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A full classification is given of the mutual disposition of R and Tregions of space-time as a 
function ofthe structure of the energy-momentum tensor. The geometry corresponding to the 
chaotic inflation scenario is discussed. 

1. INTRODUCTION We shall choose the coordinate q so that it increases during 
motion from the chosen center outward. 

The question of the origin of the universe and of the first 
few moments of its development is intimately related to the ~ h ,  ~~~d ~~~~i~~~ of s,,ace-time: definitions 
topology and global geometry of the corresponding space- 

- 
time manifold. In its general form, this problem is unusually 

Curved space-time can be divided into parts (R and T 

complicated and multifaceted. In particular, it is important regions4) that differ fundamentally in the way test f articles 
to know the structure of infinities, horizons, and singulari- behave within them. This partition arises because the vector 

ties. ~h~ subdivision of space into R and T regions is normal N, 5 r ,  to the surface r = const can be either space- 

important. In this paper, we shall confine our attention to like Or time1ike. In the former case, the quantity 

spherically symmetric spaces, and obtain a number of com- 
pletely general relationships that limit the possible structure 
of space-time. In particular, we shall find all the possible 
variants of the mutual disposition of the R and T regions, 
and the relationship between a given disposition and the 
structure of the energy-momentum tensor. 

It was recently that the existence of inflating 
fluctuations in the chaotic inflation scenario3 was frequently 
due to a "molehillM-type singularity (or, as it is still called, a 
"white hole"). We shall examine possible limitations im- 
posed by the R and T classification on the initial case of the 
universe in this scenario (an inflating fluctuation is always 
related to the existence of a T+ region of space-time). All we 
find is that the existence of such T+ regions is due to an 
initial singularity, but we do not determine its type (al- 
though we admit, say, a Friedman singularity). However, 
the final answer will have to await a more informative analy- 
sis, similar to that carried out in Ref. 1 (unfortunately, Ref. 1 
was essentially confined to a comprehensive analysis of the 
pure vacuum case in the thin-wall approximation). 

2. SPHERICALLY SYMMETRIC,SPACE-TIME 

The interval between closely spaced points in the case of 
spherical symmetry can be written in the form 

where 

andgoo, go,, g, ,, and rare functions of only the two variables 
q and t. In the metric given by ( 1 ), we can transform to the 
new variables ij = q(t, q )  and i = t(t, q) in such a way that 
this transformation does not involve angle variables. Conse- 
quently, two coordinate conditions can be imposed without 
loss of generality. One of them can be taken to be the ortho- 
gonality condition go+ = 0. The metric then assumes the 
form 

is negative, A < 0, and the corresponding region is called the 
R region (in flat space-time, the R region completely occu- 
pies the entire manifold). In the second case we have A > 0. 
This is referred to as the T region. In the coordinate system 
(2 )  that we have chosen, we have 

Since A > 0 holds in the Tregion, the condition r = 0 cannot 
be satisfied, i.e., the conditions i-> 0 and r < 0 are invariant 
under continuous coordinate transformations in the T re- 
gion. The region where r > 0 holds will be referred to as the 
expansion T region (or T+ region), whereas the region 
where ; < 0 holds will be called the contraction T region (or 
T- region). We shall define R + as the region with r' > 0 and 
R-  as the region with r' < 0. In the R region, an observer 
located on an r = const surface can dispatch two light rays 
along the radius: one in the inward direction and the other in 
the outward direction relative to the surface. Since, in the T 
region, the r = const surface is spacelike, the two outgoing 
radial light rays lie on either side of it (looking ahead, we 
recommend examination of Fig. 1 ) . Consequently, any ma- 
terial object can cross the given r = const surface only once 
in the T region. Because of this, the definition of the T- 
region ( T+ region) is also related to the existence of trap- 
ping (antitrapping) surfaces. 

The above definitions are summarized in the Table. It 
turns out that the R and T regions cannot be disposed of 
relative to one another in an arbitrary manner in space-time. 
However, before we proceed to the examination of this ques- 

TABLE I. 
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tion, we must write down the Einstein equations in a form 
convenient for subsequent use. 

2. Einstein equationsfor spherically symmetric metric 

The Einstein equations in the metric given by (2 )  have 
the form5 

Multiplying the first equation by ?r' and the second by 
( - e - ' ?k) ,  and adding, we obtain 

e-v ( 2 r ~ ' f - r f 2 y r + f 2 r ' ) - e - R ( 2 r r ' r r ' +  rr3-rrr2h') +r' 

which can be written in the form 

Similarly, multiplying the second equation by fir and the 
third by e - " ?r' and adding, we obtain 

Equations ( 7 )  and (8) can be combined into the single vec- 
tor equation that we require: 

[ r ( I + A )  ],U=8nxTb[Tr,,-Ts\'r,v] 
( ~ 1 ,  v=O, I ) ,  T--l 'L,o+Tl' .  

(9) 

We note that, in the case of spherical symmetry, the - compo- - 
nents T: = T: are invariants of the transformations t = t(t, 
q), q = q(t, q). Consequently, the sum T = T:  + T i  is also 
an invariant. 

This vector equation (equivalent to two scalar equa- 
tions) must be augmented by the conservation equation 
(10) 

FIG. 1. Space-like boundary between R and T 
regions: (a)  and (b) correspond to 8 > 0 ,  and 
(c)  and (d )  toB<O. 

where the semicolon represents the covariant derivative 
with respect to the complete four-dimensional metric (2 ) .  It 
cna be shown that the two equations in (9)  and the two in 
( 10) constitute a set of equations that is equivalent to the set 
of four Einstein equations for a spherically symmetric metric 
[the proof of this relies on the integrability of the system 
(911. 

3. GLOBAL GEOMETRY OF SPHERICALLY SYMMETRIC 
SPACE 

We must now determine the different mutual disposi- 
tions of the R and Tregions in space-time that constitute the 
solution of the Einstein equations. The surface separating 
these two regions (we shall represent it by the symbol 2 )  is 
defined by the equation A = 0 and can be spacelike, timelike, 
or isotropic. We shall investigate all three cases. Our strate- 
gy will be as follows. We shall send test light rays from the 
surface to establish the sign of A in the neighborhood of 2.  
This means that our analysis will be most conveniently ex- 
pressed in terms of isotropic coordinates. An arbitrary 
spherically-symmetric metric can be written in terms of 
these coordinates in the form 

We shall choose the coordinates u and v so that they will be 
directed into the future. In the signature ( + , - , - , - 1, 
we then have H >  0. Equation (3)  yields the equation of the 
surface 2: 

Hence, it follows that we can choose the coordinate v so 
that the following condition is satisfied on Z: 

i.e., either the lines of constant r cut the surface Z in the same 
way as a ray of light (at 90" on the Penrose diagram), or the 
Z and r = const surfaces coincide, since they are isotropic. 

On the A = 0 surface, the components u and v of the 
Einstein equations (9)  assume the form 

FIG. 2. Timelike boundary between R and T 
regions: (a)  and (b)  correspond to P>O, and 
(c) and (d )  toP<O. 
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The vector normal on the surface I: has the components 
N,, = A,, . We now introduce the invariant 

A ~ E A ~ ~ A , ~ ~ ' ~  

and the notation 

In that case, sign A, = - ap and, for a0 > 0, the surface I: 
is timelike whereas for ap< 0 it is spacelike; when I: is iso- 
tropic, we have either a = 0 or p = 0. 

The sign of the T region is uniquely related to sign r,, . 
Let us suppose that sign r, =p;  it then follows from the 
condition that the vector r, lies in the T region that it also 
lies in the T, region because the coordinates u and v increase 
in the direction of increasing time. On the boundary of the R 
and Tregions, on the other hand, this means that the vector 
r, either enters or leaves the Tp region. Henceforth, we shall 
also use the following relationships that result from ( 14): 

sign A,=a sign r,, sign A"=-+ sign r,. (17) 

We now turn to a systematic analysis of the resulting possibi- 
lities. 

1. Spacelike surface B (i.e., a@ <0) 

1. I.  Suppose that p>O (and, consequently, a ac 0). Thus, 
we shall agree that, on all the diagrams we take the time axis 
upward and the coordinate q axis to the right. In the case of 
the spacelike surface 2, this will mean that the Tregion can 
lie either above or below the R region. Suppose that the T 
region lies above the R region. Then, since A > 0 in the T 
rgion, we have A < 0 in the R region, and we conclude that 
sign A, = sign A, > 0 on the surface Z. From ( 17) we now 
find that sign r, < 0, and the Tregion is a T- region. Similar- 
ly, we find that the Tregion lying above the R region is a T+ 
region. The sign of the R region in both these cases is unde- 
termined and can be arbitrary. The corresponding mutual 
disposition of the R and Tregions is shown in Figs. la and b. 

1.2. 8 ~ 0 .  All the possible situations corresponding to 
this case will be obtained by replacing T, with T-, through- 
out Figs. l a  and b. The convexity of the r = const lines is 
then replaced with the opposite convexity. The result is 
shown in Figs. l c  and d. 

2. Timelikesurface B (a@>O) 

2.1. p> 0 (and, consequently, a> 0). The T region can 
now lie on the right or on the left of the R region. Suppose 
that the T+ region lies on the right. We then have sign 
A, = + 1, sign A, = - 1 [see ( 17)] and, since dA > 0 as 
we move from R into T, it is clear that the u line is directed 
into the T region and the v line into the R region (see Fig. 
2a). Next, the T+ region corresponds to r ,  < r,, so that R + 

lies to the left of T,. Similar reasoning applied to the possi- 
ble disposition of the T,, T- regions leads to the conclusion 
that, whenp> 0, only the situations shown in Figs. 2a and b 
are possible. 

2.2. p<O. All the possible dispositions of R and T re- 
gions for p < 0, ap > 0 can be found by replacing R, with 
R -, . The convexity of the r = const lines is then reversed; 
see Figs. 2c and d. 

3. Isotropic surface Z 

3.1. ap=O, P>O. From Eq. ( 14a), we find that A, = 0. 
Consequently, the u line points along the A = 0 surface and 
the direction of the v line is determined unambiguously. Re- 
peating the discussion given in Sec. 2.1, we find all the possi- 
ble mutual dispositions of R and T regions. They are shown 
in Fig. 3a. We emphasize that, actually, we have obtained 
only the local form of the boundary between R and T re- 
gions. Figure 3 collects together all the possible combina- 
tions in a maximally extended configuration (in which the 
conditions of Sec. 3.1 remain in force throughout). The Pen- 
rose diagram of a real metric can contain only certain sub- 
blocks of Fig. 3 (see later). This reservation applies to all the 
diagrams in Sec. 1-3. 

3.2. ap= 0, P < 0. The corresponding diagram is shown 
in Fig. 3b. 

3.3. ap=O, a> 0. It follows from ( 14b) that A, = 0. 
Since r, = 0 as well, we find that, in this case, the v points 
simultaneously along the A = 0 and r = r, = const surfaces. 
Consequently, by definition, the A = 0 surface must be the 
event horizon, i.e., an isotropic surface that does not run to 
r = 00. Hence,the r = const surfaces now do not cut the sur- 
face A = 0. However, the function r ,  must be continuous 
throughout (since, otherwise, we would have a singular sur- 
face and r,, would appear in the Einstein equations). 
Hence, it follows that, if the radii increase along u in the T 
region ( T+ region), they will continue to increase in the R 
region near the boundary. If we now repeat the reasoning 
given in the last Sections, we find the possible dispositions of 
the R and T regions. They are shown in Figs. 3c and d for 
different signs of a. 

Summarizing Sec. 3, we note that the a > 0 diagram is 
obtained from the f l>  0 diagram by replacing Rp with T-, 
and reversing the direction of convexity of the r = const 
lines. This also applies to the a < 0, P< 0 diagrams. 

4. EXAMPLE. SYSTEM CONSISTING OF A SCALAR FIELD 
AND AN IDEAL FLUID 

We shall now apply the classification developed above 
to the important case of a system consisting of a mixture of a 
scalar field and an ideal fluid. The energy-momentum tensor 
for a system of this kind is 

FIG. 3. Isotropic boundary between R and T regions: ( a )  a = 0, b >  0; 
(b) a=O,b<O;  (c)D=O,a>O,and ( d ) b = O , a < O .  
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where p is the scalar field strength, L is its Lagrangian 
L = 1/2(~5',p)~ - V, E and p are, respectively, the energy 
density and pressure in the ideal fluid in terms of comoving 
coordinates, and u, is the 4-velocity of the fluid, normalized 
by the condition 224, u,/H = 1. 

In terms of the coordinates defined by ( 11 ), 

1 T," = - E-P 
2 H duqdvq+V(q) + 7, 

Consequently, in the system we are considering, we always 
have 

FIG. 4. Penrose diagrams for the Schwarzchild-de Sitter metric. 

wherep = 0, provided only E + p = 0 and p, = 0. It can be 
shown, using the Einstein equation (9) ,  that it also follows 
from these equations that p, = Oandd V/dp = 0, i.e.,/3 = 0 
corresponds to the pure vacuum case. Let us examine this 
case first. 

1. Vacuum case 

Suppose = 0 throughout the space-time. When this 
holds, the component T :  of the energy-momentum tensor is 
equal to a constant, i.e., the energy density of vacuum E,,, . 
We therefore have 

When E,,, = 0, there is no dependence on r in a, and 
a = - 1. The complete vacuum diagram with E,,, = 0 (i.e., 
the well-kown Penrose diagram for the Schwarzschild met- 
ric) is identical with that shown in Fig. 3d. 

In general, on the other hand, Eq. (9)  can readily be 
integrated in the vacuum case, T;I = E,,S,,: 

where 2xm is the constant of integration (from the bound- 
ary conditions and m is the mass in the Schwarzschild met- 
ric). Suppose m = 0, E > 0, in which case, we have ? = 3/ 
8 5 % ~  on the A = 0 surface and a = sign 2. It follows that a 
does not then depend on r and, being the diagram for the 
de Sitter universe, the complete diagram is identical with the 
diagram shown in Fig. 3c. When m # 0, E,,, # 0, the equation 
A = 0 can have two different real roots, two coincident 
roots, or no roots, where a assumes different values for dif- 
ferent roots. The three corresponding Penrose diagrams are 
the successive combinations of certain parts of diagrams 3c 
and 3d. They are shown in Fig. 4. 

2. Friedman universe 

Now suppose that p #O. We shall assume, for the sake 
of simplicity, that there is no scalar field in the system. In 
that case, 

We shall also confine our attention to the isotropic homo- 
geneous model. In terms of the corresponding coordinates 
(defined by the condition u0 = 1 ), the Einstein equation (9) 
is readily integrated and yields 1 + A = 8nx?~/3. Substi- 
tuting this with A = 0 in (23), we obtain 

This leads to the following classification of the types of 
Z surface: the A = 0 surface is spacelike ifp > ~ / 3 ,  isotropic 
ifp = ~ / 3 ,  and timelike if p < ~ / 3 .  

The diagram of Fig. 5b thus corresponds to the closed 
Friedman universe k = + 1 ) withp = ~ / 3 .  Only half of this 
diagram corresponds to the open model (k  = 0, k = - 1 ), 
where the diagonals must be associated with r = a, (Fig. 
6b). Similarly, using the diagrams of Figs. la and b with 
p > ~ / 3 ,  and Figs. 2a and b withp < ~ / 3 ,  we can readily find 
the Penrose diagrams for all the possible configurations 
(summarized in Figs. 5 and 6).  

Chaotic inflation 

Let us now suppose that there is a region of space-time 
with an approximately vacuum-type equation of state. Let us 
place the origin of coordinates at the center of this "fluctu- 
ation." Suppose that, at some instant of time, the size of this 
fluctuation becomes relatively large, i.e., it exceeds the cor- 
responding Hubble radius, so that part of the "fluctuation" 
is located in the T+ region. This situation can readily be 
imagined by considering that the "boundary" of the fluctu- 
ation cuts the T+ region of diagram 3c, where, to the left of 
the boundary, the metric corresponds to Fig. 3c, while, to 
the right, it is arbitrary. We emphasize that the phrase 
"boundary of the fluctuation," is conventional because we 
are not using the thin-wall approximation at all. Instead, we 
can find the answer to a number of interesting questions by 
investigating the boundary between the R and T regions 
(which exists in the simple sense of this word), subject only 
to the large assumption that the fluctuation is sufficiently 
large for the T+ region to be present in the manifold under 
consideration. We now ask: what is the possible environ- 
ment of this fluctuation and, correspondingly, what should 
be its history? 

The most trivial possibility corresponds to diagram 4c, 
in which the T+ region occupies all space-time. However, 
this diagram does not correspond to the actually observed 
universe or the ideology of the inflationary scenario. We 
must therefore consider all the diagrams of Figs. 1-6 that 
contain the T+ region, and this will readily lead us to the 
following conclusions. 

All the diagrams corresponding to p>O are constructed 
so that the T+ region extends either up to the maximum 
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FIG. 5. Closed Friedman universe: (a )  p < ~ / 3 ,  (b) p = &/3, ( c )  p > &/3. 

possible values of q ( T+ then lies lower than T- ) or the R - 
region lies to the right of T+ (diagrams with /3 < 0 corre- 
spond to a state of matter that is unknown to us; in particu- 
lar, this does not correspond to the system consisting of a 
perfect liquid and a scalar field). Hence, it follows immedi- 
ately that an inflating fluctuation cannot be produced in a 
"laboratory." 

However, these conditions in themselves do not impose 
a stringent enough limitation on the initial state of the Uni- 
verse with an inflating fluctuation. Actually, the sufficient 
condition is that, at the initial time, the T+ region extends 

FIG 6. Open Friedman universe: ( a )  p < &/3, (b )  p = &/3, (c )  p >  &/3. 

is not exceptional and occurs, for example, in the Friedman 
universe near a singularity. 

The authors are indebted to A. D. Linde and V. A. Ru- 
bakov for useful discussions. 
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