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The scattering of a dynamical soliton by a point defect is considered in a one-dimensional system 
whose excitations are described by the nonlinear Schrodinger equation. The dynamical soliton 
can be interpreted as a bound state of quasiparticles, and its amplitude is proportional to the 
number of bound quasiparticles. The soliton-scattering intensity is found and compared with the 
total intensity of the scattering of the equivalent number offree quasiparticles. It is shown that the 
soliton-scattering intensity is smaller than the free-quasiparticle scattering intensity and, in 
particular, tends rapidly to zero with increase of the binding energy of the quasiparticles. In the 
scattering process the soliton radiates free quasiparticles (linear harmonic waves) in both the 
forward and backward directions. In the weakly nonlinear limit in the scattering of a fast soliton 
free quasiparticles are radiated only in the backward direction. The scattering of a slow soliton 
consisting of a large number of bound particles has no analog in the scattering of free 
quasiparticles. The problem of the radiative capture of a slow soliton by an attractive 
inhomogeneity is also considered. 

1. INTRODUCTION 

Many kinetic characteristics of crystals are determined 
by the character of the scattering of the quasiparticle excita- 
tions (phonons, spin waves, etc. ). Under intense external 
perturbations high-density fluxes of quasiparticles can arise 
in the crystal, and the interaction of the quasiparticles being 
scattered then becomes important. Allowance for this inter- 
action is especially important when the interaction is attrac- 
tive and can lead to the formation of a bound state of quasi- 
particles. If collisions of quasiparticles with impurities occur 
sufficiently infrequently, then between successive scatter- 
ings the quasiparticles have time to form a bound state. They 
are then scattered, by some inhomogeneity, not one by one 
but as a single formation or "cluster." It is natural to pose 
the question as to how the intensity of scattering of a single 
cluster of N quasiparticles compares with the total intensity 
of the scattering of N noninteracting quasiparticles. To an- 
swer this question it is necessary to analyze the role of the 
interaction of the quasiparticles in the scattering processes. 
This analysis is simplest in the one-dimensional situation, in 
which many particle-interaction problems have exact solu- 
tions. It is known that the dynamics of a system of interact- 
ing quasiparticles is described in the mean-fieid approxima- 
tion by a certain nonlinear equation. We suppose that in such 
a nonlinear one-dimensional system there is a point center 
capable of scattering elementary excitations. In studying the 
scattering by such a center we suppose that the incident flux 
of quasiparticles is sufficiently dense for a bound state of 
them to be formed before the scattering event. A bound state 
of a large number of quasiparticles in a nonlinear system is 
equivalent to a dynamical soliton, and its amplitude is pro- 
portional to the number of bound quasiparticles (see, e.g., 
Refs. 1 and 2). We shall calculate the intensity of scattering 
of a soliton consisting of N quasiparticles, and compare it 
with the total intensity of the scattering of N free quasiparti- 
cles. 

As a concrete realization of this problem we consider 
the scattering of a soliton by a localized (point) inhomoge- 

neity in the framework of the nonlinear Schrodinger equa- 
tion. As is well known, this equation arises in the description 
of the nonlinear dynamics of quasiparticles in many prob- 
lems in the physics of condensed matter. For example, the 
excitations of a weakly nonideal Bose gas in the self-consis- 
tent field method can be described by this equation (see, e.g., 
Refs. 1 and 2). The analysis of the dynamics of nonlinear 
magnetization waves in a ferromagnet with anisotropy of the 
"easy axis" type,3 like the problem of the motion of solitons 
along a quasi-one-dimensional molecular chain, reduces to 
the analysis of the soliton solutions of the nonlinear Schro- 
dinger equation. Finally, this equation describes the dynam- 
ics of the envelope of the phonon excitations in intense 
pulsed action on a and also the dynamics of surface 
nonlinear waves in dielectrics or  semiconductor^.^ 

The nonlinear Schrodinger equation, with a specially 
chosen scale of coordinate has the form 

where the parameter w, determines the gap in the spectrum 
of the linear excitations (i.e., in the dependence of the fre- 
quency w on the wave number k )  : 

and the parameter g is a characteristic of the pair-interaction 
potential of the quasiparticles. 

In the following we shall consider a point impurity that 
locally changes the characteristic frequency w,. Then we 
must introduce into the right-hand side of ( 1 ) an additional 
delta-function term of the type S ( x ) $ ,  the amplitude of 
which characterizes the intensity of the action of the impuri- 
ty. We represent the solution of Eq. (1) in the form 

9 (x, t )  = g - ' ' 2 ~  (x, t )  e-'wot 

and obtain the following equation for the function u ( x ,  t ) :  
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where the parameter E characterizing the perturbation is as- 
sumed to be small (E < 1 ). 

Equation (2) with any value of the real parameter E 

admits the integral of motion 
m 

which has the meaning of the total "number of particles." 
In the linear limit ( u <  1), when the third term in the 

left-hand side of (2) can be neglected, the problem of the 
scattering of a wave excitation by a point inhomogeneity can 
be solved trivially. This scattering is characterized by a sin- 
gle quantity-the wave-reflection coefficient R,: 

where k is the wave number of the incident wave. II he wave- 
transmission coefficient To, by definition, is equal to 

In the scattering of N equivalent free quasiparticles by the 
impurity, RON of them are reflected and TON pass through. 

When the interaction of the quasiparticles, i.e., the non- 
linear term in (2), is taken into account, the situation be- 
comes more complicated, since the scattering of a cluster is 
characterized by a larger number of parameters. First of all, 
we note that in a homogeneous nonlinear system, i.e., with 
E = 0, there exists a bound state of quasiparticles that is de- 
scribable by an exact solution (of the nonlinear Schrodinger 
equations) in the form of a two-parameter dynamical soli- 
ton''. 

exp[-2igx-iA (t)  ] 
u, (x, t )  =2 iq  

ch[2r1(x--xo ( t )  ) I ' 

A ( t )  = 4 ( E 2 - q 2 )  t ,  xO ( t )  = - 4 ~ t ,  (6) 

where 27 is the soliton amplitude, characterizing the num- 
ber of quasiparticles bound in the soliton, 

and in this notation the soliton velocity v = - 46. The ener- 
gy of the soliton (5) is equal to 

and is made up of the sum of the energies of the free particles 

and the energy of their interaction (attraction): 

The form of the energy of attraction (9)  agrees with the 
well known property of a weakly nonideal Bose gas of parti- 
cles with attraction-that it collapses as N- rn . This unphy- 
sical property of the real system can be "corrected," e.g., by 
including a weak three-particle repulsion between the parti- 
c l e ~ . ~  

With the aid of (9)  it is easy to determine the binding 
energy of the quasiparticles in the soliton as the minimum 
work needed to "extract" one particle from the soliton and 
carry it over into the free state. The binding energy is equal to 

For 77 -+ 0 the soliton (5 ) is delocalized and corresponds 
to a linear wave with wave number k, where k2 = 45'. 

It is well known that the unperturbed nonlinear Schro- 
dinger equation, i.e., Eq. (2) with E = 0, is exactly integrable 
by the method of the inverse scattering problem.'Therefore, 
the investigation of the scattering process for small E is car- 
ried out naturally in the framework of perturbation theory 
based on the method of the inverse problem. 

2. RADIATION FROM A FAST SOLITON 

First of all, we shall consider the scattering of a suffi- 
ciently fast soliton by an impurity (the scheme of this scat- 
tering is shown in Fig. 1 and corresponds to { > 0).  By "suffi- 
ciently fast" we understand a soliton whose change in 
velocity upon interaction with the inhomogeneity is small 
and can be disregarded. The condition corresponding to this 
case has the form 

The spectral density n (A) of the quasiparticles genera- 
ted by the soliton being scattered can be calculated using the 
formula of the method of the inverse problem7 ( (b(A) 1' < 1 ) 

n (A)  =n-I 1 b ( h )  1 ', 

where b(A) is the scattering coefficient (the so-called Jost 
coefficient) used in the method of the inverse problem, and A 
is a real spectral parameter, related in a simple manner to the 
wave number k(A) and frequency w ( A )  of the linear waves 
generated7: 

The perturbation-induced change of the Jost coefficient 
b(A) in the case E #  0 is determined by the well known equa- 
tion8s9: 

m 

where, in the case under consideration, 9)1,2 (x, t; A )  and 

FIG. 1. Scattering of a fast soliton (the impurity is located at the point 
x = 0): a )  before the scattering, b)  after the scattering; N, and N, are the 
numbers ofparticles radiated forward and backward, respectively, and N' 
is the number of particles that remain bound after the scattering. 
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$,,, (x, t; A )  are the one-soliton Jost functions7 (written out 
explicitly in, e.g., Ref. 9),  and EP[U ] is the right-hand side of 
Eq. (2) ,  i.e., the perturbation, which in our case is equal to 

We shall assume that prior to the scattering (t-. - UJ ) 
all the quasiparticles formed a bound state. This implies that 
the initial condition for Eq. ( 11) should be chosen in the 
form b(A, t = - w ) = 0. Then the density n,,, (A ) of the 
total number of quasiparticles radiated by the soliton in the 
scattering is determined by the value of the Jost coefficient 
b (A, t )  for t- + w , and is equal to 

nrad(h) =n-'I b (h, t = + o ~ )  1'. (12) 

The solution of Eq. (1 1) can be obtained most simply 
for a fast soliton, when the change 4 ( S t  I of its velocity after 
scattering is small ( (S t )  - E & 6'). Then the expression for 
n,, ( A )  acquires the form 

nE2 
nrod (h) = 

[ (h-E.)2+q212 
4(2g)' ch2[n (A2-g2+qz)/4qg] ' 

(13) 

The spectral distribution nrad (A) is presented in Fig. 2. As 
follows from ( 13), for 11 & f it has two sharply pronounced 
maxima (the width of which is - 7 )  at the points 

a=* h,, h,= (E2-q2)%- g, 

and the estimates for the maximum values of the density are 
(17746) 

n,=nrad (-A,) - &'1E2, n2=nVad (L) - eZq4 /E6~n l .  

For A = 0 it follows from ( 13) that 

Away from the points A = + A, the function n,,, (A) falls 
off sharply, since for \A + A, 1 ) 77 this function has the 
asymptotic form 

e2 (A2+ t2 )  
(A) - 

E" 
We obtain the numbers of particles emitted by the soliton in 
the forward direction (N,) and in the backward direction 
(N, ) (see Fig. 1 ) by integrating the density ( 13) over the 
corresponding range of variation of the spectral parameter: 

m 0 

N ,  =J (XI dh. N .  = j nrad (A)  dh. (14) 
0 - rn 

Since the quantity (3)  is conserved, the number of particles 
that remain in the bound state is equal to 

We define the reflection coefficient R of the soliton as the 
ratio of the number N, of reflected quasiparticles to the total 
number N = 4177 of quasiparticles. From ( 12)-( 14) we have 

We compare (15) with the reflection coefficient (4) of the 
linear waves. Since in the derivation of ( 15) we used the 
inequality ( lo),  it is necessary to simplify (4)  by writing Ro 

FIG. 2. Spectral distribution of the particles radiated by a fast soliton (the 
case 71 ( 5 ) .  

~ 2 / 1 6 5 .  In the limit 17(c (a "light" soliton), the reflec- 
tion coefficient R first increases slowly to the value 1.004Ro 
in accordance with the law 

but begins to decrease at a > a, EZ 0.178. In the case t-4 7 (a 
"heavy" soliton) we obtain from ( 15) the asymptotic for- 
mula 

The general form of the function defined in ( 15 ) , 

is presented in Fig. 3. A characteristic feature of this depen- 
dence is the relatively rapid decrease of the reflection coeffi- 
cient with increase of the parameter q/g, i.e., with increase 
of the relative number of quasiparticles and of their binding 
energy in the soliton. As q/6-+0 the reflection coefficient 
tends, as we should expect, to its linear limit (4). 

We now calculate the number of quasiparticles radiated 
by the soliton in the forward direction. We denote by T  + the 
relative number of such particles: 

It is not difficult to verify that the quantity T +  is given by 
formula ( 15), in which under the integral we must make the 
replacement ( x  + 1 ) - (x - 1 ) '. The qualitative form of 
the dependence of the relative number of quasiparticles radi- 
ated in the forward direction is presented in Fig. 4. For large 
values of the parameter a = l;r/g the asymptotic form of the 
function T+ (a) coincides with the asymptotic form of the 
function R ( a )  and has the form ( 17). For r] 46 the number 
of particles radiated in the forward direction is substantially 
smaller ( - R, a4 ) : 

FIG. 3. Dependence of the relative number of reflected particles on the 
parameter 71/g for 1.~17 ($; the case 7/<- 0 corresponds to the scattering 
of a linear wave. 
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parameters that are as yet undetermined. A simple calcula- 
tion gives 

FIG. 4. Dependence of the relative number of particles radiated in the 
forward direction on the parameter v/{. 

We shall discuss the results briefly. First of all, in the 
limit a< I, when the soliton of the nonlinear Schrodinger 
equation is locally close to a linear wave (a  "light" soliton), 
we have the following situation: In the principal approxima- 
tion (to within terms -a2) the fast soliton radiates linear 
waves only in the backward direction, i.e., all the quasiparti- 
cles that have passed through the impurity remain in a 
bound state. Thus, the transmitted wave corresponds to a 
"pure" soliton. 

A characteristic feature of the scattering of a "heavy" 
soliton (g)g)  is the exponentially small radiation intensity 
(and exponentially small coefficients R and T t  ) for large 
values of the parameter a. This result can be understood 
without difficulty from simple physical considerations: in 
this limit the binding energy of all the quasiparticles in the 
soliton ( - 7,73) is substantially greater than the kinetic ener- 
gy of the soliton ( -g27), and therefore for 7 ) { it is much 
more difficult to "tear" a quasiparticle away from the soliton 
than it is in the opposite case. This circumstance is manifest- 
ed in the decrease of the quantities R and T+.  

3. EVOLUTION OFTHE SOLITON PARAMETERS 

In our treatment of the scattering of a fast soliton it was 
assumed that the parameters of the soliton were specified 
and did not depend on the perturbation This could be done in 
accordance with the condition ( 10). If we disregarded this 
inequality, it becomes necessary to analyze the change of the 
parameters of the soliton in the interaction of the soliton 
with the impurity. It is well known that the change induced 
in soliton parameters by the action of a perturbation (in our 
case, an inhomogeneity) can be found in the adiabatic ap- 
proximation. The adiabatic approximation is based on the 
fact that the shape of the soliton is described as before by the 
expression (5) but its parameters 6, x,, A, and 7 are func- 
tions of the "slow" time. In our case the condition for appli- 
cability of the adiabatic approximation is the requirement 
that the intensity of radiation of particles during nonsteady 
motion of the soliton be small. One of these conditions has in 
fact been used in the form of the inequality ( 10). The other 
will be formulated below in the form of the inequality (27). 

The following is a very simple derivation of the equa- 
tions determining the time dependence of the soliton param- 
eters. We write the Hamilton function for the perturbed sys- 
tem (2)  under consideration: 

m 

and take as the function u (x, t )  the expression (5)  with 

We now assume that the relations between the canonically 
conjugate variables that correspond to the soliton in the un- 
perturbed system remain unchanged after the perturbation 
is switched on. These canonically conjugate variables can be 
introduced naturally in the framework of the method of the 
inverse scattering problem7: 

pi=-4g ,  2,=2qxo, (19) 
p2=4q, z2=A. 

If we now represent the Hamilton function ( 18) as a func- 
tion of the canonically conjugate variables (19) and write 
the Hamilton equations for these variables, i.e., 
dpk/dt = - dH/dzk, dzk/dt = 6'H/6'pk ( k  = 1, 2), then 
as a result we obtain the following equations for the initial 
soliton parameters: 

If we do not impose restrictions on the amplitude E of 
the perturbation, Eqs. (20) can be regarded as a conse- 
quence of the variational principle based on the Hamiltonian 
( 18 ) . However, it is necessary to keep in mind that Eqs. (20) 
are the first step in a systematic perturbation theory for soli- 
ton~. ' .~  

As follows from (20a), the amplitude of the soliton in 
the adiabatic approximation is not changed: 7 = 7, 
= const. The equations (20b) and (20c) are decoupled 

from Eq. (20d) and reduce to equations of classical mechan- 
ics, i.e., they describe the motion of a particle of unit mass 
with coordinate p = 27x0 in the effective potential 

u ( p )  =8q3&/ch2p.  (21) 

We note that the strength of the effective potential (2 1 ) de- 
pends in an essential way on the amplitude of the soliton. 

From the system (20b), (20c) we obtain the following 
laws of variation of the coordinate x, ( t )  in the scattering of a 
soliton by a defect: a) In the case 412 < VE for E > 0 (reflec- 
tion of the soliton from the impurity) 

1 
xo ( t )  = - - arsh 

2~ 

b) In the case 4g2 > TE for E > 0 and the case of any g2 for 
E < 0 ("flight" of the soliton over the impurity) 

1 
xo ( t )  = - - ~ r s h [ (  I - 5) ' ~h (8qE0t)  1. (23) 

2 11 

where go r ( ( t  = - co ). The soliton velocity u = - 4g(t) 
and soliton phase A(t) for a known dependence x, ( t )  are 
determined by the relations (20b) and (20d). For E < 0, os- 
cillatory motion of the soliton about the attractive inhomo- 
geneity is also possible (a static bound state of the soliton 
with the impurity is equivalent in the linear limit to so-called 
local  oscillation^'^). However, we do not consider such solu- 
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tions here, as we are interested only in processes of the scat- 
tering type. 

The evolution of the soliton parameters that follows ei- 
ther from thedependence (22) or from (23) should be taken 
into account in the calculation of the radiation from the soli- 
ton in the cases when the condition I E J ~ < ( ~  is not fulfilled 
and the soliton is not fast. 

4. RADIATION FROM A SLOW SOLITON 

We shall calculate the radiation generated by a soliton 
for c2< I E ( ~ ,  when the kinetic energy of the soliton is com- 
parable to the energy of its interaction with the impurity. 
Since the condition \ E ( O  < 1 is assumed to be fulfilled, we 
carry out the calculation by perturbation theory, starting 
from the general formula ( 12), where b (A, + w ) represents 
the limiting value of the solution of Eq. ( 11) with the condi- 
tion that b(A, - oo ) = 0. Taking into account the depen- 
dence of the soliton parameters on the time, we can obtain 
the following general expression for Ib(A, + oo ) 1: 

exp {-4ihzt+iA (t) ) 
/b(h,+w) 1=2ql e J dt 

- - ch [ 2 ~ 0  ( t )  1 

Now, in place of x, ( t ) ,  g(t) ,  and A(t) we must substitute 
the solutions of Eqs. (20b), (20c), and ( 20d). 

Before considering the radiation from a slow soliton, we 
note that the use of Eqs. (20) for calculating the reflection 
coefficient R of a fast soliton with allowance for the condi- 
tion ( 10) gives a correction of order E ~ / <  to the result ( 15 ) . 
We have verified that in the limit q/&0 this correction 
coincides with the next (not taken into account previously) 
term of the expansion of the result (4)  of the linear approxi- 
mation. 

We turn now to the study of the process of the scattering 
of a slow soliton. But first we discuss the conditions for ap- 
plicability of our perturbation theory in the case when the 
soliton parameters become comparable to the small quantity 

I E I .  The energy ( 18) of a soliton interacting with a point 
impurity can be represented in the form 

where U,,, is the energy of the interaction of the soliton with 
the inhomogeneity: Ui,, - q 2 ,  and the first term gives the 
energy (8)  of the soliton before the scattering. The condi- 
tions for applicability of the perturbation theory can be ob- 
tained either from the requirement that the kinetic energy of 
the soliton be much greater than the energy of its interaction 
with the impurity, 

or from the requirement that the binding energy is greater 
than the interaction energy: 

The condition (26) in the form ( 10) was used by us in Sec. 2 
in the calculation of the radiation from a fast soliton. The 
second condition, i.e., the condition (27), becomes impor- 

tant in the study of the scattering of slow solitons, for which 
c: 41~117. 

Unlike the scattering of free quasiparticles, the process 
of the interaction of a bound state of quasiparticles with an 
impurity depends in an essential way on the type of local 
inhomogeneity, i.e., on the sign of the parameter E [compare 
(4) with (22) and (23) I .  We first consider the case E > 0 ( a  

repulsive impurity), when the adiabatic dynamics of the so- 
liton is characterized by the law of motion (22), describing 
the reflection of the soliton from the impurity. This means 
that the reflected wave will contain not only free quasiparti- 
cles but also a bound state of a certain number of quasiparti- 
cles (a  reflected soliton). For the case (27), using the formu- 
las (24), (22), (12), and (14), we obtain 

The result (28) differs in an essential way from (15) and, in 
particular, contains the small parameter E to the first power. 
For q b lo, as in the case of the fast soliton (see Sec. 2),  the 
radiation turns out to be exponentially small. 

The interaction of a bound state of quasiparticles with 
an attractive (E < 0 )  inhomogeneity occurs in a different 
manner. In this case, in particular, capture of the slow soli- 
ton by the impurity can occur. We shall consider the limiting 
case 6, - 0. According to (23 ), for 5, = 0 the change of the 
soliton coordinate x,  is determined by the expression 

Calculating Ib(A, + w ) 1 from the general formula (24) 
with the aid of (29), we obtain the reflection coefficient R in 
the form 

The result (30) has been written for the case (E(  <l;l. 
It is not difficult to verify by direct calculation that the 

number N, of free particles radiated from the soliton in the 
backward direction and the number N ,  of particles radiated 
in the forward direction coincide in this approximation. 

The energy carried away by the free quasiparticles, after 
subtraction of their rest energy, can be obtained if we make 
use of the well-known formula of the method of the inverse 
problem7: 

Substituting Jb(A, + w ) )  from (24) into (31) and taking 
(29) and (30) into account, we obtain the following asymp- 
totic dependence for JE(  47: 

where R is given in (30). It follows from (32) that the ener- 
gy carried away by one quasiparticle is equal to q 2 ( ( ~ ( /  
7) ' I2  4 l;12, i.e., is considerably smaller than the binding ener- 
gy of the quasiparticle. In other words, the energy carried 
away by free particles is considerably smaller than the work 
expended on extracting them from the soliton. 

The results (30) and (32) make it possible to go over to 
the analysis of the problem of the radiative capture of a soli- 
ton (see the similar problem for a kink of the sine-Gordon 
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equation in Ref. 11). We suppose that a soliton with low 
velocity ({ = lo 4 1 at t = - co ) is incident on an impurity. 
We find that limiting value {A for which the soliton com- 
pletely loses its kinetic energy as t + + co as a result of the 
radiation of free quasiparticles (i( + co ) = 0). We use the 
laws of conservation of the energy and number of particles. 
The energy of the system as t-* + oc contains, besides the 
energy of the bound state (the soliton) at rest, the contribu- 
tion of the radiated energy carried away by the free quasipar- 
ticles; i.e., we can write 

f6(Eo%-'/sq3) =Elod-"/3 ( q + 6 ~ ) ~ ,  (33) 

particles occurs. The result (35) has a simple physical mean- 
ing: If we multiply (35) by 4N, where N is the number of 
quasiparticles bound in the soliton, then in the left-hand side 
we obtain the kinetic energy of the incident soliton, and in 
the right-hand side we obtain the work necessary for the 
detachment of 2RN particles (we recall that N ,  2 N, ) . 

The authors are grateful to V. M. Agranovich and A. S. 
Kovalev for discussion of the results of the paper. 

" We use the notation adopted in the monograph Ref. 7. 

where ST is the change in the amplitude in the soliton on 
account of the radiative losses. From the condition of con- 
servation of the number of particles it follows that 

where 

N,,d=N,+Nt%2N,=2RN. 

Since the kinetic energy of the radiated particle is con- 
siderably smaller than its binding energy in the soliton, we 
can omit the quantity E,, in (33). Subsequent simplifica- 
tions of the relations (33) and (34) and an elementary cal- 
culation lead to the following expression for the limiting val- 
ue{;: 
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