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We investigate the dynamics of a quantum particle located in a "washboard" potential and 
interacting with a heat bath at temperature T. We show that the diagonal elements of the density 
matrix for such a particle in the position and quasimomentum representations are the duals of one 
another, for practically any t and over a wide range in Tand the external forceF. We study the 
breakdown of coherence, diffusion, and localization in quasimomentum (quasicharge) space and 
the analogous dual phenomena in position space, and we also calculate the mobility of a quantum 
particle in x- andp-space. We investigate the effect of quantum fluctuations on the current- 
voltage characteristics of Josephson junctions, and we show that the range of existence of Bloch 
oscillations in such junctions is bounded by the condition R > RQ = n-/2e2 (R is the shunt 
resistance), whereas Josephson oscillations occur when R < RQ . 

1. INTRODUCTION AND BASIC RELATIONS 

The occurrence of dissipation leads to a significant res- 
tructuring of the behavior of a quantum system located in a 
potential with several minima closely spaced in energy.Ip2 
The wave function loses its coherence in such systems. In the 
limit T-0, as the effective viscosity parameter 7 increases, a 
phase transition takes place: the particle is localized near one 
of the minima of the potential and its static mobility vanishes 

The temporal evolution of the density matrix of 
a dissipative quantum system in a two-well potential was 
investigated in Refs. 6-9, as well as in a number of other 
papers (see the review in Ref. 7) .  References 8-12 are devot- 
ed to a study of the motion of a quantum particle in a "wash- 
board" potential for various special cases. 

In the present paper we investigate the dynamics of a 
quantum system with linear (resistive) dissipation, at a fin- 
ite temperature T and with finite external force F. Such a 
dissipation occurs, for example, when a Josephson junction 
is shunted by a normally conducting metal. In the limit of 
sufficiently weak tunneling between different minima of the 
potential, we obtain general expressions describing the tem- 
poral evolution of the probability of finding the particle near 
those minima. The recent spate of attention with regard to 
the quantum behavior of very small Josephson junctions has 
resulted in a description of the dynamics of the system in the 
quasimomentum (quasicharge, see below) space. For a peri- 
odic potential, we derive expressions for the diagonal ele- 
ments of the density matrix in the quasimomentum repre- 
sentation, and prove that these are dual to the expressions 
for the corresponding quantities in the position representa- 
tion. Our method also makes it possible to generalize the 
duality relations for mobility which were previously derived 
in another way by Schmid3 in the limit T-0, F-0. We study 
the breakdown of coherence, "spreading" of probability, 
and diffusion and localization in quasimomentum space, i.e., 
those phenomena which are "dual" to the corresponding 
phenomena in position space, and we also calculate the mo- 
bility (in both x- and p-space) of a quantum particle in a 
"washboard" for various Tand F. Our results make it possi- 
ble to determine the form of the current-voltage characteris- 
tic (IVC) of superconducting junctions with macroscopic 
quantum effects taken into account. 

To calculatep (q, q'), the density matrix of a dissipative 

quantum system in the position representation averaged 
over the states of a heat bath, we make use of a well known 
f o r m a l i ~ m ' ~ " ~  and introduce the quantity 

a a' 

J ( q ,  ' i f ;  q , q i f )  =J DqI J Dq, exp { iS1-- iS2+O).  ( 1 )  

where 
t 

m is the mass of the particle, V(q) is the potential, and F is 
the external force. We are largely interested here in the case 
of a periodic potential. We assume for definiteness that 

Potentials of the form (3)  are of considerable interest for 
specific physical realizations of systems to be examined. 
Note, however, that the results obtained here do not depend 
in fact on the exact form of the periodic potential V(q). The 
quantity @ appears when the exact density matrix of the 
system consisting of the particle plus heat bath is averaged 
over the degrees of freedom of the heat bath.l3,l4 It can be 
represented in the form 

t t 

The heat bath is usually modeled as a large number of har- 
monic oscillators in thermodynamic equilibrium, interact- 
ing linearly with the 9th degree of freedom. @ has been calcu- 
lated for this simple case in Refs. 15 and 16. In our notation, 
we have for the Fourier transformh,, 

which corresponds to linear, nondispersive friction. In su- 
perconducting junctions, the applicability of ( 5 ) is limited 
by the condition I & /  4 A,, which is unimportant in what fol- 
lows here, where A, is the energy gap. The density matrix is 
related to the quantity J of ( 1 ) by the obvious relation 
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where pi is the initial density matrix. Equations ( 1)-(6) 
describe completely the motion of a quantum particle in a 
periodic potential of the type (3) ,  interacting with a quan- 
tum heat bath, which (for an appropriate choice of interac- 
tion) produces linear friction in the system. 

2. THE STRONG COUPLING LIMIT 

We first consider the limit of large V,. In that case, at 
sufficiently low temperature, the particle is situated in the 
immediate neighborhood of a minimum of the potential (3)  
at qk = kg,, k = 0, f 1, . . ., and the density matrix for the 
system becomes quasi-discrete: p(q,qf ) - + p (  kq,,k '9,). The 
diagonal elements p (kg,, kg,) - Wk ( t )  of this matrix deter- 
mine the probability of finding the particle in the neighbor- 
hood of the k th minimum. We shall assume that at theinitial 
instant of time the particle is located near one of the minima 
of the potential ( 3 ) ,  i.e., Wk (0) = S,,. If 

(woe  r; I is the frequency of small oscillations about the 
potential minimum, u r  Fq, is the energy difference of adja- 
cent minima), particle motion at subsequent times proceeds 
solely by direct tunneling between wells. The present auth- 
ors have proposed a general method" for studying the evolu- 
tion of the density matrix in the presence of such sub-barrier 
motion, and applied this method to the determination of 
Wk (I)  for two-well and periodic potentials with u = 0 and 
T = 0.' The method can be directly generalized to w, #O. 
We parametrize the time-dependence of q,,, by 

We can isolate trajectories which determine, with exponen- 
tial accuracy, the probability ofjumps between wells. In the 
space of the parameter r ,  such trajectories (instantons) are 
well known, and are found by setting SS/Sq(r) = 0. Subse- 
quent calculations are customarily broken up into integra- 
tions over small deviations from saddle-point trajectories 
and the isolation of so-called null modes of the collective 
instanton coordinates. Keeping in mind the instanton con- 
figurations on a r-contour, which describe all possible tran- 
sitions between wells, we have 

the boundary conditions on Q(r) tha&he summation in (9) 
must be carried out over charge configurations satisfying 

To obtain the final expressions for Wk ( t ) ,  it remains for us 
to integrate over the collective variables on the real time 
contour. It is then necessary, for every {e,,, e,,) configura- 
tion, to take into account all possible combinations of 
successive positions of the collective variables ti, i = 1, 2, 
. . . ,2n, in the order in which they arise. Making use of (8),  
the result we obtain from (9)  is 

{ ( sh n(tl-tj) T I x exp 2cc eiejln 
~ , , = 1  nTr, 

We have omitted the first subscript from the quantities el, 
and e,, in the exponent in ( 1 1 ), since the sign of the "interac- 
tion" between instantons i and j is determined solely by the 
sign of the product el e,, regardless of whether these instan- 
tons belong to contours 7, or r,. It can be seen from ( 11 ) that 
for a given {el,, e,, 1 configuration only the phase factor f l  
can take on a variety of values for different combinations 
{ti). We shall find it convenient to designate the various 
configurations {el,, e,,; ti) as in Fig. 1. Charges situated in 
the upper row belong to contour r , ,  and those in the lower 
row, to r,. The horizontal arrangement of charges corre- 
sponds to the temporal sequence of the related collective 
coordinates. Employing a direct transformation from the 
variables ri of (9)  to the ti of ( 11) and taking (8)  into ac- 
count, we can establish the following rules for calculating 
the phase factor f l  for all possible instanton configurations: 

1) the factor f l  = m n  if all 2n charges ei lie on the 
contour r , ;  

2) the remaining configurations can be obtained by 
moving the charges from cell ( 1, 2n) to cell (2, 2n). During 
each such move, f l  remains fixed; 

3) for every change in relative position of charges eIi  
and e2i from ti < t, to ti > t,, the phase factor f l  changes by 
elie2,2ra. 

t = l  j=m+l i= I 
r , 

i=m+l  

A ( T )  =In (sin naT/nroT).  
(9 )  

Here a = 77qO2/277, and A is double the tunneling amplitude 
between wells: A-@(,A ' I2ecA,  A - W,/w,% 1; eli  = 1 
and e2i = + 1 are topological charges of instantons on the 
' 6  upper" (r- r, ) and "lower" (r= r2)  portions of the r-con- 
tour. The ordering operator places the "instants of time" 
r,, and r,; on the r-contour in order of decreasing i. All 
"instants of time" rIi on the T,-contour are "later" than any 
"instant of time" r2i on the r,-contour. It can be seen from 

FIG. 1. Different configurations of topological charges of instantons on 
contours ~ ( t )  and ~ , ( r ) ,  and the arrangement of their "coordinates" in 
real time. 
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In general (Fig. 1 ), we have 
Zn 

The foregoing considerations and Eq. ( 1 1 ) are valid for 
a potential with an arbitrary number of minima. Cases hav- 
ing different numbers of such minima differ only by the set of 
instanton configurations over which the summation in Eq. 
( 11 ) takes place. In the case of interest to us here, that of a 
periodic potential, all configurations satisfying the condi- 
tions of ( 10) are found to be important. According to Refs. 8 
and 9, the number of such configurations of 2n instantons to 
be summed over in Eq. ( 11 ) for W, ( t )  is 

the total number of such configurations can easily be shown 
to equal 4" (2n!)/(n!)'. 

3. DYNAMICS AND DUALITY 

In the preceding section we obtained a general expres- 
sion for the diagonal elements of the density matrix of a 
quantum particle, averaged over states of a heat bath, for a 
high potential barrier Vo(7) between minima. Here we con- 
sider the more general case of arbitrary V,,. To determine the 
density matrix and calculate the mean values, we will find it 
convenient to introduce the generating function 

We also introduce the Fourier representation of the density 
matrix, 

It is easy to verify that 

We put in (6)  q = x + y/2 and q' = x - y/2, multiply 
the equation by exp( - ifx), and integrate over x. With the 
definition ( 14), this gives 

where 

To calculate the functional integral (18) with the po- 
tential ( 3 ) ,  we make use of the well known relation 

' m  I", 

( j dr' cos(lnq/qo)) = (+).z J dzm dTm-i exp 77, 
0 m-0 ( e , t )  0 

The second summation on the right-hand side of (23) is over 
all possible "charge" configurations e,i = + 1, while the 
corresponding "charge" density is given by (compare Refs. 
3,4, 12) 

m 

In a completely analogous manner, we can introduce the 
"charge" density on contour 7,: 

The advantage of choosing for "charge" in ( 19) and (20) 
the same notations as for the topological charge of instan- 
tons in the preceding section will become apparent shortly. 
Substitution of Eqs. ( 19) and (20) into the functional inte- 
gral ( 18) produces a sum of Gaussian integrals, each of 
which is easily calculated. As a result, we have 

m 

m 8 

Ft' (z) 
x j I I d z i i  I-J dzzi exp{- J d r [  i ( g ( d  + -) n ~g (z) 

PC (t)' pi (7) pz(z) + E6 (z). 

Let us first take f = 0. It is not hard to show that (just 
w e  then carry out the shift q, +qj + Ft '/q in the functional as in Ref. 31, only neutral configurations with p ,  + p, = 0, 
integral ( 1 ) for J,  and carry out the parametrization ( 8 1. i.,. , = 2n, contribute to E ~ .  ( 2 1 ) . With this in mind, we 
Assuming that obtain 

pl 

qj(zj(tf)) =q,(t') + y / 2  (-I)', j = l ,  2,  

we have 
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wherep, = 27r/q, is the reciprocal lattice constant, and un- 
der the duality transformations 

w k  and Wk of (9)  transform into one another. The change to 
integration over the ti on the real time contour is carried out 
exactly the same way as was done in the previous section to 
find the expressions for the Wk ( t )  ( 11 ) . We finally obtain 

{ I shnT( t i - t j )  I 
X exp 2a-I eie, In 

i.+l nTmlq 

+ zz siti+ip (el i ,  e,; t i ) } .  
, = l  

In (24), as in ( 11 ), the summation is over configurations 
which satisfy ( 10). 

Comparing ( 16) and ( 22), we necessarily have 

We have thus shown that the duality" between the expres- 
sions for the diagonal elements of the density matrix in the 
position (in the limit of large V,) and quasimomentum rep- 
resentations ( 1 1 ) and (24), (25), with the transformations 
(23), is valid at practically any instant (with the possible 
exception of a very few) in time. The physical meaning of 
(24), (25) is quite simple: the probability that the quasimo- 
mentum has changed by k reciprocal lattice constants by 
time t is given directly by w, ( t ) .  The state of the particle 
does not change during this process, since its quasimomen- 
tum in a periodic potential is defined, as is well known, accu- 
rate top,, and the heat bath takes up to momentum kp,. This 
makes the w k  (t) measurable in principle. Note that in deriv- 
ing (24), we have made no assumptions about the magni- 
tude of V,. 

We now establish the relations for the mobility of a 
quantum particle in the x- and p-spaces: 

Assuming that y = 0 in (21 ), making use of ( lo) ,  and inte- 
grating over the collective coordinates ti as before, we obtain 

whereupon 

w x ( u ,  0, T ) = l - q p ( a ,  a, T ) ,  (28) 

The duality between Wk ( t )  and w k  ( t )  makes it possible to 
relate the quantity b in (29) to mobility in the position space 
as calculated with V,) w,. Note that when the replacements 
w k  ( t )  + Wk ( t )  and q,/a+q, are made, the right-hand side 
of (29) goes into the expression for the mobility ,ux (a,u,T) 
of a quantum particle in the limit AT, 4 1 (or V, ) w,) , i.e., 
with the substitutions in (23), 

pr(a,  0, T ) * p ( a ,  a, T ) .  (30) 

Thus, to find the mobility ,ux both in regions of small and 
large potential barrier height V,, it is sufficient to calculate 
this quantity in only one of these limiting cases ( V0> w, or 
V,<v/m) and then use Eqs. (28) and (30). 

In the special case T+O, F-0, Eqs. (28) and (30) were 
derived in Ref. 3 in another way. Note that a relation of the 
form (28) was also discussed in Ref. 12 for T # 0, F # 0. As 
we show in Appendix 1, however, the derivation in Ref. 12 
relied on a somewhat flawed calculation of the functional 
integral for the system density matrix. 

In Refs. 3,4, and 12,b was treated solely as an auxiliary 
quantity, governing the mobility of a fictitious particle tun- 
neling between the nodes of a one-dimensional lattice having 
period q,/a. Equations (25) of the present paper, however, 
indicate that is physically meaningful in its own right, and 
in principle can be measured independently. In fact, making 
use of (25), (26), and (29), it is easy to find an expression 
relatingb to the mobility pP of (26) in the quasimomentum 
space: 7,u =,up, i.e., 

Equations (28) and (3  1 ) make it possible to calculate ,up 
easily whenp, is known, and we shall also make use of this in 
what follows. 

4. DIFFUSION, LOCALIZATION, AND THE BREAKDOWN OF 
COHERENCE 

If we are to describe the properties of interest in the 
system we are considering, it is obviously necessary to deter- 
mine the quantities ( 1 1 ) and (24). The exact calculation of 
these quantities is of course a very difficult problem. In a 
number of special cases, however, the problem simplifies 
considerably. The simplest of these is the diffusion approxi- 
mation, in which one only takes into accouint those trajec- 
tories which with (7)  describe tunneling between different 
states p(kq,, k '9,) with Ik - k ' 1  G 1. The contribution of 
such configurations can then be calculated by making the 
approximation of non-interacting bi-instanton "molecules." 
It was demonstrated in Refs. 6 and 7 for a two-well potential 
that the interaction between "blips," which formally corre- 
sponds to an interaction between such "molecules," can be 
neglected when a > 1 or a < 1 with sufficiently large w, . For 
a periodic potential, the calculation is similar, differing only 
in the number of realizations for which 1 k - k ' 1  < 1 ,  which 
for given k and number of instantons 2n is equal to 

2k-ZPn! 

D-k p !  ( p - k )  ! (n+k-2p) ! ' 

Exploiting the duality of (11) and (24), we have 
m 

ka ( - I )  *+kN ( k ,  n )  (P t )  " 
wk( t )=  e x p ( 2 a T ) . z  

n=k n! (ch (o /2aT)  ) 2 p - k  ' 
133)  

with analogous expressions for Wk ( t )  . Note, however, that 
the validity of (32) and (33) is not at all obvious a priori, in 
contrast to the situation for the two-well potential, since for 
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sufficiently large n, the number of discarded "charged" con- 
figurations M( k,n ) - N(k,n) is much greater than the 
number N(k,n) in (32). A detailed analysis of the contribu- 
tion of the neglected correlation functions is given in Appen- 
dix. 2. 

The sums in (32) and (33) are easily evaluated. When 
maxC Vo,u/a, TI  4 v/m, we obtain 

where I ,  (x )  is a Bessel function of imaginary argument. 
From here on, we assume that ?, = m/v. Equation (34) 
holds both for a < 1 and for a > 1 with max{u/a, T} 9 T. 
Thus, under these circumstances, we have diffusive "spread- 
ing" of probability in the quasi-momentum space: the proba- 
bility w, ( t )  of transfer processes varies with time according 
to (34). Using (34),  it is straightforward to calculate the 
mean values (p( t )  ) and (p2 ( t )  ). The first of these is a linear 
function of time. For the mobility ,up (a,u,T) of (26), we 
obtain 

The mean squared quasi-momentum is of the form 

<p2(t) >=po2Tt (Tt thz (o/2aT) + I ) .  (36) 

When u /a% T, the second term is negligible. In the opposite 
limiting case u /a  < T, up to t S 4 a 2 ~  2/Ta2, 

(p2( t )  )=Dpt, Dp=2Tpp (a ,  a, T )  (Tm/.rl)(2-a)/a (37) 

Equation (37) implies that when a > 2, the diffusion coeffi- 
cient Dp increases with decreasing temperature and when 
a < 2, it decreases. 

When condition (7 )  holds, the duality transformations 
(23) enable one to obtain formulas similar to (34) for the 
diagonal matrix elements W k .  In this limiting case, such 
formulas were derived in Ref. 10 using simple balance equa- 
tions for W, ( t ) .  Here we will be interested in the magnitude 
of the mobility p, . When (7)  holds and u &  T, we have 

When 0% T, 

A similar formula was also derived in Ref. 10 for T-0 and 
a >  1. 

We see from Eqs. (38a) and (38b) that in the limit 
T-0, F-0, the mobility of a quantum particle in a periodic 
potential with a > 1 tends to zero,' corresponding to local- 
ization of the particle near one of the minima of the potential 
(3) .  A similar phenomenon also occurs in the quasimomen- 
tum space: for T = 0, F = 0, and a < 1, the probability of a 
transfer process is zero at any instant of time: w, ( t )  = a,, . 
In other words, in the absence of an external force or thermal 
fluctuations, transfer processes due to quantum fluctuations 
are only possible for sufficiently high interactive coupling 
with the heat bath, a > 1. The diffusion approximation is not 
suitable for a description of such processes in the region 
max{u/a,T} 5 T,a > 1, and consequently, the behavior of 
w k  ( t )  is not described by Eq. (34). Here we consider the 
case F = 0, T = 0. It can be shown (see Ref. 8 and Appendix 
2) that in that case, to calculate the quantities w, ( t )  for 
V,m/v < 1, a good approximation is 

OD 

(-1) n+k(Vrt)2n(a-1)'aM (k ,  n)  

n = k  
(39) 

Taking the sum in (39), for k <  (V,t)'*- I)'" we obtain 
(compare Refs. 8, 9 )  

( v r t )  ( I -=) /a  

~ k ( t )  = n r  ( l l a )  
[a$ (ln(V.t) ) + $ ( I )  

where w",""(t) = 0 for a < 2, and becomes important only 
when a% 1: 

nV,t ( " : r t ) .  
wtaC ( t )  = (-l)) sin (2V.t) exp - - 

In the limit a -+ a, (24) and (39) become identical, and give 

where J ,  (x )  is a Bessel function. When ( V, t )  '" - '"" 4 k, 
the quantities w k  ( t )  are exponentially small. Thus, for 
a > 1, propagation of a "wave packet" in the quasimomen- 
tum space is governed by the term ( V,t) '" - I)'" . The exis- 
tence of the oscillatory term w","' ( 4  1 ) in the expression (40) 
for w k  reflects the presence of coherence between states with 
different quasimomentum when a > 2. We see from (41 ) 
that such coherence is disrupted in a characteristic time 
-a V :. This is exactly the dual of the breakdown of quan- 
tum coherence of different states Wk in position space, 
which occurs when a < 1/2. Corresponding expressions for 
W, ( t )  have been studied in Refs. 8 and 9. Making use of 
(39), it is not difficult to determine ( p 2  ( t )  ) . Using the corre- 
sponding result for (x2( t ) )  obtained in Refs. 8, 9, 11 for 
a < 1 and with ( 7 )  taken into account, we find for a > 1, 
F=O, T=Otha t  

i.e., the "wave packet" spreads "faster" for a > 2, and 
"slower" for a < 2 than for diffusive behavior, which corre- 
sponds to packet localization in the limit a- 1. We draw 
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attention to the fact that when a = 2, Eqs. (37) and (431, 
which were derived to differing degrees of approximation, 
coincide in different special cases. 

Equations (29), ( 3  1 ), and (35) enable one easily to 
determine the mobility of a quantum particle for sufficiently 
low values of the potential, with V,m/7< 1 and max{u/ 
a ,  T'} g ~ / m .  We have (see also Ref. 12) 

These expressions, along with (35), are valid for a < 1 or for 
a >  1 and max{u/a,~}>T. We can similarly use (29), 
(31), and (38) to calculate the mobilityp, when ( 7 )  holds: 

ni2aI' ( a )  ( +) ($1 2a -2  
pp=l - , o<T, 2 r ( ~ + ' / ~ )  o 

2CL-2 (45) 
p , = , - L ( $ ) ' ( & )  , o S T .  

(2a) 

The two equations in (45) are correct when a > 1 or when 
a < 1 and max{u/a,T} 9 r. Note that by using the duality 
relations for mobility, we have managed to determinep, of 
(44) for small V, andp, of (45) for large Vo without calcu- 
lating the probability distribution in these limiting cases. For 
a < 1 and sufficiently small a and T, the mobility p, is not 
given by Eq. (44). Calculations of this quantity by renor- 
malization-group methods in the low-frequency limit, when 
( 7 )  holds and 0-0, T-0, give2' 7px ( a  < 1 ) = 1 and 
7 p x ( a >  1) = 0  (Refs. 3-5), whereupon with (29) and 
( 3  1 ) taken into consideration we obtain under these same 
conditions 

Thus, in all of the cases considered, the expressions for 
p, andp, go into one another under the duality transforma- 
tions (23) .  This occurs not only for Eqs. (35) and (38) 
[which is a consequence of the duality of ( 11 ) and (24) 1, 
but for (44) and (45) as well, which were obtained for the 
limiting cases in which the diagonal elements of the density 
matrices are not dual, and moreover cannot be calculated 
directly. 

5. DISCUSSION OF RESULTS. QUANTUM PROPERTIES OF 
SUPERCONDUCTING JUNCTIONS 

We now examine the phase diagram of a quantum sys- 
tem with ohmic d i ~ s i p a t i o n ~ - ~ . ' ~  (Fig. 2). The duality of the 
diagonal elements of the density matrix in position and qua- 
simomentum space which we have established in the present 
paper enables us to use this diagram to take a closer look at 
system properties. When T-0 and F-+O, phase A corre- 
sponds to position delocalization (7px = 1) and quasimo- 
mentum localization (,up = O), while the opposite is true of 
phase B: ,up = 1, 7,u, = 0. Our considerations also enable us 
to distinguish between regions A, and A, in the "upper" part 
of the diagram, and regions B, and B2 at small Vo. In region 
A ,  (a < 1/2), the interaction with the heat bath is still too 
weak to completely destroy quantum coherence in position 
space. In region B,, on the other hand (a > 2) ,  this interac- 
tion is quite strong and is responsible for the partial coher- 

FIG. 2. Phase diagram of a quantum system with resistive dissipation. At 
T = 0, phase A ( B )  corresponds to localization (delocalization) of quasi- 
momentum and delocalization (localization) of position. Wave-packet 
spreading in the position and quasi-momentum space at T =  0 occurs 
faster for regions A ,  and B2,  and slower for regions A2 and B , ,  than for 
diffusive behavior. When Tis high enough, the diffusion coefficients D, in 
A ,  and D, in Bl decrease with increasing temperature. 

ence of states at different quasimomenta. As a result, as 
T- 0, wave-packet spreading in x-space (A, ) and p-space 
(B,) proceeds more slowly than for total coherence, but 
more quickly than for diffusive behavior. A decrease in the 
diffusion coefficients D, and Dp in these regions with in- 
creasing temperature (at temperatures T which are not too 
low) is associated with the destruction of coherence by ther- 
mal fluctuations of the heat bath. In the regions of intermedi- 
ate interaction A, ( 1/2 < a < 1 ) and B, ( 1 < a  < 2) ,  there is 
no coherence whatsover, and thermal fluctuations faciliate 
an increase in D, and D, with increasing T. In these regions, 
wave-packet spreading as T-0 goes more slowly than for 
diffusion, corresponding to the transition to a localized state 
as a -+ 1. It is interesting to note that according to the duality 
transformations (23 ), as a - oo in region B,, the system can 
be described (in the sense of being able to calculate means) 
by a "wave function" $(p) which satisfies a "Schrodinger 
equation," with the roles of the "position" and "momen- 
tum" operators played by p and id /ap respectively. 

As we have already stated, all of the results obtained 
here can be used directly to describe the quantum behavior 
of Josephson junctions, where then q = q, /2 (q,  is the phase 
difference across the junction), go = T, m = C/e2, 
7 - I  = Re2 (Cis the (renormalized) capacitance ofthe junc- 
tion, R is the effective resistance of a normal shunt or metal- 
lic short-circuit, and e is the charge of the electron). The 
quantity a is the ratio of the fundamental "quantum" resis- 
tance RQ = ?r/2e2 =. 6.5 kR to R: a. = RQ/R. For supercon- 
ducting junctions, the parameter V, defines the Josephson 
energy, V,=E, = Ic/2e (I, is the critical current of the 
junction), F =  I / e  (I is the external current), 
01, = (EYEQ ) ' I 2 ,  EQ = e2/2C, and the quantityp in (25) is 
the quasicharge Q on the capacitator3' C in units of e. With 
this in mind, the physical meaning of w, ( t )  is also clear: it 
determines the probability that prior to time t ,  the quasi- 
charge (i.e., actually the number of Cooper pairs at the two 
superconducting sides of the junction has changed by 
A Q  = kp,e=2ke, or in other words, that k Cooper pairs 
have passed from one side of the Josephson junction to the 
other. Of course, due to the presence of a normal shunt and/ 
or external circuit, the charges on the two sides of the super- 
conducting junction will equalize in a time - RC, and when 
transition mechanisms between quasiparticles and the su- 
perconducting condensate are taken into account (for exam- 
ple, by the well known Andreev inversion mechanism at the 
normal-superconducting boundary), the preceding change 
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FIG. 3. a )  Virtual transfers of Cooper pairs between superconductors 
with no change in the magnitude of the quasicharge. b)  "Uncompensat- 
ed" jump of a Cooper pair, changing the quasicharge by 2e. 

in the number of Cooper pairs can also be compensated. 
Nevertheless, the states before and after such a process, i.e., 
states characterized by different values of k, are physically 
d~rerent, and the probability distribution wk ( t )  can in prin- 
ciple be found experimentally. Let the exchange of Cooper 
pairs betweeen the superconductors somehow be prevented 
prior to the instant t = 0, and then let the Josephson effect be 
"turned on." Our results imply that virtual transfers of Coo- 
per pairs between the superconductors (Fig. 3a) lead to re- 
normalization of I,, where for T = 0, I = 0, and R > Re, the 
renormalized value of the critical current tends to zero at 
sufficiently large t. Quasicharge is then localized 
(wk ( t )  = SkO ), and the junction voltage vanishes. The pres- 
ence of a fairly weak external current I "shifts" the mean 
junction voltage V: to a first approximation ( V ) = RI, and 
the quasicharge mobility ,up of (35) is small. When the cur- 
rent exceeds a certain value I, 

the quasicharge starts to "move," corresponding to the onset 
of oscillation. The theory of these so-called Bloch oscilla- 
tions for R - cc was worked out in Reference 18. Our thory 
enables one to describe such an effect for E, $ EQ , I $  I,, but 
over a much wider range in R. Under these conditions, we 
have from (38b) and (45) that 

<Q>=I, (48a) 

What Eq. (48a) in fact means is that junction voltage oscilla- 
tions occur at a fundamental frequency w ,  = ~ / e ,  and for 
such oscillations to take place as T-0 it is necessary that 
R > R, (but not R $ RQ ). Equation (48a) specifies the vol- 
tage-current characteristic of a Josephson junction under 
conditions for which Bloch oscillations exist. Using this rela- 
tion, it is also easy to establish the condition for applicability 
of the theory of Ref. 18, which takes the form 
R % RQ In [I, e ' /C (2~1)~ ] .  When this condition holds, the 
current-voltage characteristic of (48b) is the same as that 
found4' in Ref. 18 with E, $ E, ,I$ I,. 

In contrast to the situation for R > RQ, when R < R,, 
renormalized high-frequency quantum fluctuations ofl, are 
no longer zero. Consequently, the probability of "uncom- 
pensated" jumps of Cooper pairs (Fig. 3b) is also nonzero. 
With such a process, there will be no charge in the final state 
of a junction, just like the initial state. As we have already 

noted, however, this state can in principle be differentiated 
experimentally from the case shown in Fig. 3a using the state 
of the "heat bath," since the probability of a charge 2ek flow- 
ing through the shunt prior to time t will just be wk ( t )  . Thus, 
by measuring the current or voltage at the shunt, or connect- 
ing a large capacitance in series with the ~ h u n t , ~ '  it is possible 
to study experimentally the probability distribution wk ( t )  
of quasicharge "spreading" for different values of 2ek, as 
well as thequantities (Q(t))  and (Q 2(t)) .  When R < RQ, no 
matter how weak the current, (Q( t ) )  will be given by Eq. 
(48a), which in the present instance is not a simple conse- 
quence of charge conservation. Naturally, charge conserva- 
tion holds for each event wk , but it obviously does not deter- 
mine the actual values of w, ( t )  (and consequently (Q( t ) )  ), 
which depend only on the nature of the quantum fluctu- 
ations in the system. It must be emphasized that when 
R < RQ , regardless of whether (48a) holds, there are in fact 
no Bloch oscillations (in the sense that their probability is 
small for sufficiently large t ) ,  in view of the strong fluctu- 
ations of quasicharge. 

When R <Re ,  the phase difference p is a "good" quan- 
tum number. For sufficiently small I ,  the mobility in p-space 
is small, i.e., ( V )  z O  (stationary Josephson effect). When 
E, 9 E,, we have from (44) for the voltage-current charac- 
teristic 

WithR <RQ [2 1n(eRQ/rR '1, ) ]-I, Eq. (49) turnsr.:. ,the 
well known expression for the voltage-current character. tic 
obtained when I$Ic and Josephson oscillations are taken 
into account within the scope of the simple resistive model of 
Aslamazov and Larkin.'' Oscillations obviously also occur 
for all R < R,, and Eq. (49) is a generalization of the corre- 
sponding theoretical result of Ref. 19 to the case in which 

Finally, the results obtained here make it possible to 
account for the quantum behavior of superconducting junc- 
tions when thermal fluctuations are present as well. Specifi- 
cally, whenE, > EQ and T$ I /e ,  the current-voltage charac- 
teristic follows Ohm's law with an effective resistance, when 
R,,<R, governedby Eq. (38a): 

We note in conclusion that the simple model we have 
considered does not take into account the discrete nature of 
the tunneling of 'normal" electrons, which, in addition to 
Bloch oscillations, leads to the occurrence of so-called sin- 
gle-electron ~sc i l la t ions ,~~  as well as alters the system phase 
diagram." 

The authors are grateful to D. V. Averin, A. B. Zorin, 
K. K. Likharev, and D. E. Khmel'nitskii for useful discus- 
sions, and to S. A. Bulgadaev for critical comments. 

APPENDIX 1 

Following a number of simple manipulations (see Ref. 
12), we can rewrite the expression for a diagonal element of 
the density matrix of Eqs. (1)-(6),  averaged over states of 
the heat bath, in the form 
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where is an easily calculated Gaussian double integralI2: 

where d ( t )  = 1 - exp( - ~t /m ), S2(y*) has been defined 
in Ref. 12, and the function y*( t  ' ) satisfies the equation 

with boundary conditions y ( 0 )  = yi ,  y ( t )  = 0; v,,, gives the 
"charge" density for x = + 1 on real time curves 

v l  (t) = x i - t i  ~ ~ ( t ) = ~ x  x&(t--td.  (-44) 
Qo i = l  q o  f=, 

Note that the "charge" configurations {xl i ,  x,,} of (A4)  do 
not reduce to the configurations {el,, e,,) of (20). The only 
difference between Eqs. (A1 )-(A4), which determine the 
temporal evolution of the probability densityp(x, x )  and the 
corresponding equations (3.19)-(3.25) of Ref. 12 is the nor- 
malization factor N appearing in ( A l ) .  It is not difficult to 
show that N # 1. As in Ref. 12, we represent y*( t1 )  in the 
form 

The particular solution yp ( t  ' )  of (A3) which satisfies the 
boundary conditions yp (0 )  = yp ( t )  = 0 is of the form 

where 8 ( t  > 0 )  = 1, 8 ( t  <O) = 0, and e ( 0 )  = 1/2. Substi- 
tuting (A5) and (A6) into (A1 ) and (A2) and expanding N 
as a power series in V i ,  we find 

N (t) = 1 + C vtno. (t) , 

where the coefficients a, ( t )  #O are independent of V,,. Cal- 
culating the mean values using the expression obtained for 
p (x ,  X )  is fairly simple only for sufficiently small times, us- 
ing perturbation theory. Such calculations for the mobility 
give results consistent with those we have obtained and those 
of Ref. 12. In the more interesting long-time domain, Eqs. 
( A  1 )-(A61 are unsuitable to determine the mobility and the 
problem becomes extremely complex. We have circumvent- 
ed this difficulty in the present paper by selecting a set of 
"charges" (20) different from (A4),  enabling us to obtain 

the relations (28),  (29).  The normalization factor does not 
appear in Ref. 12, and the relation ( 1 ) = 1 can be made to 
hold (at  least in the diffusion approximation) by choosing a 
particular solution of (A3)  which does not satisfy the van- 
ishing boundary conditions. In fact, the function obtained by 
making the substitutions 

0 ( t ' ~ t ~ ( ~ , )  +O(tl-ti,j,)+Ci,,,8(t,,,,-t') esp [ (tf-t,,,,) qlml, 

in (A6)  will also be a solution of (A3)  for any C,,,, , with 
yp ( 0 )  differing but little from zero when C,,,, <exp{lt1 
- t,,,, Iq/m). As we see from (A2) ,  however, the values of 

yp ( t )  at t = t,,,, are important to the determination of 
p ( ~ 4 ) .  

APPENDIX 2 

We shall analyze the approximations we have used by 
calculating the probability W(,(t) appearing in Eq. ( 11 ) (the 
calculation of W, ( t )  fork  # O  proceeds similarly). In deter- 
mining this quantity in the diffusion approximation, we have 
taken into account only those configurations consisting of 
neutral charge-pairs. For the sake of definiteness, we assume 
that (T< T. Then the contribution of each such configuration 
of 2n instantoris for a > 1, or for a < 1 and T% T, is 
( - Tt)"  /n!, and the number of such configurations N(0,n) 
is given by Eq. (32). It is not hard to show that the contribu- 
tion of any of the discarded configurations is small compared 
with the indicated contribution of any one of the neutral-pair 
configurations. As we have already pointed out, however, 
the number of discarded configurations 
M(0,n) - N(0,n) % N(0,n) for large enough n. Let us con- 
sider configurations consisting of n - 2 neutral charge-pairs 
and two pairs with charge + 2 and - 2. The contribution of 
such configurations is of the form Cnl ( - Tt )"  /Tt(n - 1 )!, 
with C n  and their number, equal to 
N(O,n - 2)  (n  - 1 )/2, n>2, may be determined by direct 
combinatorial calculation. The remaining configurations 
can be grouped in like manner. As a result, we have 

where C,, - 1. It is straightforward to demonstrate that 
Nnp < 1 for all n and p (for example, 
NnI = n(n - l)N(O,n - 2)/2N(O,n),n>2), and conse- 
quently, for t> T - ', (A7)  is in fact the same as the equation 
for W(,(t) obtained in the diffusion approximation. The lat- 
ter approximation is not applicable for t 5 T I ,  although for 
a > 1, or a < 1 and T% I', the probability W,,(t) is close to 
unity for this range of t. It can be shown in a completely 
analogous way that when T < a ,  the diffusion approximation 
is applicable for a > 1 or for a < 1 and a> T. 

Now let a = 0, T = 0, and a < 1. The approximation 
used in Ref. 8 to determine the probability W(t) (see also 
Eq. (39) of the present paper) was that the contribution of 
any instanton configuration was taken to be equal to the 
contribution of a configuration with alternating charges. 
The correction to this approximation is due to the difference 
between the phase factors for a number of configurations 
and + i r a n .  In particular, for W,,(t), we have 
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X 
( r ( 1 - 2 a ) ) " M  (0, 

I ' ( 2 n ( l - a ) + 1 )  
n ) [ ~ o s n  n a d - M I . )  + hrn cor p n a  1 , 

I) 

where 

The coefficients M,, are small (for n = 2, M,, = 1/9; for 
n = 3 ,  M,, = 0 . 0 3 , ' ~ ~ ~  = 0.06),  and tend to zero for large n. 
For sufficiently large t )  A(A/w,,)""' - "' , the expression in 
square brackets in (A8) is close to (cos r a ) "  (except possi- 
bly for a very narrow region near a = 1/2) due to the small- 
ness of M,,, and the rapid oscillations in cos p r a  at large p. 

"Schmidz was the first to indicate the existence of duality transformations 
like ( 2 5 ) .  relating different representations of the statistical sum for the 
system in question with T - 0 ,  F-0 .  

"This result can in fact be demonstrated without resorting to renormaliza- 
tion group calculations. To do so, it is sufficient to make use of Eqs. 
( 2 8 ) - ( 3 0 )  and ( 3 8 ) ,  as well as the fact that when ~ ) m w , , ,  it is possible 
simultaneously to satisfy ( 7 )  and Y,,rn/v( 1 (see Fig. 2 ) .  

"Themean valueofthe real physical charge in thejunction is C (4 ) / e ,  and 
this goes to zero in the absence of external current. The quasicharge 
concept was introduced in Ref. 18. 

4'It is not difficult to show that the parameter 6'"' of Ref. 18 is given by 
S"" = 2A. 

"It is interesting to note that the latter system is an exact analog of a high- 
inductance SQUID. The physical quantity which is the dual of the quan- 
tum of magnetic flux is then the Cooper-pair charge 2e. 
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