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It is demonstrated that the phase transition in an interacting two-dimensional Bose gas leads to a 
strong decrease of the rate of inelastic processes as the temperature decreases, as in the three- 
dimensional case. It is found that, despite the absence of a true condensate at T #0, the correlation 
properties of a condensate with a fluctuating phase that are inherent to the two-dimensional 
system at temperatures below the phase-transition point Tcs turn out to be sufficient for 
realization of the effect on the same scale as in the three-dimensional case. In a gas of spin- 
polarized atomic hydrogen (H  & ) adsorbed on a surface the probability of three-particle 
recombination falls as T+ 0 by a factor of approximately six in comparison with its value at 
T> T,. Both the purely two-dimensional case and the quasi-two-dimensional case with 
delocalization of the particles in the direction perpendicular to the surface are considered. The 
phenomenon of the decrease of the rate constant of the reaction at T <  T, opens up the possibility 
that the phase transition in the two-dimensional gas H i  can be detected directly from the 
recombination kinetics. 

1. INTRODUCTION 

In a previous paper1 we established that in the phase 
transition in an interacting Bose gas the rates of inelastic 
processes are changed substantially. The governing param- 
eter here, in the ordinary three-dimensional case, was the 
value of the condensate density no ( T ) .  The probabilities of 
inelastic transitions decrease continuously with increase of 
no, down to a certain limiting value as T-0. This effect is 
easy to understand physically. Considering an individual 
elementary process in which several identical particles take 
part, we should perform the corresponding symmetrization 
of the wavefunction. If the particles are in the condensate, 
such symmetrization is not necessary and, as a consequence 
of this, the transition probability changes. 

This paper is devoted to an investigation of the analo- 
gous phenomenon in a weakly collisional two-dimensional 
Bose gas. The situation here turns out to be more complicat- 
ed, since a real condensate exists only at T = 0, and at a 
nonzero temperature the above argument concerning the 
symmetrization of the wavefunction of the particles is, gen- 
erally speaking, inadequate. 

An important point, however, is that a two-dimensional 
system at a temperature below the phase-transition point 
Tcs is characterized by two scales: The scale R, of the power- 
law decay of the density matrix is large in comparison with 
the ordinary correlation length r,. This makes it possible to 
introduce the concept of a quasicondensate (a  condensate 
with fluctuating phase). In a cell of size L  such that 
r, 4 L  4 R , ,  we have, as it were, a system with a real conden- 
sate. Here, however, the phases of the condensate wavefunc- 
tions in cells separated by distances greater than or of the 
order of R, are found to be uncorrelated, and this means that 
it is not possible to introduce a condensate wavefunction for 
the entire system as a whole. 

As shown in the paper (Sec. 2), the probability of in- 
elastic processes is related to local correlation properties of 
the system. Because of the presence of a quasicondensate in a 
two-dimensional Bose gas at T <  T,, its local correlation 

properties are identical to the properties of a system with a 
real condensate. Thus, the change of the probability of in- 
elastic processes in a two-dimensional Bose gas at T < T, 
will have qualitatively the same character as in the three- 
dimensional case. 

This result has fundamental significance for a system of 
spin-polarized atomic hydrogen ( H  & ), which remains a gas 
at temperatures down to T = 0. As is well known, in this 
system a two-dimensional gas phase, formed upon adsorp- 
tion of hydrogen atoms on the surface of the liquid helium 
covering the walls of the cell, is always present. 

Being metastable, the H& system decays on account of 
inelastic processes of depolarization and recombination, 
which, for T <  T,, (T,, is the Bose-condensation tempera- 
ture for the bulk gas), have been considered in detail in Refs. 
2 and 3. As has been predicted theoretically2 and detected 
e~perimentally,~" in the H& gas there exists a nonremovable 
thresholdless decay channel associated with three-particle 
recombination via a virtual change of the spin configuration 
on account of dipole-dipole interaction. In the three-dimen- 
sional case, for T-0, when almost all the particles of the gas 
are in the condensate, the probability of three-particle re- 
combination falls by a factor of six in comparison with its 
value at Tcv (Ref. 1 ) . As shown below (Sec. 3), an analo- 
gous phenomenon occurs (at a fixed surface density) in the 
two-dimensional phase as well, despite the absence of a true 
Bose condensate. 

Atomic hydrogen adsorbed on liquid helium actually 
forms a quasi-two-dimensional gas, in the sense that it is 
appreciably delocalized in the direction perpendicular to the 
surface. This implies that the collision of particles acquires a 
three-dimensional character, but the kinematic properties of 
the adsorbed gas remain two-dimensional, The latter cir- 
cumstance means that the temperature dependence of the 
probability of three-particle recombination remains the 
same as in the strictly two-dimensional problem. Only the 
absolute value of the probability changes. 

In many cases three-particle dipole recombination in 
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the adsorbed phase is the leading decay channel for the 
whole HI gas (see Refs. 2,3, and 5-7). This gives the possi- 
bility of detecting the phase transition in the adsorbed gas 
from the change of the decay time as T decreases, or with 
increase of the bulk density n. at a fixed T (the surface den- 
sity n, and, consequently, Tcs increase). This prospect 
seems very alluring, since it is much easier to realize the 
conditions for this transition than for the phase transition in 
the bulk (in particular, Tcs is substantially higher than Tcv). 
However, it is necessary to note that in the detection of the 
phase transition in the adsorbed gas one must take account 
of the fact that the surface density of the atoms increases 
with decrease of temperature or with increase of n ,,. 

2. THE PROBABILITY OF THREE-PARTICLE 
RECOMBINATION AND ITS CONNECTION WITH 
CORRELATION PROPERTIES OF THE BOSE GAS 

We shall consider a weakly interacting Bose gas of spin- 
polarized hydrogen atoms in a pure spin state (the spins of 
the electron and nucleus are parallel). We shall analyze the 
process of three-particle recombination in such a gas, which 
leads to the formation of a strongly excited H: molecule and 
H atom, with kinetic energies that are large in comparison 
with the characteristic ezergies of the particles of the gas. 

We shall denote by H ' that part of the interaction Ham- 
iltonian which is responsible for the inelastic transition un- 
der consideration. Assuming that the rate of the process is 
small compared with the purely elastic processes, for the 
number of transitions in unit time we have (4 = 1 ) 

A 

where Ho is the Hamiltonian of the system when inelastic 
processes are neglected, and pi is the equilibriup density 
matrix. In second quantization the Hamiltonian H' has the 
form 

rl+rz 
= J$+(-) 2 $+(rs)qj(r1-r2) V(r,, r2, r3) 

The expression (2.2) corresponds to a transition with the 
formation of an excited molecule in state j and an atom in a 
definite spin state. Correspondingly, Vis the inelastic three- 
particl: inter?ction, integrated over the spin variables. In 
(2.2) $ and p are the $-operators for the atoms and mole- 
cules, defined in the standard manner on the wavefunctions 
of the free motion, and pj (r ,  - r,) is the wavefunction of the 
molecule in its center-of-mass frame. 

Since we assume that the binding energy E, of the mole- 
cule is large in comparison with the characteristic energies 
T, n, e of the particles of the gas ( @is the effective vertex of 
the elastic pair interaction of the particles), the motion of the 
molecule and fast atom that are formed as a result of the 
reaction can be regarded as free, with energies q:/4m - E, 
and q:/2m, respectively. Since we consider low tempera- 
tures we shall assume that the momenta k of the particles 
taking part in the reaction certainly satisfy the inequality 

( Ro is the effective range of the interaction of the particles). 
In the determination of the interaction vertex (2.2) in 

the momentum representation the condition (2.3) makes it 
possible, for small initial particle momenta k,, to go over 
from the true interaction V to an effective interaction 
VxkIk2k, (r1,r2,r3), where the functionx takes account of the 
restructuring of the wavefunction of the initial state in the 
region of the interaction. For the vertex we then have the 
following expression: 

F (ql, q2 I kl, k2. k3) = j dr, dr, dr, q+ (r,-r.) V (ri, r,, r3) 

(we set the normalization volume equal to unity). Because 
of the presence of the wavefunction pi (r,  - r,) in the inte- 
grand of (2.4), and the scale of the wave vectors in the final 
state (q,,q, > l/Ro), the principal contribution to the inte- 
gral is built up over interparticle distances of the order of R,. 
In the three-dimensional case, in the three-particle system 
the correlation function x under the condition (2.3) ceases 
to depend on the momenta k,, and this was used in Ref. 1. In 
the two-dimensional case, however, the dependence of x on 
ki turns out to be important. To determine this function we 
can make use of the results of Appendix 11. Taking into ac- 
count the relation (A20), in this case we have 

a ( q )  
'(ql~ q2 1 k*7 k27 k3) = ln (2,l k,-k2 1 d) ln2 (6/ 1 k1+k2-2k3 1 d) 

(2.5) 
( d - ~ ,  is the two-dimensional scattering length), where 

Here we have introduced the relative coordinates R = r, 
- r,and p = (r ,  + r,)/2 - r,. In going from (2.4) to (2.5) 

and (2.6), we haveneglected [taking (2.3) and the inequali- 
ty k, (q,,q, into account] the terms k,.r, in the exponent, 
and, by virtue of the law of conservation of momentum, have 
set q, = - q, = q. 

At temperatures above the phase-transition point T, in 
the two-dimensional case the effective values of the mo- 
menta k, appearing in the arguments of the logarithms in 
(2.5) have values of the order of the thermal momentum 
k, = ( 2 m ~ )  'I2. In an interacting gas of finite density the ki 
remain finite even for T+O. This is easily understood if we 
take into account that the particles arrive at the interaction 
region with an energy equal to the average interaction ener- 
gy n, e in the gas. Correspondingly, the momentum of the 
particles will be of the order of (2n,mu)112. We note that 
this momentum coincides with the inverse correlation 
length kc = l/rc (see the next paragraph), as is natural from 
a physical point of view (for T> n,u the momentum kc 
coincides with k,). 

Having made use of these results, we replace the argu- 
ments of the logarithms in (2.5) by l/kcd and introduce the 
effective vertex of the inelastic interaction in the form 

rj-r (4,) "B(qj)ln-" l /k ,d) ,  (2.7 
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where q, = (4m~,/3) ' /*  is a finite momentum determined 
by the energy-conservation law. 

In view of the locakcharacter of the interaction, we re- 
write the Hamiltonian H' in the form 

fir=rj $ (r) $+ (r) $ (r) (r) & (r) dr+ h.c. 

Noting that states with the large momenta q,,q, characteris- 
tic of the particles formed as a result of thz reaction are not 
populated in the gas, for the correlator (H ' (0 )H1( t ) )  ap- 
pearing in (2.1 ) we obtain 

.exp[i(q,+q,) (r-r') ]exp i -- + - - [ (:: :: 
The correlator in (2.9) varies over a distance Ir - r'l of 

the order of the correlation length r, (see the next section). 
The integration over the momenta q, and q,, the scale of 
which is dictated by the large value of E,, renders distances 
Ir - r'l that are much shorter than the correlation length 
effective. Therefore, in the correlator we can set r = r'. Per- 
forming the integration over r and r' in (2.9) in explicit form 
and returning to the original formula (2. I ) ,  for the transi- 
tion probability we have 

m 

The principal contribution to the integral in (2.10) is given 
by values t- WE,. This time scale is short in comparison 
with the times ( l/n, e ,  l/T),, characteristic for time cor- 
relations in a weakly interacting Bose gas. This makes it pos- 
sible to set t = 0 in the correlator. As a result, integrating 
over t and taking (2.7) into account, we find 

The correlation function K remains the same for all the reac- 
tion channels. The total recombination probability is ob- 
tained by summing W, (2.11 ), (2.12) over the final states j 
of the molecule and the final spin states of the atom. 

It is also obvious that the structure of the results 
(2.1 1 b(2.13) will be the same for all inelastic three-particle 
processes if the kinetic energy of the particles in the final 
state is large compared with Tand n, G. The structure of the 
relations (2.11 )-(2.13) is analogous to the results obtained 
for the three-dimensional case (see Ref. 1 ) . The difference is 
connected entirely with the form of the matrix element - 
V(qj) and with the appearance (specific to the two-dimen- 
sional gas) of the factor ln6(l/k,d), which depends on n, 
and T, in the denominator of (2.12). 

At temperatures above the phase-transition point the 
calculation of the correlator (2.13) both in the three-dimen- 
sional case ( T >  T,,) and in the two-dimensional case 
( T >  Tcs ) gives K = 1. For T < T,, in the bulk gas this cor- 
relator decreases continuously with decrease of Ton account 
of the increase of the condensate density, and for the ideal 
gas reaches the value 1/6 at T = 0 (Ref. 1 ) . The behavior of 
the correlator (2.13) in the two-dimensional Bose gas at 
T <  Tcs requires a special analysis, since at T $0 a conden- 
sate in the generally accepted sense is absent here. 

3. CORRELATION PROPERTIESOFTHE TWO-DIMENSIONAL 
BOSE GAS. DETERMINATION OF THE THREE-PARTICLE 
CORRELATOR K(n,, T) 

At temperature T = 0 in a two-dimensional interacting 
Bose gas a Bose condensation of the usual type occurs. The 
main feature specific to the two-dimensional case is the weak 
dependence of the effective pair-interaction vertex on the 
magnitude of the original interaction between the particles: 

Here k, is a quantity close to the inverse correlation length 
kc = l/r,, and d is the two-dimensional scattering length, 
whose value d = 0.9 .& for the H &  gas was found in Ref. 3. 
The correlation length r, can be found from the character of 
the decay of the one-particle density matrix: 

p(r) =($+(0)%(r)). 

For this it is sufficient to make use of the well-known tech- 
nique of u - u transformations of Bogolyub~v,~ using the 
effective vertex (3.1 ). The correlation length at which p ( r )  
falls from the value n at r = 0 to the condensate-density val- 
ue no (and remains constant at larger values of r )  is found to 
be equal to 

r , c  (2mT')-'" , T*=n,i7. (3.2) 

The assumption of weak interaction in the two-dimen- 
sional Bose gas corresponds to the condition c< 1. This con- 
dition essentially replaces the usual criterion for applicabili- 
ty of the gas approximation in the three-dimensional case. 
Since in this case the inequality c In( 1/6) < 1 holds automat- 
ically, for the quantity k :. in (3.1) we can take the value 
47~n,. The value of e that follows from this was first ob- 
tained by Schick9 for a model of a Bose gas of hard discs. 

In the framework of the same technique it is not diffi- 
cult to find the density of the particles above the condensate 
(see Ref. 9) : 

n ' - n , ~ .  (3.3 

For {< 1 most of the particles are in the condensate and we 
need not distinguish n, and no. 

To describe the properties of the system at T = 0 we can 
introduce the usual condensate wavefunction in the form 

$o(r) =no'" exp [ i@(r)]  (3.4) 

with a weakly fluctuating phase @. 
At T #O the picture is radically altered. For the fluctu- 

ation of the phase in the two-dimensional case the appear- 
ance of an infrared divergence is characteristic, and this 
leads to destruction of the long-range order. Now, for 
T < T, (and, simultaneously, T 5 T * ) the asymptotic be- 
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havior of the one-particle density matrix is determined by 
the expression (see Refs. 10-14) 

P (r) =no exp [-a ln (rlr.) I ,  rBr., (3.5) 

where 

in whichp, is the density of the superfluid component. 
Sincea 4 1, it follows from (3.5) thatp(r) decays over a 

large correlation length 
R,=r,ei/a (3.8) 

(at T  = 0, the correlation length Rc -+ UJ ) . 
At distances r  such that rc ( r 4 R c  the density matrix 

has a constant value equal to no, as in the usual case when a 
condensate is present. In this region the phase fluctuations 
have no effect. Therefore, considering regions of such a size, 
we can make use of the idea of a quasicondensate, to which a 
wavefunction of the form (3.4) corresponds. It is not possi- 
ble to do this in a unified manner over all space, since at 
distances r )  Rc the phase correlation is lost and the average 
of $o over the volume is equal to zero. 

Thus, in a two-dimensional Bose gas the presence of the 
two strongly differing scales rc and R, ) rc makes it possible 
to speak of the presence of a quasicondensate-a condensate 
with a fluctuating phase. If, conceptually, we divide the 
space into blocks of size L (cf. Ref. 13), with 

then all the correlation properties for which distances much 
shorter than L and times much shorter than r, = L/c  
(c = ( T */m ) ' I 2  is the velocity of sound) are important need 
be considered only within one block. But within the limits of 
one block the two-dimensional Bose gas can be regarded as a 
system possessing a normal condensate with density no. We 
note that in the volume of an individual block there are a 
large number of particles and the relative density fluctu- 
ations are small. 

To determine the densities of the above-condensate (n') 
and condensate particles in a given block at a nonzero tem- 
perature we can make use of the system of temperature 
Green's functions that is obtained for a weakly interacting 
Bose gas with a condensate in the three-dimensional case 
(see, e.g., Ref. 15). The specific nature of the problem under 
consideration will be manifested only in the change to a two- 
dimensional phase volume and in the cutoff of the small mo- 
menta at a scale 1/L. The explicit expression for n' then has 
the form 

J "'" G ( k ,  .c=-0) 
k > l / L  

(2n )  " 

kz /2m +- I nsU +- I }  
E ( k )  expIE ( k ) / T l - 1  E  ( k )  exp[E ( k ) / T ] - 1  ' 

(3.10) 
where 

(Gis the normal Green's function). For T 4  T * the principal 
contribution to the integral (3.10) is given by the first term. 
This term is built up from momenta k -  kc 4 1/L, and this 
makes it possible to set the lower integration limit equal to 
zero. A direct calculation leads to the relation (3.3). 

The results obtained make it possible to determine the 
valueofthecorrelatorK(n,, T)  (2.13) for T< T *. In fact, as 
was shown in Sec. 2, in the three-particle correlator in (2.9), 
which appears in the expression for the recombination prob- 
ability, distances Ir - r' 1 - Ro and times t - l/Ej turn out to 
be important. Since these distances and times are small in 
comparison with L and rL, respectively, we can use the re- 
sults pertaining to a single block. Then, in zeroth order in the 
parameter 6, replacing the $-operators in (2.13) by t,b0 we 
have 

(it must be recalled, however, that the very presence of the 
quasicondensate at T  #O is due to the interaction between 
the particles, i.e., to the finite value of 6). 

In order to find the temperature dependence of the cor- 
relator K at low T  and to determine at the same time the 
correction to (3.11 ) on account ofJhe interaction between 
the particles, we write the operator $appearing in (2.13), as 
usual, in the form 

4=*0+Gr, 
where the operator $' pertains to particles above the co~den- 
sate. Then, confining ourselves to terms bilinear in $', we 
find 

1 1  
K ( T )  = - + - (nl+n,), 

6 ns 

where n, = ($'$') is the anomalous average. Using the well- 
known expression for the anomalous Green's function of a 
Bose gas (see, e.g., Ref. 15) and determining the value of n, 
in terms of it, in the two-dimensional case, with allowance 
for (3.10), we have 

The temperature dependence of the correlator K is deter- 
mined by the second term in (3.13), which does not have a 
singularity at small k. For T( T * 

K ( T )  -K ( 0 )  ~ 2 . 4 g  (TIT' )  3. (3.14) 

The correction to K(0) (3.11) is determined by the first 
term in ( 3.13 ) , which also is nonsingular at small k. How- 
ever, this expression formally diverges at large k. Here we 
encounter the same problem as in the three-dimensional 
case, in which, when the contribution of the anomalous aver- 
ages is taken into account, it becomes necessary, when going 
over from the bare vertex in the interaction Hamiltonian to 
the scattering amplitude a, to take into account terms not 
only of first order in a but also of the next order (see Ref. 8) .  

The bare three-particle-recombination amplitude I-;'' 
is given by the expression (2.4) with x,,,~,, (r,,r,,r,) = 1. 
This amplitude is practically independent of the momenta ki 
of the colliding particles. The vertex renormalization that 
occurs on account of elastic rescattering of the three parti- 
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cles by each other is determined by the functionx, which, in 
perturbation theory in the effective pair interaction u (3.1 ), 
can be written in the form 

In obtaining this expression we have used for the elastic pair 
interaction not the true potential but, in fact, the pseudopo- 
tential, the Fourier component of which at small momenta 
coincides with e. We shall retain this value for larger mo- 
menta as well, keeping in mind that the final results will still 
be determined by the small momentum values, as has al- 
ready been assumed implicitly in the derivation of the ex- 
pressions (3.10) and (3.13). 

Confining ourselves to the linear approximation in the 
parameter 6 and, correspondingly, u, we should renormal- 
ize the vertices only for the dominant first term in the corre- 
lator (3.12), corresponding to the interaction of three quasi- 
condensate particles. These particles have energy &,, = n, 
= k f/2m. The expression for the function x in this case 

acquires the form 

(3.16) 

We now substitute this expression into (2.4). Then, assum- 
ing that the sum over k in (3.16) is bounded from above by 
values kd< 1 (and thereby separating out from the integral 
the bare vertex rjO' 1, and taking into account that the inte- 
gral over k in (3.16) is taken in the principal-value sense, we 
have 

In fact, in going over to the formula (2.7) we used the 
replacement TjO' -, r,. In fact, to go over from the bare ver- 
tex to the true vertex it would be necessary to make use of the 
inverse series for rjO' in terms of rj (and u ) ,  the first two 
terms of which can be determined from the expression 
( 3.17 ) . Accordingly, 

Replacing r, in (2.7) and, correspondingly, in (2.12) by the 
expression in the right-hand side in (3.18), with allowance 
for the first term in the correlator K (3.12), we obtain a 
correction linear in 6; this correction is equivalent to the 
appearance in (3.12) of a term equal to 

The sum of ( 3.13 ) and ( 3.19) no longer diverges at large 
momenta, and the expression for K(0) turns out to be finite. 
Direct calculation gives 

whereb= (1 -1n2). 
The relations (3.14), (3.20) permit us to draw the im- 

portant conclusion that in the two-dimensional case, at a low 
but nonzero temperature, when the true condensate disap- 
pears, the presence of the quasicondensate ensures that the 
correlator (2.13) falls to a value close to (3.11 ). In other 
words, the general result predicted earlier for the three-di- 
mensional case remains valid. 

The phase transition, or Kosterlitz-Thouless transition, 
in a two-dimensional Bose gas occurs at the temperature 
(see Ref. 16) 

where p, is the density of the superfluid component at 
T = T,  - 0. For the real scale of the surface density the 
parameter 6 has magnitude - lo-'. Comparing the expres- 
sions (3.21) and (3.1), (3.2), it is not difficult to convince 
oneself that Tcs and T * are quantities of the same order and 
are even comparatively close to each other (the density p,, 
defined in the same way as in the case of the three-dimen- 
sional Bose liquid (see, e.g., Ref. 8),  turns out to be compar- 
able with the total density). Therefore, as the temperature is 
lowered the correlator K( T) will experience a discontinuity 
upon passage through the point Tcs and will then go over 
comparatively rapidly to the value determined by the expres- 
sion (3.14). To make a reliable determination of the magni- 
tude of the discontinuity, and of the behavior of K( T) in the 
crossover region, presents substantial difficulties. 

We note that because the quantities Tcs and T *  are 
comparable the inverse correlation length kc appearing in 
the argument of the logarithm in (2.7) and (2.12) essential- 
ly retains its low-temperature value (2m T * ) '/' near the 
phase transition as well. 

4. QUASI-TWO-DIMENSIONAL GAS OF SPIN-POLARIZED 
ATOMIC HYDROGEN ON A LIQUID HELIUM SURFACE 

We now consider the surface phase of atomic hydrogen 
adsorbed on liquid helium, making use of the results of the 
preceding sections. As has been elucidated previously, for all 
accessible values of the surface density of atoms this phase 
remains a gas at all temperatures (see Ref. 3). However, it is 
not purely two-dimensional, in the sense that, by virtue of 
the low energy E, of adsorption of a hydrogen atom, its char- 
acteristic localization length I = (2m~,)-'/ '  in the direc- 
tion perpendicular to the surface is appreciably greater than 
the effective range of the interaction of the atoms with each 
other. Because of this, the atomic-collision process has, to an 
important extent, a three-dimensional character, and this 
gives rise to a change of the effective interaction vertex in 
comparison with the purely two-dimensional case. 

As we shall see below, Tcs *<E, holds practically always, 
and in this case the density of the Hi gas adsorbed on the 
surface is small in comparison with the density for maximum 
occupation. In these conditions the inequality kl( 1 is valid 
for the characteristic value of the momenta of the particles 
along the surface. By considering, in this situation, the colli- 
sion of two adsorbed particles with allowance for their 
strong delocalization along the normal to the surface, we can 
solve the corresponding Schrodinger equation systematical- 
ly and find the effective vertex of the pair interaction. The 
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solution of this problem, obtained in Appendix I, leads, for 
particles with relative two-dimensional momentum k, to an 
effective vertex in the form (see (A 1 1 ) ) 

where a = 0.72 is the three-dimensional scattering length 
for the collision of hydrogen atoms in the triplet state. 

In the present case of a quasi-two-dimensional gas of 
finite density at T <  Tcs the effective momentum k of the 
colliding particles, as in the purely two-dimensional case, is 
close to kc = l/rc (3.2). In the quasi-two-dimensional case 
the small parameter replacing in (3.1) is the quantity 
[ / /a  + 2 ln(2/kCl) ] - I .  If the logarithmic term is smaller 
than 1 /a, as is the case at the usual experimental densities, 
the appropriate small parameter is the ratio a/l. The small- 
est value a / l ~ 0 . 0 8  is achieved on a 3He film ( ~ ~ r 0 . 3 5  K; 
see Refs. 17 and 18). On a 4He film this parameter is greater: 
a/1=0.14 (&,a 1 K; see Refs. 17 and 18). 

The delocalization of the adsorbed particles changes 
the effective vertex rj (2.7) of the inelastic three-particle 
interaction in two aspects. First, for 1) R, the wavefunction 
X'3'(r1,r2,r3), given in (A24) (the ri here are three-dimen- 
sion vectors) of the three colliding particles, which appears 
in the definition of r, ,  will be the same, over short distances 
in the center-of-mass frame, as in the three-dimensional 
case. On the other hand, the rescattering that arises for 
kl( 1, which is specific for the two-dimensional motion and 
determines the decrease of the wavefunction in the region of 
direct interaction of the three particles, is now characterized 
by a factor A, (A25), in contrast to the factor A (A19) 
corresponding to the purely two-dimensional case. In addi- 
tion, a further integration should be performed along the 
center-of-mass coordinate in the direction perpendicular to 
the surface. As a result, for the vertex of the three-particle 
interaction in the quasi-two-dimensional case we find 

where rj3' is the three-dimensional vertex of the inelastic - 
three-particle interaction, k = (k, - k,)/2, and k 
= (k, + k, - 2k3)/3. Using the same arguments as in the 

purely two-dimensional case, we can approximate the rela- 
tive momenta in the arguments ofLhe logarithms by kc. The 
transition from the Hamiltonian H' (2.8) to the transition 
probability in the quasi-two-dimensional case is carried out 
in the same way as in Sec. 2. As a result, for the transition 
probability we have 

where a, is the rate constant of three-particle recombina- 
tion in the bulk at a temperature above the Bose-condensa- 
tion point Tcv for the bulk gas. 

The three-particle correlator K in (4.3) is defined on 
purely two-dimensional $-operators and in this sense does 
not differ from the correlator that was analyzed in the pre- 
ceding section. Therefore, its entire temperature dependence 
is preserved, as, in particular, is the main result-the de- 
crease of K below T, to a value close to 1/6. As regards the 
low-temperature behavior of K, it is determined as before by 

the formulas (3.14), (3.20), provided that we make the re- 
placement 

We note that the above properties of the correlator K 
follow in a natural manner from the condition rc = l/kc ) 1, 
which essentially reflects the two-dimensional character of 
the correlation properties of the quasi-two-dimensional gas 
under consideration. Correspondingly, the purely two-di- 
mensional asymptotic behavior of the density matrix (3.5) 
and the idea of the quasicondensate are preserved. Natural- 
ly, the phase-transition temperature Tcs will be determined 
as before by the relation (3.2 1 ). 

For T >  Tcs the correlator K = 1, and formula (4.3) 
refines the result obtained in Ref. 3, in which the logarithmic 
term in the denominator was absent. 

In the real geometry of the experiment it is easy to rea- 
lize conditions in which the governing factor for the decay of 
the entire H1 system (the bulk gas plus the gas on the sur- 
face) is three-particle dipole recombination on the surface. 
Here, from the magnitude of the inverse decay time 

(nv  is the bulk density, Vis the volume of the system, and S 
is the area of the surface) we can determine the value of Ws 
and, at the same time, the state of the adsorbed phase. How- 
ever, the actual density of the adsorbed H1 phase increases 
with decrease of the temperature, and this, naturally, leads 
to an increase of W,. Therefore, to detect the phase transi- 
tion in the adsorbed H1 gas it is necessary not only to mea- 
sure the lifetime of the system but also to determine indepen- 
dently the surface density of hydrogen atoms. In this case the 
detection of the phase transition should rest on the tempera- 
ture dependence of the rate constant a, = Ws/ni of the re- 
combination process, which depends very weakly on n,. 

The phase-transition temperature Tcs for the adsorbed 
H1 gas, in accordance with (3.21 ), is proportional to the 
density po of the superfluid component of this gas, which, in 
turn, depends on n, and T. In conditions of equilibrium 
between the bulk and the surface, the value of n, is dictated 
by the value of the temperature and of the bulk density n ., 
and, thus, Tcs becomes, in fact, a function of n,. The chemi- 
cal potentials of the bulk and adsorbed phases in equilibrium 
are connected by the relation 

It is not difficult to convince oneself that at T = Tcs + 0 we 
have 

ps-2n,(Tcs)Q. (4.6) 

The average distance between the particles in the adsorbed 
H1 gas is much smaller than in the bulk gas. Therefore, Tcs 
substantially exceeds the Bose-condensation temperature 
Tcv for the gas in the bulk, and in the calculation ofp  ( Tcs ) 
this gas can be regarded as a Boltzmann gas. Substituting 
(4.6) now into (4.5) with (4.1) and taking (3.21) into 
account, we obtain for the phase transition temperature the 
equation 

where 
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As estimates show, p, at the point Tcs is comparable 
with n,, and the parameter y- 1. 

From (4.7) it follows that the transition temperature 
depends only logarithmically on n,. For a limited bulk den- 
sity (nV 5 10" cmP3) the logarithmic term in the denomi- 
nator of (4.7) is large and Tcs 4&,. In these conditions, at 
T- Tcs (n,) the surface density, as follows from (4.5) and 
(4.6), changes substantially over a temperature interval 

Because of this, as the temperature is lowered through the 
point Tcs (n,) there is a rapid increase of the transition tem- 
perature Tcs (3.2 1 ) . As a consequence, the correlator K very 
rapidly reaches a value close to the limiting value (3.20) 
(here n, still remains substantially smaller than the limit- 
ing-occupation density n i  2 1014 cmT2). Thus, the decrease 
of the rate constant a, at the phase transition is found to be 
effectively very sharp. In fact, if we take into account that the 
momentum kc appearing in the argument of the logarithm in 
(4.3) is -nk'2 (see (3.2)), then for the rate constant we 
have the following expression: 

(4.8) 
In another way of reaching the point Tcs, when the sys- 

tem is compressed at T =  const, the surface density n, 
changes substantially only when the bulk density changes by 
an amount of the order of nv  itself. In this case, as n, in- 
creases from the critical value corresponding to the phase- 
transition point, the rate constant a, ( T,n , ) goes over 
smoothly to its limiting value (4.8). 

5. CONCLUDING REMARKS 

Although the conditions for achieving a phase transi- 
tion in an adsorbed H 1 gas are considerably easier to realize 
than in the bulk, it is evident, nevertheless, that appreciable 
experimental difficulties remain. In particular, these are 
connected with the necessity of having limited heating of the 
gas and, correspondingly a limited Kapitsa discontinuity AT 
on the gas-liquid-helium b o ~ n d a r y . ' ~ * ~ ~  Since AT and 1/r 
(4.4) are proportional to n i  (n.V%n,S), and Tcs -n, (see 
(3.21 ) ), when surface recombination plays the dominant 
role, it may turn out to be optimal to search for the phase 
transition at low values of n,. Then, however, the phase- 
transition temperature may be shifted into the millikelvin 
region. In this case the lifetime of the system, with the gas 
now concentrated practically entirely on the surface, is of 
the order of 10-100 sec (n,S)n,V and 1/r-ng ). 

For high surface densities n, - 1013 ~ m - ~ ,  correspond- 
ing to a temperature Tcs - 50 mK, the equilibrium bulk den- 
sity nv in the case of a 3He surface is - 1014-10'7 cmP3, and 
it becomes necessary to impose conditions on the relative 
magnitudes of the mean free path of a particle in the bulk and 
the linear dimensions of the system. Essentially, this is the 
condition that the excited molecules formed in recombina- 

tion, and, under certain conditions, hot atoms as well, suc- 
ceed in "diving" into the helium before they transfer energy 
to the atoms of the gas. With allowance for the restrictions 
that arise on the linear dimensions of the system, the life- 
times turn out to be of the order of seconds. These time scales 
for closed systems make it reasonable to use a pulse tech- 
nique. The conditions are simplified appreciably in the case 
of so-called open systems (see Ref. 7), when the recombina- 
tion energy is drawn off through a magnetic wall. 

It should be noted that one further restriction on the 
attainment of the phase transition arises because of the need 
to have a sufficiently long lifetime of an adsorbed atom on 
the surface-this time should exceed the characteristic cor- 
relation time of the superfluid motion of the two-dimension- 
al H1 gas (see Ref. 21 ). As estimates show, for T <  Tcs 
5; 50 mK this condition is certainly fulfilled both on a 4He 
surface and on a 3He surface. 

We note in conclusion that the use of the more accurate 
relation (4.3) for the rate constant of three-particle dipole 
recombination on the surface changes the quantitative esti- 
mate of this quantity from that given in Ref. 3 for T> Tcs 
(K = 1 ). Taking into account that the momentum kc should 
be replaced by the thermal m-omentum k, = ( 2 r n ~ ) " ~ ,  for 
adsorption on a 4He surface ( 1 ~ 5  A)  we have a, 
~ 0 . 5 . 1 0 - ~ ~  cm4/sec [in (4.3), W, = a,ni is the number 
of recombination events per unit area in unit time]. This 
number corresponds to Tz0 .3  K, but the dependence 
a, ( T) is very weak. The value found is five times smaller 
than that which is obtained without the logarithmic term in 
the denominator. The experimentally obtained values of a, 
lie in the range (0.5-1) cm4/sec (Refs.6, 22-24). 
This good agreement between theory and experiment should 
not be overvalued, since, strictly speaking, for the case of 
4He the parameter R,/l is not sufficiently small, although 
the ratio a/l amounts to 0.14. 

APPENDIX I 
Effective vertex of the elastic Interaction of a pair of particles 
in the quasi-two-dimensional case 

We shall consider the idealized quasi-two-dimensional 
case, when the localization length 1 = (2m~,)  - ' I 2  of an ad- 
sorbed atom in the direction perpendicular to the surface is 
much greater than the effective range R, of the interaction of 
the particles. Actually, R, is close in magnitude to the effec- 
tive range of the interaction of an adsorbed atom with parti- 
cles of the surface. Therefore, at distances z$ R, from the 
surface, at which the wavefunction of the adsorbed atom is 
mainly localized, the latter is determined by the expression 

$o(z) (2/l)'bexp(-z/l). (A1 

The Schrodinger equation for a pair of adsorbed atoms 
has the form (in the plane of the surface we have selected the 
center-of-mass system) 

Here p is the projection of the vector r of the interatomic 
spacing on the plane of the surface, U,(z) is the potential of 
the interaction of the adsorbed atom with the surface, U(r) 
is the potential of the interaction of the adsorbed atoms with 
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each other, and k is the wave vector of the relative motion of 
the atoms in the plane of the surface. For p - co we have 

We shall be interested in momenta k <  l/R,. Then for 
kl( 1 ( E , )  k ,/2m), at interatomic distances p ( l/k the 
wavefunction $ is determined by Eq. (A2) with k = 0, and 
the dependence of $ on k can be factored out. I fp (I also, we 
can regard the relative motion of the atoms as three-dimen- 
sional and represent $ in the form of a product: 

where 7 ( r )  is the wavefunction of the three-dimensional rel- 
ative motion for k+O, determined by the equation 

( q ( r ) + l  as r-oo), and the function 
(2/l)exp [ - (z, + z2)/l I describes the motion of the center 
of mass of the pair along the z axis. 

We now find the factor B( k) .  For this we multiply Eq. 
(A21 by $, (z, $,(z, and integrate over z, and z,. From the 
resulting equation we subtract the equation 

multiplied by $ and also integrated over z, and z,. As a re- 
sult, at distancesp)R, for which in (A2) the potential U(r) 
can be neglected, we obtain 

(Ao+kZ) cp ( P I  =O, (A41 
where 

m ?a 

q (PI = 1 dzl ) uz2$o ( ~ 1 )  $o ( Z Z )  $ ( z ~ , z z ,  p) . (A51 
0 U 

The two-dimensional free-motion equation (A4) is, natural- 
ly, also valid at distancesp) I, at which the relative motion 
of the particles is almost purely two-dimensional and $ 
= $,(z, )$,(z,)p( p). The solution of this equation that at 

infinity becomes the plane wave ek'P, at distancesp-4 l/k at 
which we can confine ourselves to the S-wave has the form 

(C = 0.577 is the Euler constant). The quantity d * is deter- 
mined by the form of the wavefunction at distances r- R,. 

Thus, the formula (A6) should be obtained from (A5) 
with $(z,,z,,p) (A3) with R0-4p(1, l/k. The three-dimen- 
sional wavefunction ~ ( r )  of the relative motion for p)R, 
can be written in the form 

q(r)  = I-a/r, (A71 

where a is the three-dimensional scattering length. Substi- 
tuting (A7) into (A5), changing to the integration variables 
z, - z, and (z, + z2)/2, and performing the integration 
between thelimits - (z, + 2,) <z, - z,<z, + z,, z, + z2)0, 
we find 

Equating now in (A8) and (A6) the terms that depend lo- 

garithmically on p, and also equating the terms that do not 
depend onp, we obtain B(k)  and D *: 

B(k) = [ I+  (2all)ln(2/kl) I-', (A91 

d*= (112) exp (-1/2a). (A101 

The expression for the effective vertex of the elastic in- 
teraction of two particles in the quasi-two-dimensional case 
under consideration has the form (we set the normalization 
volume equal to unity) 

Substituting into this the true wavefunction $ (A3) with 
B( k) (A9) and integrating, taking the relation 

J q (r) U(r) dr=4na/m 

into account, we find 

The formula (A1 1 ) without the logarithmic term in the de- 
nominator was obtained earlier in Ref. 3. By making use of 
the parameter d * ( AlO), we can represent Din the form 

This result differs from the formula (3.1 ) for Din the purely 
two-dimensional case (see Refs. 3 and 9)  only in the replace- 
ment of the two-dimensional scattering length d by the pa- 
rameter d *. 

We note that for kl) 1 we ought to regard the collisions 
of the particles as purely three-dimensional. In this case, in 
(A3) the coefficient B = 1, and the averaging of the interac- 
tion energy of a pair of particles over their motion along thez 
axis gives the result (A1 1 ), but without the logarithmic term 
in the denominator. 

APPENDIX II 
Determination of the three-particle correlation function 
x(R, P) 

We first consider the purely two-dimensional case. The 
Hamiltonian of three hydrogen atoms in the center-of-mass 
frame has the form 

where r,,r,,r, are the coordinates of the atoms, R = r,  - r,, 
p = (r, + r2)/2 - r3, and U(r) is the potential of the pair 
elastic interaction of the particles. 

The initial state corresponds to three slow atoms, and at 
infinity the wavefunction is 

Here k = (k, - k2)/2 is the momentum of the relative mo- 
tion of particles 1 and 2, and k = (k, + k, - 2k,)/3 is the 
momentum of the motion of particle 3 relative to the quasi- 
molecule 1-2. We shall be interested in particle monenta k, 
k( l/Ro. We represent the wavefunction $, with allowance 
for rescattering of the particles, in the form $ = x ( R ,  p) 
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X e ~ p ( i k . R + & * ~ ) .  Then at interatomic distances 
R, p ( l/k, l/k, the three-particle correlatkon functionx will 
be a solution of the Schrodinger equation HX = 0 and can be 
written in the form 

x ( R ,  p )=A ( k ,  H)Q(R, P I ,  (A131 

where the function a ( R ,  p) does not depend on the mo- 
menta of the particles. 

In the Hamiltonian H (A12) we go over from the vari- 
ables R, p to the variables R,q,,r, = I p + R/2, 
r, = I p - R/2I (q, is the angie of @ veGor R relative to the 
stationary axis). We obtain H = H, + H I ,  where 

To find A(k, i )  in x (A13) it is sufficient to consider the 
region of interparticle distances in which at least two of the 
three distances R, r,, r, are large in comparison with R,. In 
this case, as will be ektablished below, in the determination of 
x the Hamiltonian H, can be neglected. 

h 

In the equation H, x = 0 the variables can be separated. 
In the variables r, and r, we have equations describing 
s-scattering of two particles. By virtue of the condition 
kR,( 1, for the motion in the R direction we should also 
confine ourselves to the s-wave. As a result, we have 

' x = $ ( R ) $ ( r 1 ) $ ( r 2 ) ,  (A161 

where all three functions correspond to s-scattering. From 
the solution of the pair problem in the two-dimensional case 
it is known that for R,(R ( l/k the wavefunction corre- 
sponding to momentum k is (see Appendix I) 

where g = 0.89 and d is the two-dimensional scattering 
length, determined by the shape of the potential U(r). Anal- 
ogously, 

(each of the functions $(ri)  corresponds to momentum 
k 12).  

Comparing the function (A 16) obtained on the basis of 
(A17), (A18) with the expression (A13), for the coefficient 
~ ( k ,  k )  we find 

A ( k ,  k )  = 
1 

ln(1lkd)  ln2(2/FEd) ' 

We now consider the Hamiltonian 2,. As regards the 
terms containing derivatives with respect to q, they can give 
a contribution only whenp-scattering is taken into account, 
and are small in proportion to the paramzter kR,( 1. The 
three other terms in the expression for HI x at distances 
R -ri - r)  R,-d are of the order of -Ar-'ln(r/d). The 

h 

ratio of these terms to the terms appearing in H, x is of the 
~ r d e r  of - ln-' (r/d) ( 1. xhe ratio of any of the terms in 
H, x to the largest term in H, x can only decrease when the 
distances R, r,, and r, are different in scale (including the 
case when one of them becomes - R,) . The above es t i~a tes  
and arguments justify the neglect of the Hamiltonian H ,  in 
the determination of the factor A (k, k) .  

Thus, the three-particle correlation function x (R, p) 
appearing in the definition of the vertex (2.4) of the inelastic 
transition, in the region of interparticle distances R, p ( l/k, 
I/&, has the form 

where the function O(R,p)  for R,p)R, has the asymptotic 
form 

We consider now the quasi-two-dimensional case for 
I )  R,. We first carry out the same procedure as in the deriva- 
tion of formula (A4), but in a system of three particles. As a 
result we find 

(2A,+3/2A,+2kV3/2R2)Q(R, p) =O, R, pBRo, 
(A211 

, z z z ) $0 (zi)$o ( 2 2 )  $0 (23) dzi dz2 ~ Z Q ,  @ ( ~ . p ) = j r ( R . p  I ,  2. 3 

where 2 is the quasi-two-dimensional three-particle correla- 
tion function. For R, ( R ( l/k, 1/k, in correspondence with 
the results obtained above we have 

In the region of interparticle distances R, p ( l/k, 1/k, 
I, the relative motion of the particles is purely three-dimen- 
sional and the quasi-two-dimensional function for k, 
k( 1/1 can be represented in the form 

=A*(k ,  R)X(~)(R,  p, zi, zz, ~3)$o(zi)$o(zz)$o(zs) ,  (A231 

where x',' is the three-dimensional correlation function. If 
in this case we have R, p )  R,, the function x',' can be writ- 
ten in the form 

Substituting (A23) with X'3' (A24) into (A20), confining 
ourselves to terms linear in the scattering length a, and per- 
forming the integration over z,, z,, and z,, we obtain an 
expression for @(R, p) that should coincide with (A22). 
Comparing the two expressions, for do we find a value coin- 
ciding with d * (AlO), while for the coefficient A, (k, k )  we 
obtain 

In the calculation of the vertex (2.4) of the inelastic 
three-particle transition in the quasi-two-dimensional case it 
is necessary to note that the final wavefunction of the system 
of three particles is now represented in the form of a product 
of the three-dimensional wavefunctions of the atom and 
molecule in the center-of-mass frame and the wavefunction 
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(normalized to unity) of the motion of the center of mass of 
the three particles along the z axis: 

(R and p are three-dimensional vectors) 

IYu. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Pis'ma Zh. Eksp. 
Teor. Fiz. 42, 169 (1985) [JETP Lett. 42,209 (1985)l. 

'Yu. Kagan, I. A. Vartan'yants, and G. V. Shlyapnikov, Zh. Eksp. Teor. 
Fiz. 81, 1113 (1981) [Sov. Phys. JETP 54,590 (1981)l. 

3 Y ~ .  Kagan, G. V. Shlyapnikov, I. A. Vartan'yants, and N. A. Glukhov, 
Pis'ma Zh. Eksp. Teor. Fiz. 35, 386 (1982) [JETP Lett. 35, 477 
(198211. 

4R. Sprik, J. T. M. Walraven, and I. F. Silvera, Phys. Rev. Lett. 51,479 
(1983). 

5H. F. Hess, D. A. Bell, G. P. Kochanski, R. W. Cline, D. Kleppner, and 
T. J. Greytak, Phys. Rev. Lett. 51,483 (1983). 

6H. F. Hess, D. A. Bell, G. P. Kochanski, R. W. Cline, D. Kleppner, and 
T. J. Greytak, Phys. Rev. Lett. 52, I520 (1984). 

'Yu. Kagan, G. V. Shlyapnikov, and N. A. Glukhov, Pis'ma Zh. Eksp. 
Teor. Fiz. 41,197 (1985) [JETP Lett. 41,238 (1985)l. 

D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 2, Pergamon 
Press, Oxford ( 1980) [Russ. original, Nauka, Moscow ( 1978) 1. 

9M. Schick, Phys. Rev. A 3, 1067 (1971). 

'OJ. W. Kane and L. P. Kadanoff, Phys. Rev. 155, 80 (1967). 
"L. Reatto and G. V. Chester, Phys. Rev. 155, 88 ( 1967). 
I2G. Lasher, Phys. Rev. 172,224 (1968). 
I3V. L. Berezinskil, Zh. Eksp. Teor. Fiz. 59,907 (1970); 61,1144 (1971) 

[Sov. Phys. JETP32,493 (1970); 34,610 (1971)l. 
I4V. N. Popov, Functional Integrals in Quantum Field Theory and Statisti- 

cal Physics [in Russian], Atomizdat, Moscow, ( 1970). 
I5V. V. Tolmachev, Theory of the Bose Gus [in Russian], Izd. Mosk. Gos. 

Univ., Moscow ( 1969). 
I6J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973). 
"T. J. Greytak and D. Kleppner, New Trends in Atomic Physics, Vol. 2 

(ed. G. Grynberg and R. Stora), North-Holland, Amsterdam (1984), 
p. 1125. 

"1. F. Silvera and J. T. M. Walraven, Prog. Low Temp. Phys. 10, 139 
(1986). 

I9Yu. Kagan, G. V. Shlyapnikov, and I. A. Vartanyantz, Phys. Lett. 
101A, 27 (1984). 

'OYu. Kagan, G. V. Shlyapnikov, and N. A. Glukhov, Pis'ma Zh. Eksp. 
Teor. Fiz. 40,287 (1984) [JETP Lett. 40, 1072 (1984)l. 

"B. Collaudin, B. Hebral, and M. Papoular, J. Phys. (Paris) 47, 1503 
(1986). 

"A. Bell, H. F. Hess, G. P. Kochanski, S. Buchman, L. Pollack, Y. M. 
Xiao, D. Kleppner, and T. J. Greytak, Phys. Rev. B 34,7670 (1986). 

23R. Sprik, J. T. M. Walraven, G. H. van Yperen, and I. F. Silvera, Phys. 
Rev. B. 34,6172 (1986). 

24T. Tommila, E. Tjukanov, M. Krusius, and S. Jakkola, Preprint No. 
FTL-R108, Report Series, Turku, Finland ( 1986). 

Translated by P. J. Shepherd 

323 Sov. Phys. JETP 66 (2), August 1987 Kagan eta/. 323 


