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The energy distribution of intermediate-energy electrons (0.1-100 keV) reflected from a solid 
surface is analyzed. Account is taken of both elastic scattering and energy losses by various 
mechanisms: interaction with optical phonons, ionization of core and valence electrons in 
electron-electron collisions, the screened interaction with conduction electrons, and the loss due 
to the excitation of plasmons. The angular and energy characteristics of the scattering cross 
sections are taken into account in solving the kinetic equation for the electron flux density in a 
medium. The calculated results agree well with the available experimental data on the inelastic 
reflection of intermediate-energy electrons from amorphous and polycrystalline solids. 

1. INTRODUCTION 
The scattering of electrons by a solid surface is known 

to be accompanied by inelastic processes, which reduce (by 
virtue of the small electron mass) to quasielastic electron- 
phonon scattering and essentially inelastic electron-electron 
(e-e) scattering. When a monoenergetic electron beam 
strikes a surface, the electrons which are scattered into the 
rear hemisphere are distributed in energy over the entire 
range from zero to the energy of the primary electrons, Ep . 
The energy and angular spectra of the electrons which are 
reflected and of those which have passed through the sample 
contain information on the properties of the solid and can be 
interpreted in terms of elementary electronic and vibrational 
excitations in the interior and at the surface. 

The inelastic-reflection problem is analogous to the 
problem of finding the albedo in the radiation transport 
problem (for brevity, we will call this problem a "general- 
ized albedo problem"). It does not have any small param- 
eters in the sense that an ordinary perturbation theory 
would, so we need to seek an exact solution for a specific 
model of the interaction of the electrons with the material. 
The only way to find an exact solution is to take a simplified 
approach. In addition, the reflection coefficient is a dimen- 
sionless quantity, so it is not clear at the outset which of the 
many dimensionless combinations of the parameters of the 
problem will determine the magnitude of this coefficient. In 
the present paper we propose an effective new method for 
calculating the characteristic energy loss of electrons upon 
reflection. The basic idea here is to find an analytic solution 
of the generalized albedo problem, incorporating several 
mechanisms for the energy relaxation of the electrons, and 
then sum the series for the reflected flux coming away from 
the surface. We determine the fine structure of the energy 
spectrum of reflected electrons in the interval of energy 
transfers not exceeding 50-70 eV. Following Landau,' we 
introduce a small parameter-the ratio of the energy lost on 
reflection to the energy of the primary electron-in the prob- 
lem of the characteristic energy loss at intermediate beam 
energies. By taking this approach, we can find an analytic 
solution. As we will see below, this solution is an expansion 
of the exact solution in the small parameter. 

The characteristic energy loss is usually interpreted in 
terms of a loss function, which is defined as Im( - l /x)  for 
the volume loss and as Im( - l / (x  + 1 ) )  for the surface 

loss in a dielectric formalism.' Here x is the longitudinal 
dielectric constant of the medium. That approach, however, 
ignores the dynamic nature of the characteristic energy loss, 
which stems from the scattering involving various mecha- 
nisms, including mechanisms which are unrelated to the ex- 
citation of the electronic subsystem of the solid. To describe 
the inelastic reflection of electrons as the result of a multiple 
scattering, the most natural approach is to use a kinetic 
equation. The problem of solving a kinetic equation of this 
sort has arisen, in particular, in connection with the descrip- 
tion of radiation transport processes,3,4 electron m~bi l i ty ,~  
photoelectron spectros~opy,"~ and Auger spectrosc~py.~- '~ 
Those papers used approximate models, valid for the partic- 
ular conditions considered, in order to circumvent the diffi- 
culties in solving the kinetic equation. A rigorous solution 
for the energy distribution of the electrons which have 
passed through a thin slab of material was first derived by 
Landau' for the case of a highly anisotropic small-angle ioni- 
zational scattering, under the assumption that the scattering 
cross sections do not depend on the electron energy. That 
result gives a good description of the scattering of high-ener- 
gy electrons. When the solution of Ref. 1 is expanded in a 
series, the coefficients correspond to a Poisson distribu- 
tion," which is frequently used to describe the probability 
distribution of multiple plasmon losses.' 

Tofterupl' has attempted to combine Landau's formula 
for the ionization loss with linearly anisotropic elastic scat- 
tering, determined from an independent equation. Tilinini3 
derived an expression for the inelastic reflection coefficient 
for fast electrons, with 1 keV <Ep 4 1 GeV, incident normal- 
ly on a solid surface. As in Ref. 1, the inelastic ionizational 
scattering was assumed to be highly anisotropic, and the 
change in the direction of the electrons was assumed to result 
from a large number of events of elastic scattering through 
large and small angles, since the total inelastic range in the 
medium was assumed in Ref. 13 to be significantly greater 
than the mean free path with respect to elastic collisions. At 
the intermediate energies with which we are concerned in 
the present paper, we need to allow for the possibility of 
scattering through large angles in both elastic and inelastic 
collisions. The Schwarzschild-Schuster approximation has 
been used to solve this problem in several papers.10s'4.15 In 
that approximation, each electron is put in one of two 
groups: one moving toward the surface and one moving into 
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the medium. Comparison with the numerical results shows 
that the accuracy of that approximation is not high. 

Our approach to the solution of the kinetic equation, in 
which the angular dependence of the elastic and inelastic 
cross sections is taken into account, is based on a generaliza- 
tion of the method of Refs. 3 and 4 for solving the albedo 
problem to the case of inelastic scattering. A generalization 
of this sort has been proposed in several papers (e.g., Refs. 
13 and 16) for calculating the energy-loss spectra of elec- 
trons being reflected under conditions such that a leading 
role is played by the inelasticity which stems from ionizing 
collisions, and the spectra have no fine structure. In the pres- 
ent paper, in calculations on the fine structure of the charac- 
teristic-energy-loss spectra of intermediate-energy electrons 
which are being reflected from a surface, we consider several 
scattering mechanisms simultaneously: incoherent quasi- 
elastic scattering by impurities and lattice defects and also by 
acoustic phonons (for brevity, e-imp scattering), the inter- 
action with optical phonons (e-ph), the ionization of core 
electrons and valence electrons (e-el ), the screening of the 
interaction with conduction electrons, and the loss due to 
the excitation of plasmons. We study the approximation of 
isotropic scattering in detail. We show that this approxima- 
tion of the actual scattering cross sections gives a good de- 
scription of the characteristic-energy-loss spectra which are 
seen experimentally in cases in which one measures the dif- 
ferential (in energy) inelastic reflection coefficient, integrat- 
ed over the angular distribution. The solution method pro- 
posed here has a clear physical interpretation and can be 
used to bring out the basic features of the inelastic reflection. 
In Sec. 2 we examine the parametrization of the basic ranges 
and the corresponding scattering form factors, which deter- 
mine the form of the kinetic equation describing the relaxa- 
tion of an electron flux in a medium and also the boundary 
condition for the reflection problem. In Sec. 3 we describe in 
detail the method for solving the kinetic equation through an 
expansion of the energy distribution of the outgoing elec- 
trons in form factors of the scattering components which are 
isotropic and anisotropic in terms of angular distribution. In 
Sec. 4 we compare the calculated results with experimental 
data from characteristic-energy-loss spectroscopy for metals 
in various groups in the periodic table. 

2. KINETIC EQUATION FOR THE ELECTRON FLUX DENSITY 

Let us consider the reflection of a monoenergetic elec- 
tron beam which is incident on the plane surface of a bulk 
sample. For simplicity we assume that the medium is amor- 
phous or polycrystalline, that no interference effects arise 
for the backscattered electrons, and that the potential drop 
at the solid-vacuum interface is small in comparison with 
E,, so that we can ignore refraction and reflection of the 
electron waves at the interface. Since the wavelength and 
mean free path of an electron in the intermediate-energy 
range are respectively smaller than and greater than the in- 
teratomic distance, we will use a classical kinetic equation 
for the flux density to describe the reflection of the electrons. 

The motion of an electron in a medium is accompanied 
by a relaxation of its energy and momentum. This is a ran- 
dom process. The change in the flux density over a unit 
length is determined by the reciprocal of the mean free path 
with respect to the given type of scattering; the interaction 
itself is characterized by a normalized distribution of the 

energy and momentum of the scattered electron. Let us take 
a look at the basic mechanisms for the scattering of elec- 
trons, which determine the reflection of the electrons (E is 
the energy of the electron, m and e are its mass and charge, 
and we are using a system of units with f i  = 1 ). 

1 ) According to the Pines formula," the loss due to the 
excitation of plasma waves (e-pl) is characterized by the 
reciprocal length 

where o,, is the energy of the plasmon. A scattering by col- 
lective excitations of the electron subsystem is known" to be 
accompanied by a small change in the quasimomentum of 
the electron with a large energy transfer. This conclusion has 
been verified experimentally.'9s20 In scattering by plasma 
waves, the quasimomentum of the electron thus remains es- 
sentially constant in terms of direction. The form factor of 
the plasma-loss line, F,, , is approximately Gaussian2' with a 
mean value o,, and a variance a,, .2 

2) In the Born approximation the mean free path for the 
excitation of electrons of the conduction band of the metal 
(e-e, ) is',22 

where n, is the density of conduction electrons, E, is the 
screening constant, which is given by the expression 
E; = 1 6 ~ - ~ E ~  Ry, assuming nearly free electrons, Ep is the 
Fermi energy, and Ry is the Rydberg. Nearly free electrons 
see a screened Coulomb potential; the cross section has a 
sharp maximum at small scattering angles. The probability 
density for the transfer of an energy E in the case of the 
screened scattering, F, ( E )  = O ( E ) E ~ ( E  + E ~ )  -2 ,  is normal- 
ized; O(E) is the unit step function. 

3)  During the ionization of core electrons and valence 
electrons (e-e, ), the mean free path is calculated in the Born 
approximation from an expression similar to (2)  (Ref. 22), 
specifically, 

Herejis the index of the core level or of the valence band, for 
which i, is the average ionization potential, and n, is the 
density of electrons. The ionizational scattering of fast elec- 
trons ( E >  1 MeV) in a solid approximates Coulomb scatter- 
ing by an individual center; it may be modified only by 
screening in a many-electron system. At intermediate ener- 
gies (E = 0.1-10 keV), however, this assertion breaks 
down: The electron is scattered by an effective short-range 
potential, since the excitation occurs not in free space but in 
the screened field of many atomic cores. A phenomenologi- 
cal analysis of the short-range non-Coulomb nature of the 
e-e scattering has been carried out by Kanaya and Kawa- 
katsuZ3 on the basis of some less than rigorous arguments. 
They showed that the decay index s of the corresponding 
interaction potential V(r) = a r  - " increases as the energy of 
the incident electron decreases. Some typical values ofs are23 
s=: 1 at E > 1 MeV (Coulomb scattering), with a monotonic 
increase tos=: 2 a sE  decreases to 0.8 keV. In the e-e interac- 
tion we have singled out the part which corresponds to long- 
wave scattering-the interaction with collective excitations 
of the many-electron system (the excitation of p1asmons)- 
so that the short-wave part of the interaction corresponds to 
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single-particle excitations. The ionization of d bands, in con- 
trast with the screened scattering by electrons of the conduc- 
tion band, is accompanied by isotropization of the electron 
quasimomentum distribution. This isotropization becomes 
more pronounced as the single-particle nature of the interac- 
tion becomes manifested more strongly, i.e., as the ioniza- 
tion potential increases. 

The form factor of the ionizational-scattering line is de- 
scribed in the atomic limit by 

The use of the atomic limit for discussing the core levels is 
justified since the width of core-electron level Bj is small in 
comparison with I j .  In an examination of the excitation of 
valence electrons we should allow for the circumstance that 
the normalized state density of these electrons, v, (E) ,  is not 
of an atomic nature. In this case, an additional convolution 
arises in (4):  

wj(e)= (aei+"a)-lJ V ~ ( E ) B ( E - E ) E ~ ~ ~ E .  ( 5  

4) The reciprocal mean free path with respect to inco- 
herent quasielastic scattering by impurities and defects is 
found as the product of the density of scatterers and the total 
scattering cross section: 

where Are, is the effective density of scatterers, and f is the 
scattering amplitude. At intermediate energies the electrons 
are scattered primarily in the forward direction, so that the 
mean square scattering angle is small: (0 2 ,  4 1. Quasielastic 
scattering is not accompanied by a change in the energy of 
the electron. For our purposes below it is convenient to in- 
troduce a transport length,I6 the distance over which the 
momentum of the electron isotropizes in the course of e-imp 
collisions. 

5 )  The mean free path with respect to e-ph scattering 
(the polarization mechanism for scattering by optical phon- 
ons) i s  given byz4 

where a is the Frolich coupling constant, v is the electron 
velocity, and a,, is the energy of the dispersion-free optical 
phonons. Scattering accompanied by the emission or absorp- 
tion of a phonon causes a pronounced isotropization of the 
electron quasimomentum distribution, since the maximum 
values of the electron and phonon quasimomenta are ap- 
proximately the same. The e-ph scattering is scattering off a 
crystal lattice site, accompanied (because of the large mass 
of the atom) by a significant change in the electron quasimo- 
mentum at a small energy transfer. The form factor of the 
phonon line is approximated by a normal distribution 
F,, ( E )  with a mean value aph and a variance 4,. 

At intermediate electron energies the inelastic scatter- 
ing thus consists of an isotropic component and a highly 
anisotropic component in terms of the quasimomentum of 
the electron. Accordingly, if we put aside for a moment the 
fine structure of the angular dependence of the scattering 
cross sections, which is not always known, we can assume 
that in all cases except that of quasielastic scattering this 
dependence will be either isotropic or anisotropic in a 
&function sense. We take quasielastic scattering into ac- 

count in the transport approximation.16 The physical mean- 
ing of the mathematical procedure described below is quite 
simple. The coefficient of the inelastic reflection of electrons 
from the surface of a solid, integrated over angle, is deter- 
mined primarily by the ratio of the probabilities for the scat- 
tering of the electrons into the forward and rear hemi- 
spheres. This ratio is unchanged when the anisotropic 
scattering cross section is replaced by an isotropic cross sec- 
tion, and the mean free path for the quasielastic interaction is 
simultaneously replaced by the transport range (i.e., when 
the interaction probabilities are renormalized). We will not 
be keeping track of either the number of interactions of elec- 
trons in the medium or the angular distribution of the outgo- 
ing electrons. We accordingly restrict the present study to 
the inelastic electron reflection coefficient as a function of 
energy, integrated over the angular distribution. 

By virtue of the symmetry of the problem, the electron 
flux density in the medium, N ( A ,  a, z )  only depends on the 
coordinate z, which runs normal to the surface, and the co- 
sine p of the angle between the quasimomentum vector 
( a  = k/k) of the electron, with k, and the inward normal to 
the surface. We replace the instantaneous electron energy E 
by the energy loss A = E, - E for convenience. In accor- 
dance with the arguments above regarding the scattering 
cross sections, we write the kinetic equation as follows in the 
isotropic approximation: 

dN (A, Q, 2 )  = - 
I' dz  

where 1 is the total reciprocal mean free path, equal to the 
sum of the mean free paths with respect to all types of inter- 
actions considered: 

are the rates of the collisions which are respectively aniso- 
tropic and isotropic in terms of angular distribution, per unit 
distance traversed by the electron; No is the spherically sym- 
metric part of the flux density; Nph are the occupation 
numbers of the equilibrium phonons; and Mis the total num- 
ber of valence subbands which are taken into account. The 
right side of (8 )  is the ordinary collision integral, in which 
we have singled out the processes which are accompanied by 
a relaxation of the electron momentum. Problem (8)-( 10) 
is a one-electron problem, since experiments on characteris- 
tic-energy-loss spectroscopy use low-intensity beams of pri- 
mary electrons, and the scattering by the secondary elec- 
trons which are produced in the course of the ionizational 
and plasmon loss processes can be ignored. In the case in 
which a plane-parallel beam of monoenergetic electrons 
with an energy Ep is incident on the surface at an angle p, 
from the inward normal, the boundary condition for Eq. (8) 
is 

N ( A ,  n, z=o) = ~ ~ [ e ( ~ ) b z ( n - n ~ )  aca) 
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Here R (A, fl) is the electron reflection coefficient, differen- 
tial in terms of the energy transfer and the angular distribu- 
tion. An explicit expression for this coefficient must be 
found in the course of solving the kinetic equation. Incorpor- 
ating the loss due to the excitation of surface plasmons re- 
quires consideration of the coordinate dependence of the 
corresponding scattering probability. A way to avoid this 
difficulty while remaining within the scope of the problem 
(8)-(11) is pointed out in Sec. 3. 

3. ENERGY SPECTRUM OF INELASTICALLY REFLECTED 
ELECTRONS 

To derive the differential inelastic reflection coefficient 
we need to solve the kinetic equation (8) with the boundary 
condition ( 11 ). The mean free paths serving as the coeffi- 
cients in (8) are functions of the energy; i.e., the kinetic 
equation is nonlinear. To linearize it, we expand the recipro- 
cal mean free path in powers of the Landau parameter,' i.e., 
the ratio of the energy lost upon reflection, A, to the energy 
of the primary electron: 

0 

1-1 ( E )  = z - i ( ~ . ) + C  0. ( M E , )  ". 
n-1 

(12) 

We retain the first term of this expansion. In the equation 
found by this procedure, the incoming term is in the form of 
a convolution integral, so that it is convenient to use integral 
Laplace transforms 2' for a solution. For the Laplace trans- 
form of the flux density, %( p, a, {) = Y{N(A, fl, z)), we 
have the equation 

a w ( p ,  Q, E) c (P) 
1-1 a E 

= - % ( p , a , E ) + , % . ( p . z ) .  (13) 

where the single-reflection albedo and the reduced penetra- 
tion depth, 

are expressed in terms of the Laplace transforms of the colli- 
sion rates which are respectively anisotropic and isotropic in 
terms of angular distribution, (9) and ( 10). The boundary 
condition here is 

The solution of generalized albedo problem ( 13 )-( 15 ) , 
where the function c ( p ) plays the role of the single-scatter- 
ing albedo, has been studied quite thoroughly (see, for exam- 
ple, Refs. 3,4, 13, and 16). The solution can be written 

Here H ( p ,  c )  is Chandrasekhar's H-function.' Taking in- 
verse Laplace transforms, we find the differential inelastic 
reflection coefficient 

which becomes, after integration over angles, the energy dis- 
tribution of the reflected electrons: 

The kinetic equation ( 13) is a transport equation with a 
complex, isotropic scattering index. An equation of this sort 
also the backscattering of high-energy elec- 
trons at angles of incidence close to normal. However, there 
are some important differences in the determination of the 
boundary condition ( 15) and the explicit form of the single- 
reflection albedo ( 14) [cf. Eqs. (2.49) and (2.50), respec- 
tively, in Ref. 161, since they determine the differences in the 
analytic structure of the solution in these two cases. Specifi- 
cally, the solution derived in Refs. 13 and 16 is a generaliza- 
tion of Landau's formula' for the ionization loss on reflec- 
tion, while in the case in which we are interested in the 
present paper an important role is also played by processes 
which are unrelated to ionization. For this reason, the meth- 
od used in Refs. 13 and 16, can not be used here, and the 
solution in our case is the result of a nonadditive superposi- 
tion of contributions from various mechanisms for the scat- 
tering of intermediate-energy electrons in the medium. 

To find the explicit functional dependence R ( A ) ,  we 
write the single-reflection albedo in the form c = c, + F( p) ,  
where c, = I ,  / I  ,, , and we expand ( 18) in a series in F( p )  
around the point c = c,: 

OD 

Here H'k' (p, C )  is the k th derivative of Chandrasekhar's 
H-function with respect to the variable c. To find it, we dif- 
ferentiated the integral equation3 for the H-function k times 
and then solved the resulting recurrence chain of k nonlinear 
integral equations by iteration: 

and so forth. The k th derivative is expressed in terms of all 
derivatives of order less than k. In terms of physical meaning 
(19) is an expansion in the number of inelastic interactions 
accompanied by isotropization of the electron momentum 
distribution. The convergence of this expansion is ensured 
by the choice of integration contour in the Mellin inversion 
formula. It is sufficient that the contour lie entirely in the 
half-plane Rep > 0. 

The magnitude of the elastic reflection coefficient 
which will be measured depends on the experimental energy 
resolution. If the region of phonon loss [see (9) and ( 10) 1 
can be identified precisely, the elastic contribution will be of 
the form rs(A), according to ( 19), where the following ap- 
proximate expression holds for the elastic reflection coeffi- 
cientratE, 2 100eV (c,(l): 
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This expression correctly predicts the overall change in the 
elastic reflection coefficient of the electrons when pp 
changes. The mean square single-scattering angle is a power- 
law function of the electron energy: (8 ') - E -  ", where 
a = 1.75-2.25 (a  = 2 for diffraction scattering). The depen- 
dence of the overall mean free path is determined by inelastic 
scattering mechanisms, and we have I, a E -'. Hence 

where Ep is expressed in electron volts, and m' = 3-8. 
Expression (23) agrees well with the empirical dependence 
r(Ep ) (Ref. 25). 

In the region of the characteristic energy loss which we 
discuss below, and which involves interband excitations and 
the excitation of plasmons, the quantity r is renormalized as 
a result of scattering by phonons, and it becomes a quasielas- 
tic reflection coefficient r, : 

Ca 

The phonon broadening of the electron peak is usually 
smaller than the instrumental function of the electron gun 
and thus insignificant. For our purposes below it is conven- 
ient to carry out an expansion around the point c = 0. In this 
case the coefficients in (20) become universal, depending 
only on the experimental geometry. The explicit form of 
(19) is found by successively applying the convolution 
theorem: 

m 

where {k) means that the summation in (26) is over all M 
core bands and valence bands which interact k, times with 
band i (i = 1,2, . . ., M). Here we have 8E , k, = k, where 
k, is the multiplicity of the quasielastic scattering; { j) corre- 
sponds to a summation over the multiplicities of the aniso- 
tropic scattering events of various types j ,  , (the subscript 
here, which runs over the values c, s, B, corresponds to scat- 
tering by electrons of the conduction band, by surface plas- 
mons, and by bulk plasmons, respectively); the * denotes the 
convolution 

11 * c ~ ( ~ ~ I A ) =  J C ~ ( W ~ I E ) C ~ ( W ~ ~ A - E ) ~ ~ ;  
1 3 1  

(27) 

the functions C, (w 1 A) are multiple autoconvolutions, 

the coefficients B are given explicitly by 

and R ,  (A) is the electron energy distribution after a se- 
quence of k arbitrary scattering events isotropizing the elec- 
tron quasimomentum and an arbitrary number of anisotrop- 
ic scattering events. Consequently, according to (25)-(29), 
the solution procedure proposed here, incorporating any 
scattering mechanism, is constructed on the basis of univer- 
sal units and rules for dealing with them: The form factors of 
loss lines enter as autoconvolutions (27), and the scattering 
cross sections fix the coefficients in (29). If the scattering is 
accompanied by conversion to a more nearly isotropic distri- 
bution of the electron quasimomentum, then the corre- 
sponding scattering cross section enters the group of ioniza- 
tion scattering events. If not, it enters the group of plasmon 
events [see (9) ,  ( l o ) ,  and (14)l.  Analysis of (25)-(29) in 
the particular case in which only ionizing collisions are tak- 
en into account shows that R (A)  falls off as AP2 in the 
asymptotic region where losses considerably exceed the ioni- 
zation potential. This result agrees completely with Lan- 
dau's result; the overall electron mean free path in the medi- 
um with respect to emission upon reflection is analogous to 
the film-thickness parameter in the theory of Ref. 1. 

If we are to effectively allow for the coordinate depen- 
dence of the cross section for the scattering of an electron 
accompanied by the emission of a surface plasmon in the 
procedure proposed here, (25)-(29), we need to note that 
surface plasmons, in contrast with bulk plasmons, are excit- 
ed in a surface region with a thickness on the order of a few 
interatomic distances [A, = a,(Ry E, )1/2/w, where a, is 
the first Bohr radiusz6], so multiple surface loops are gener- 
ally suppressed. This suppression occurs unless we choose 
the experimental geometry in a special way (e.g., a grazing- 
incidence scattering of electrons1 in order to increase the 
total time spent by the electrons near the surface. The neces- 
sary changes involve the factors which appear in (29). In the 
first place, it is necessary to replace ( n  + k)! by 
(n + k - j, )! and to simultaneously eliminate the factor js 
from the denominator of (29), since the ratio of the factorial 
factors is a generalized binomial coefficient and is related to 
a combinatorial effect: The total number (n + k)  of interac- 
tions can arise from a variety of permutations, and the facto- 
rial factors determine the number of such permutations 
which lead to a given electron energy distribution. Second, 
the replacement of the factor (1, /1, )'"y PIS ( I 1  /I, ) 

X exp ( - js l,/l,,, ) incorporates the change in the relation 
among the relative components of the scattering accompa- 
nied by the emission of a surface plasmon and those which 
isotropize the electron quasimomentum in the surface re- 
gion. Here P, ( x )  is a Poisson distribution for the probability 
for the excitation of k surface plasmons; A = Ao/pp is the 
optical thickness of the corresponding surface layer, where 
the oblique incidence of the primary beam is taken into ac- 
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count; the factor exp( - L /Iis, ) describes the attenuation of 
the electron flux density as a result of all isotropizing inter- 
actions is (I,,, is the corresponding electron mean free path); 
and L = j,l, is the distance traversed by an electron in the 
pertinent region. 

4. COMPARISON WITH EXPERIMENTAL DATA; DISCUSSION 
OF RESULTS 

In the preceding section we derived and studied in detail 
an analytic expression for the coefficient of inelastic electron 
reflection as a function of energy, integrated over the angu- 
lar distribution. In the present section we compare the re- 
sults of our calculations with experimental data from the 
literature (Figs. 1-5). Because of the arbitrary normaliza- 
tion of the data in the literature, we have scaled the calculat- 
ed results to bring a single point of the calculated character- 
istic-energy-loss spectrum into coincidence with a single 
point of the experimental spectrum. Specifically, we chose 
the absolute maximum. In all cases, the measurements have 
used polycrystalline samples, so that diffraction effects were 
ignored in the calculations. The insets in Figs. 1-5 show the 
necessary data on the state densities Y, (E) [see (5)  ] of the 
valence bands and on the ionization potentials. The core lev- 
els were assumed to be of an atomic nature, while the con- 
duction band was assumed to be parabolic with an effective 
mass equal to the mass of a free electron. The parameters of 
the plasmon-loss form factors-the energies and widths of 
the lines of surface (w,  ) and bulk (o, ) plasmons-are giv- 
en in Ref. 2. The values of the phenomenological parameter 
s, which characterizes the potential of the e-e interaction, 
are s=;2 at E, < 800 eV and s z  3/2 at 800 eV, Ep < 2 keV, 
according to Ref. 23. 

It follows from Sec. 3 that in order to calculate the char- 
acteristic-energy-loss spectrum (25)-(29) we need to calcu- 
late the coefficients Qk in (20) by solving a chain of coupled 
nonlinear integral equations (21 ) for the H-function and its 
derivatives. In practice, we calculated the derivatives up to 
ninth order inclusively, so no more than nine isotropizing 
scattering events could be taken into account in the reflected 
flux. The calculations show that the component attributable 

to scattering with a multiplicity greater than four is no high- 
er than 5%. The accuracy of the calculations based on (21 ) 
was checked by finding how well the normalization condi- 
tions on the Chandrasekhar H-function3 and its derivatives 
were satisfied. 

a )  Aluminum is frequently used as a test object in solid 
state theory, since it is a metal with nearly free electrons. The 
band structure of polycrystalline aluminum has been studied 
thoroughly.27 Figure la shows energy spectra calculated in 
accordance with Sec. 3 of the present paper, along with ex- 
perimental spectra.28 At small values of A the behavior 
R (A) is determined by the screened e-e scattering. Between 
the third (partially filled) Brillouin zone and the vacant 
fourth zone there is a gap about 1.0 eV wide.27 This gap is 
substantially smaller than the Fermi energy, so the excita- 
tion threshold does not give rise to an additional maximum 
in the spectrum, although the consideration of these features 
of the energy structure is important for determining the 
overall behavior R (A). In the experiments this gap has been 
noticeable only in the differential ~pectra . '~  

A common feature of the theoretical characteristic-en- 
ergy-loss spectra which have been found (Figs. 1-5) is that 
they exhibit a fine structure which is more clearly expressed 
than that in the experimental spectra. One reason for the 
difference is the particular choice of boundary conditions on 
the transport equation. We derived a Green's function for 
the kinetic equation, while a solution for arbitrary boundary 
conditions would be a convolution of this Green's function 
with a source function. The half-width AE of the energy 
distribution of the primary electrons is usually 0 . 1 4 5 %  of 
Ep, and a convolution with a function with a fairly broad 
maximum will smooth out the small-scale structural fea- 
tures in the spectrum. Figure Ib demonstrates the behavior 
of the energy spectrum as AE changes. If the instrumental 
half-width is large, maxima separated by even several elec- 
tron volts cannot be resolved. 

The major maxima R (A) in aluminum are associated 
with plasmon losses. Comparing the energy spectra found at 
various energies Ep,  Chiarello et ~ 1 . ~ '  drew several conclu- 
sions about the behavior: 1) As ED is varied, the relative 
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FIG. 1 .  Characteristic-energy-loss spectrum in the 
case of reflection from polycrystalline aluminum. a: 
Solid line-Experimental data of Ref. 28; dashed 
line-calculated from (25)-(29). The inset is the 
model of the band structure2' which was used in the 
calculations. For clarity, the origins of the scales for 
the various E, have been shifted. b: Effect of the half- 
widths of the distribution function of the primary 
electrons on the characteristic-energy-loss spectrum. 
Results calculated for E, = 300 eV: 1 ) A E  = 0; 2 )  
0.5 eV; 3) 1.0 eV; 4) 2.0 eV. (In the insets in Figs. 1 
and 3, E, has been erroneously printed instead of 
- E F . )  
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intensities of the bulk and surface plasmon losses change 
considerably. 2) The energies of the bulk and surface plas- 
mon losses do not depend on Ep . 3) The plasmon maxima 
become significantly broader as Ep is reduced. Using the 
results of the present calculations, we can interpret those 
aspects of the characteristic-energy-loss spectra in the fol- 
lowing way. First, a change in the relative intensity of the 
maxima corresponding to single-plasmon losses stems from 
the difference in the scales of the changes in the mean free 
paths with respect to the excitation of surface and bulk plas- 
mon and also an increase in the electron emission depth with 
increasing Ep . Second, the anisotropy of the e-pl scattering 
means that the reflection of an electron which has emitted a 
plasmon can occur only after an additional scattering event, 
accompanied by isotropization of the electron quasimomen- 
tum-i.e., after a quasielastic or ionizational e-e scattering 
event. As a result of the combination of a loss due to the 
excitation of plasmons with scattering by electrons of the 
conduction band, the major maxima become asymmetric: 
R (A) at A > w, falls off more slowly than at A < w,. The 
plasmon maxima themselves are broader than the intrinsic 
plasmon-loss width. The magnitude of this broadening is the 
weighted sum of two terms: a first term associated with the 
superposition of the lines of the screened e-e, and e-pl scat- 
tering events and second term associated with the interfer- 
ence of these mechanisms. The weights are the probabilities 
of the corresponding processes. In the case a,, 4 w,, , E, we 
have 

The broadening is accompanied by a shift of the maximum. 
Using the approximation a,, 4 ~ ,  and the method of steepest 
descent, we find from (26) 

Here, in contrast with (30), the terms associated with the 
superposition and the interference of the e-e, and e-pl scat- 
tering events have different signs and are small quantities of 
second order in the parameter apl /E,,. AS a result, the shift is 
small: at U,,/E~ = 0.05 we have the estimate 

I W  - wpl / <0.05 w,,. According to (30), the dependence of 
a on Ep stems from the energy dependence of the mean free 
path. Under the conditions E, $up,, E,, this dependence is 

only slightly nonlinear; the ratios I, /I, and I,, /I, and also a 
become independent of E,, as is observed experimentally. 
The situation changes at E, -w, , .  From (5)-(7) we find 
that the ratio 1,/1,, is on the order of ln(Ep/wp, ) and de- 
creases with decreasing E, . The broadening of the plasmon- 
loss lines is thus due to the participation of nonplasmon loss 
mechanisms in the formation of the plasmon maxima. 

b)  We carried out calculations on the inelastic reflec- 
tion of electrons for metals with d-electrons for the particu- 
lar cases of Cu (Fig. 2 )  and a-Fe (Fig. 3). Experiments 
carried out to measure the de Haas-van Alphen effect have 
shown that the Fermi surface of these metals is approximate- 
ly a free-electron sphere, but there is a system of d bands 
below it. In the case of copper, a d  band lies 1.5 eV below E,, 
while in the case of a-Fe it lies 0.5 eV below E,. The d states 
introduce additional features in the inelastic reflection of 
electrons. The ionization potential for an interband transi- 

FIG. 2. Characteristic-energy-loss spectrum in the case of reflection from 
the surface of polycrystalline copper (E ,  = 75 eV). Solid line-Experi- 
mental data of Ref. 30; dashed line-calculated from (25)-(29). The 
inset shows the band structure of Cu according to Ref. 31. 

tion from the d band to unfilled states in the connection band 
has a width on the order of the band itself, so that the maxi- 
ma caused in the characteristic-energy-loss spectra by the 
internal structure of the condition band are very rounded. 
We know that d-band states are highly localized. Since the 
excitation of electrons is determined by the overlap of wave 
functions, in expression (3)  for the mean free path we need 
to consider a geometric correction factor y z (a, /ao) 3,  

where a, is the localization radius of the d electrons, 
a,=:3ad and yz0.04. At these parameter values we find a 
satisfactory agreement of the experimental and theoretical 
results. 

To show how the electron characteristic-energy-loss 
spectrum is built up from the form factors for single scatter- 
ing events- while not being a simple superposition of these 
form factors-we show in Fig. 4 some model energy spectra 
found for cases in which one of the scattering mechanisms 
(e-e or e-pl) is "turned off ': The corresponding scattering 

FIG. 3. Characteristic-energy-loss spectrum in the case of reflection from 
the surface of a-Fe (E, = 200 eV). Solid line-experimental data of Ref. 
32; dashed line-calculated from (25)-(29). The inset shows the band 
structure according to Ref. 33. 
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FIG. 4. Analysis of the components of the overall characteristic-energy- 
loss spectrum of a-Fe (E, = 200 eV) attributable to various inelastic- 
scattering mechanisms. 1,2-the e-e and e-pl scattering mechanisms are 
turned off. 

mechanism is eliminated by taking the limit of an infinite 
characteristic energy transfer in the interaction. 

In the case of Cu (Fig. 2),  the characteristic-energy- 
loss spectrum has two major maxima. The first, at A =: 8 eV, 
results from the excitation of bulk plasmons. The second, at 
A =: 5 eV, forms as the result of a superposition of a surface- 
plasmon loss and the excitation of d electrons (the center of 
gravity of the d band lies at a depth of 4.5 eV below the Fermi 
surface). The rounded maximum at A z 18 eV is attributed 
to a double-scattering plasmon loss. By making a compari- 
son with the model calculations we can determine the origin 
of these maxima. As a result of the composite e-e and e-pl 
scattering, the maximum of the double-scattering plasmon 
loss, A*, shifts toward larger values of A (A*  > 20, ). 

In the characteristic-energy-loss spectrum for a-Fe 
(Fig. 3 )  we see three maxima A -up,, two of which are asso- 
ciated with losses due to the excitation of surface and bulk 
plasma waves, while the third, and lowest-energy, maximum 
is due to the ionization of d states. The random coincidence 
ofw, and the center of gravity of the d band which occurs in 

Cu does not occur in this case, and all three of the maxima 
are well resolved. The peak at A =: 55 eV represents the loss 
due to the ionization of the 3p core state. The overall behav- 
ior of the inelastic electron reflection spectra is also deter- 
mined by the scattering by electrons of the conduction band, 
and all the comments which we made regarding aluminum 
continue to hold here. 

c) The picture of electron states for rare earth elements 
is rather complicated. Although the conduction band is 
usually close to a band of nearly free electrons, the presence 
of d and f shells causes the number of possible interband 
transitions to be large, and the characteristic-energy-loss 
spectra of the rare earth elements have a complex structure. 
Figure 5 shows e~pe r imen ta l~~  characteristic-energy-loss 
spectra for erbium, along with spectra calculated from 
(25)-(29). The major maximum at A=: 13.5 eV is due to a 
loss when a bulk plasmon is excited. The maximum of the 
double-scattering bulk-plasmon loss is also well defined. The 
structure at A < 10 eV forms as a result of transitions from an 
s-p-d hybrid band to vacant states in the f band (the maxi- 
mum at A =: 5 eV). The rounded maximum at A = 12 eV is 
due to the same transitions, but in this case double transi- 
tions. The last maximum is poorly expressed because of both 
the line broadening caused by the increase in the multiplicity 
of the scattering and the superposition of a bulk plasmon on 
the steep slope of the maximum. The poorly expressed maxi- 
mum at A=: 18 eV is the result of a composite scattering 
process: an interband transition from the s-p-d band and a 
loss due to the excitation of a bulk plasmon. The transitions 
from the 3d band form a peak at A ~ 4 0  eV. The characteris- 
tic-energy-loss spectrum is also determined by processes of 
higher multiplicity: Their probabilities are considerably 
smaller than the probabilities for a single-event loss, and the 
linewidths are greater, so that such transitions can be seen 
only in the differential spectra. 

5. CONCLUSION 

We have examined the characteristic energy loss of in- 
termediate-energy electrons reflected from solid surfaces. 
We have developed a new method for solving the kinetic 
equation which, along with the boundary conditions, de- 
scribes the inelastic reflection. Using it, we have carried out 
the first theoretical study of the fine structure which appears 

FIG. 5. Characteristic-energy-loss spectrum for the case of re- 
flection from the surface of Er (E,  = 1 keV). Solid line--ex- 
perimental data of Ref. 34; dashed line-theoretical predictions 
of the present paper. 
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in the characteristic-energy-loss spectra because of the var- 
ious mechanisms by which the electrons interact with a sol- 
id. We have derived an explicit expression for the flux den- 
sity of the backscattered electrons in interactions with 
amorphous and polycrystalline targets. For the first time, we 
have taken into consideration not only the energy relaxation 
but also the momentum relaxation of the electron flux den- 
sity. As a result, we have been able to distinguish the relative 
contributions of the various energy-loss mechanisms to the 
overall characteristic-energy-loss spectrum in the case of re- 
flection. Since the solution which has been found is analytic, 
it becomes possible to explain several experimental aspects 
of inelastic reflection in a solid: ( 1 ) It has been found possi- 
ble to unambiguously relate features of the fine structure in 
the characteristic-energy-loss spectra with characteristics of 
the elementary excitations of the solid. (2) It has been 
shown that the experimentally observed departure from 
equal spacing of the maxima representing multiple plasmon 
losses is a consequence of the angular dependence of the in- 
elastic scattering cross sections. (3 )  Because of the dynamic 
nature of the reflection and the nontrivial mutual effects of 
the various energy-loss mechanisms, the overall characteris- 
tic-energy-loss spectrum is not a simple superposition of the 
contributions of these mechanisms. We have predicted some 
new effects, in particular, a dependence of the observed ener- 
gy and width of a plasmon maximum on the experimental 
geometry. 

It can be concluded from these results that theapproach 
proposed here for describing the interaction of intermediate- 
energy electrons with solid surfaces can serve as the founda- 
tion for a characteristic-energy-loss spectroscopy. 

We wish to thank V. I. Perel', V. V. Korablev, N. P. 
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