connected with each individual valley the transverse 
and longitudinal polarizabilities are equal: 

In an underformed crystal, the polarizability of a donor that 
is in a ground singlet state is known to equal 

Since the function tC, in the right-hand side of (20a) is 
even and is characterized by an angular-momentum projec- 
tion M = 0, the expansion of tC,, in spherical harmonics 

contains only functions with odd L and with M = m = 0, 
+ 1. From (20a) we get a system of equations for the radial 

functions: 

Here R Lrn) are given by Eqs. ( 14) and qiy J;! is a matrix ele- 
ment o f q ( 8 )  [Eq. ( 4 ) ] .  

It is convenient to solve the set of equations ( 6 )  and 
(24) as a single system by the method of finite solutions at 
infinity. It follows from ( 5 ) ,  (21 ), and (23) that 

The calculation results are listed in Table IV together 
with the experimental data ( the values of a of the donors in 
Si have been refined many times; we list here the latest data). 
I t  can be seen that the polarizability of the donors depends 
very strongly on the depth of the ground level: if it is in- 
creased by approximately 70% compared with the EMA 
(As in Si) the value o f a  is decreased to one-sixth. The agree- 
ment with experiment is good: in almost all cases the devi- 
ation is less than the inaccuracy of the experiment itself, and 
only in the case of As in Si does the theoretical value go 

slightly beyond the limits of the experimental error. 
A check on the sum rule in Sec. 4 has shown that the 

unaccounted-for highly excited states account for 1-3% of 
the total absorption. The values o f a  calculated directly from 
( 18) with the aid of the OS obtained above and the photoef- 
fect cross section should be expected to be lower by the same 
1-3% than the values in Table IV. This was confirmed by the 
calculations. 

We note only a few of the many calculations of a of 
donors in Si. A variational method was used in Ref. 32 to 
calculate a, and a, in the EMA. The results are close to 
those obtained by us for Si in the EMA. A variational meth- 
od in the isotropic model yielded33 the a of donors in Si by 
introducing in the Hamiltonian a model short-range (cen- 
ter-cell) potential whose parameter was chosen for each do- 
nor in such a way that the ground-state energy was equal to 
the known E,. A similar calculation of a of the isotropic 
model, but by the quantum-defect method, was carried out 
in Ref. 29. It is interesting that the values of a obtained in 
Refs. 33 and 29 for the isotropic model of the donor are very 
close to those obtained by us with allowance for the mass 
anisotropy. This agreement may be accidental, since other 
properties of the donors, calculated in the isotropic model, 
differ substantially from the exact ones (see Sec. 4 ) .  In  addi- 
tion, it is impossible to calculate a, and a, separately in the 
isotropic model. 

6. EFFECT OF MAGNETIC FIELD ON THE VALLEY-ORBIT 
LEVEL SPLITTING 

We know that, in a semiconductor whose conduction 
band has n,  valleys, the ground state of a shallow donor is 
n,, -fold degenerate in the EMA, and that this degeneracy is 
partially lifted by center-cell correction (by valley-orbit in- 
teraction). The fourfold degenerate level in Ge is split into a 
singlet A ,  and a triplet T,, and the sixfold degenerate level in 
Si is split into a singlet A ,, doublet E, and triplet T2 (Refs. 34 
and 2) .  Let us see how a magnetic field B influences the 
distances between these levels. 

There are no orbital-motion level-shifts that are linear 
in B, since in all the foregoing states the projection of the 
angular momentum on the valley axis is M = 0. On the other 
hand, the diamagnetic level shifts ( -B ,) are not alike: they 
are larger the higher the level and hence the larger the extent 
of its wave function. Therefore the valley-orbit level splitting 
in a magnetic field increases, and furthermore the degener- 
ate levels are split if B is not symmetrically oriented relative 
to all the valleys of the conduction band. The effect of the 
valley-orbit splitting dependence 4A (B)  was measured for P 
and As donors in Ge.35,36 This dependence is used to inter- 
pret experiments on the phonon thermal conductivity of Ge 
with shallow donors in a magnetic field.37,38 Since the quan- 
tity 4A(B) - 4A(0) depends directly at  small B on the be- 
havior of the wave functions of the ground levels, we can, by 
comparing the effect calculated in the ZRCC approximation 
with experiment, check quantitatively the accuracy of this 
approximation. 

In  the presence of a magnetic field, it is necessary to add 
to the Hamiltonian ( 1 ) of an electron in each valley the fol- 
lowing energy operators: 
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TABLE IV. Shallow-donor polarizability in Si and Ge (in units of lo5 A3) .  

e' 
AR2 = - {B2rZ- (Br) '-  (1 -7)  

81n,c- 

Impuurity 

EMA 
Sb - 
I. 

As 

Contributions to the level shifts are made by perturbation 
theory of first order in H E ,  and of second order in H ,  , . 

We denote by angle brackets the averaging of the effec- 
tive mass with a given level energy at B = 0 over the solution 
+ of Eq. (3) .  I t  follows from (27) and ( 2 )  that 

Here b,, is the component of the vector b = B/B on the Z 
axis of valley v, 

SI Ge 

'I I * I  I a I aexp a / *I  I a I O--XP 

We represent the energy correction of second order in 
H E ,  in the form 

' I - b ,  (30) 2tBB1 (E-R) -'ABi).= (=) F 

where 

H, is the dimensionless Hamiltonian H E ,  . The procedure of 
calculating h ,  with the aid of ( 3  ) and ( 3  1 ) is similar to the 
procedure of calculating the polarizability (see Sec. 5 ) .  

If the field B is symmetrically oriented relative to all the 
valleys, it only shifts the levels but does not split the nonde- 
generate levels T, and E. Tne shift of each level is equal to 
PB ', where 

4.32 - 5.35 

The calculated values of this quantity for the donor lev- 
els in Ge and Si are listed in Table V, which gives also (for 
Ge)  the measured value of 

I- 
2.26 

I t  is seen from the data of Table V that the values of @ 
calculated in the ZRCC approximation differ from the ex- 

108 

perimental value by approximately the error of the experi- 
ment itself ( - 10%). At the same time the value of AD ob- 
tained in those of the known c a l ~ u l a t i o n s " ~ ~ ~  of the effect, in 
which no special assumptions were made to obtain agree- 
ment with experiment, is approximately three times larger 
than the experimental one. (The reason is that the valley- 
orbit interaction was treated in these calculations as a per- 
turbation. ) 

7. ESTIMATED ACCURACY OFTHE ZRCC APPROXIMATION 
FOR SHALLOW DONORS IN GERMANIUM AND SILICON 

1.54 
1.26 

0.74 

1.9k0.6 [27] 
( 1.1kO.1 [28] 

1.2k0.2 [27] 
0.52k0.09 [29] 

21.0 
1.96 
1.61 

0.96 

We have found in Sec. 5 that the shallow-donor polari- 
zabilities calculated in the ZRCC approximation differ from 
the experimental values by amounts of the order of the error 
of the experiment itself, i.e., by 10-30%. This means that the 
accuracy of the ZRCC approximation is quite high in this 
case-not worse than - 10% (the accuracy of the numerical 
calculation is even higher, on the order of 1 %). Since the 
polarizability of the impurity atom is expressed in terms of 
the same dipole-moment matrix elements that determine the 
spectral-line intensities and the photoionization cross sec- 
tion, one should expect the accuracy of the ZRCC-approxi- 
mation calculation of these values for shallow donors in sili- 
con to be likewise not worse than - 10%. 

From among the quantities that depend on the form of 
the wave function of the ground state of shallow donors in 
germanium, the most accurately ( - 10%) measured is the 
quadratic change Afl of the valley-orbit splitting in a mag- 
netic field (see Sec. 6) .  The errors in the calculated values of 
A0 of P and As impurities in Ge exceed, albeit little, the 
- 10% experimental error. At the same time, the ratio a,,/a 
of the dimension of the center cell to the effective Bohr radi- 
us is smaller in Ge than in Si, and one might expect the 
ZRCC approximation to be more accurate for Ge. It is possi- 
ble that the measured @ receives also a contribution from 
some effect not accounted for by us. A more accurate esti- 
mate of the ZRCC approximation for donors in germanium 
will be possible after the oscillator strengths of the lines in 
the absorption spectrum and the cross sections for photoion- 
ization of shallow donors are measured with higher accura- 
cy. 

The authors are grateful to A. F. Polupanov for valu- 
able advice and numerous discussions of the work. The auth- 
ors are also grateful to B. L. Gel'mont, M. I. D'yakonov, E. 
L. Ivchenko, L. V. Keldysh, V. I. Perel', and G. E. Pikus for 
a discussion of individual results of the work. 

0.70 
0.56 

0.31 

APPENDIX 

88.0 
45.7 

34.6 

79.2 

By making the substitutions Ri = yi and rR ,! = yi+ , 
one can represent'the system (6 )  in the form of a system of 
2N first-order ordinary differential equations: 

- 
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6.50 

4.55 
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63.9 
32.6 

24,6 

68k15 [30] 
- 

- 



TABLE V. Values of B, which determine the quadratic shifts of the donor levels in a magnetic 
field (in p eV/T2). 

in which the matrices A 'O', A "', and A '2' are independent of 
the radial variable r. 

We solve the eigenvalue problem: 

Impurity 

If the system (6)  pertains to the ground state (L  = 0, 2, 4, 
. . . L,,,) the numbers A, take on N positive (0,2, . . . 
L,,, ) values and N negative ones ( - 1, - 3, . . . , 
- L,,, - 1 ). The condition that the solution be bounded at 

r = 0 takes the form of N equations (A, < 0):  

If, however, the solution must diverge not faster than r- I ,  it 
is necessary to discard from (A.3) the condition that corre- 
sponds to A, = - 1 (Ref. 10). The remaining N - 1 condi- 
tions together with the N conditions that the solutions be 
finite at infinity determine uniquely the solution if the ener- 
gy E is known (from experiment). The functions y, ( r )  are 
calculated by the method of finite-solutions conditions at the 
point r = 0 and the requirement that the solution tend at 
r -  w to a finite point (Refs. 8-10). If the energy E does not 
coincide with an eigenvalue of the system ( 6 )  or with (A. 1 ), 
the solution obtained by this method diverges as r-0 like 
r- ' and is therefore normalizable. 

P 
3,35*0,25 

Sb 

G e  

, 1 T / aa 1 M., 135.361 

"After submitting this article, the authors beame acquainted with Ref. 13, 
in which a variational calculation much more accurate than in Ref. 12 
was made, and the existence of the experimentally unobserved levels 
6PI  and 9P+ was concluded. No oscillator strengths were found in 
Ref. 13, however. 
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