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A theoretical analysis is reported of the mode structure of the radiation produced by an array of 
periodically distributed lasers with effective coupling between the elements. The coupling is based 
on the reproduction of the periodic field structure. The possible mode types, losses, and 
eigenfrequencies are determined for infinite and finite sets of lasers assembled in triangular and 
rectangular arrays. The influence of mirror misalignment, saturation of the active medium, and 
random phase spread among the individual channels on the modes and their Q-factors is 
examined. 

One way of increasing total laser power output is to 
increase the number N of individual lasers, each with its 
pumping and cooling system.' The power output of an array 
of lasers is proportional to N. On the other hand, it is well- 
known that, when the radiation from the individual lasers is 
mutually coherent, and is focused to a common point, the 
power density at the central spot can be proportional to N 2  
(the spot size is proportional to l/N). It follows that the 
phase locking of lasers as a means of increasing their power 
output is a very important question. 

A relatively large number of papers, both theoretical 
and experimental, has been devoted to this problem. It ap- 
pears that the first theoretical paper was that by Spencer and 
Lamb2 on the phase locking of two lasers. As far as we know, 
experimental work has been confined to the phase locking of 
semiconductor lasers (see, for example, Refs. 3 and 4) and 
CO, lasers (Refs. 5 and 6) ."  Phase locking is achieved by 
transferring a fraction of the output of each laser to the 
neighboring lasers. As a rule, this fraction is small and, in 
arrays consisitng of a large number of lasers, coupling can be 
achieved by diffraction "leakage" into neighboring lasers. In 
this paper, we examine an effective method of phase locking 
a set of lasers, proposed earlier in Ref. 8 and based on the 
Talbot effect (self-reproduction of periodic fields). 

FORMULATION OFTHE PROBLEM 

It is obvious that the parameters of the lasers to be phase 
locked must be as close to one another as possible. It is tech- 
nologically convenient to make a compact assembly of al- 
most identical lasers so that it forms a laterally regular array. 
To simplify the optical system, it is natural to use resonators 
with mirrors that are common to all the lasers. Coupling 
between individual lasers is then most simply accomplished 
by diffractive spreading of the individual beams.' The geom- 
etry of the system shows that diffractive coupling is accom- 
panied by losses of radiation between the lasers. If the con- 
struction of the array of lasers is such that diffractive 
coupling inside the active volume is not possible (this is the 
typical situation for gas lasers), one of the common mirrors 
of the resonator must be moved away from the active medi- 
um so that the diffractive coupling becomes sufficiently ef- 
fective. It is :!ear that, in the situation described above, it is 
difficult to attain a large coupling factor and, hence, stable 
phase locking. Actually, experiment5 shows that this mode 
of operation of CO, laser arrays is frequently interrupted. 
The situation becomes radically different8 when one of the 
plane mirrors is placed at a distance equal to half the self- 

reproduction distance of the periodic pattern of the ends of 
the individual channels, i.e., the so-called Talbot distance. 
The diffractive image of the channel ends, if they radiate in 
phase, is located precisely at these ends. On the other hand, 
since a relatively large number of neighbors contributes to 
the diffraction spot, this situation corresponds to strong cou- 
pling between the channels. If the radiation issuing from the 
channel ends is not phase-locked, the diffractive image is 
destroyed and radiation losses increase abruptly. The above 
effect is thus seen to lead to the selection of the phase locked 
regime. Since the self-reproduction length depends on wave- 
length, an array of lasers with this type of coupling can be 
frequency-tuned by displacing the mirror. 

To evaluate possible practical applications of the above 
method of phase locking, we must determine the spectrum 
and the losses of collective modes of an array of lasers, and 
then estimate their sensitivity to mirror adjustment (longi- 
tudinal displacement and misalignment) and to the spread 
among the parameters of the individual channels. These 
questions are examined below. 

FIELD STRUCTURE FOR AN INFINITE ARRAY 

The propagation of radiation in an array of lasers with 
Talbot coupling can be divided into two basic stages. One is 
the double transit along the channels containing the active 
medium, and the other is propagation in the atmosphere up 
to the reflecting mirror M ,  and back again. It is clear that a 
general description is possible for the second stage. As far as 
propagation along an individual channel is concerned, it is 
natural to suppose that it can be characterized by a set of 
lateral eigenmodes and a discrete spectrum of eigenfrequen- 
cies. We shall confine our attention to one selected lateral 
mode (e.g., with Fresnel number evaluated along the radius 
and the length of the channel 5 1 ) that can be described at 
the channel end by the field distribution f ( r ) .  Without loss 
of generality, the function f ( r )  can be taken to be real and 
normalized, so that 

J f 2 ( r )  @--I ,  
S 

where Sis  the area of the end of the channel. We shall neglect 
differences in f ( r )  between different channels. 

The field on the plane containing all the channel ends 
can then be written in the form 

where R,, is the coordinate of the center of the channel (m,  
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n), i.e., R,, = ma, + na,, where a,, a, are the translation 
vectors of the channel ends in the array, p is the coordinate in 
the plane, and C(R,, ) is the amplitude of the field envelope. 
[In writing ( 1 ), we assumed that the field was linearly polar- 
ized and that the scalar approximation was valid.] The vec- 
tors a, and a, are listed in the Table for different types of 
array. 

Over a distance z, the field transforms so that 
ik, 

E(z. P) = - exp (ik.2) 5 E (pr) enp [$ (p-p') '1 dp', 2nz 

where ko is the wave vector. Assuming that a plane mirror of 
sufficiently large aperture is placed at a distancez/2 from the 
plane containing the channel ends, we find that the lateral 
structure of the reflected radiation is described by (2).  Next, 
we assume that the projection of this distribution onto ( 1 ) is 
reproduced to within a constant factor as radiation propa- 
gates back and forth along the system of channels. The prob- 
lem of determining the field in the resonator then reduces to 
the eigenvalue problem for a set of linear equations: 

R ' 
where 

y' is the eigenvalue whose modulus determines the resonator 
losses and whose phase determines the eigenfrequencies," 
and A is a constant representing the total phase gain and the 
change in the amplitude in the channels. In our analysis, we 
shall consider the quantity yl/A = y. 

When the distance between the perfectly reflecting mir- 
ror and the channel ends is z,/2, i.e., half the Talbot distan- 
ce,there is a known limiting solution (N- co ) of (3)  that 
corresponds to the complete reproduction of the equal-phase 
field distribution over the tubes, C(R) = const. The expres- 
sions for z, for arrays of different types are listed in Ref. 9. It 
is obvious that Iyl = 1. 

This is most simply verfied by rewriting (2)  for the 
Fourier transforms of the field 

E(z, q) =E(O, q) exp (-izq2/2ko) exp(ik,z) (5 

and recalling that E ( p )  is a periodic function, so that q is a 
multiple of 2rb, where b is the reciprocal lattice vector. We 

FIG. 1 

then have b = mb, + nb,, where m, n, are integers; the vec- 
tors b, and b, are defined in the Table. 

Since 22zTb2/ko is a multiple of 2n- for all b, the phase 
factor in (5)  is the same for all the Fourier components, 
which means that we hkve the self reproduction effect. 

Two questions arise. ( 1 ) Does this solution exhaust all 
the self-reproducing modes and (2) what is the minimum 
distance for the self-reproduction effect to occur? 

The eigenvalues of (3)  are readily found in the case of 
an infinite array of lasers (N- co ) : 

R 

since M is a difference matrix, i.e., M(R, R') = M(R-R'). 
The eigenvectors satisfy C(R) = exp(iq-R), i.e., the field 
structure is the discrete analog of a plane wave. The expres- 
sion for M(q)  can be simplified when z = z,: 

Since the function f ( r )  is finite and normalized 
[ s f 2 ( r ) d r =  11, it is readily seen from ( 7 )  that 
M(q = 0) = 1, as expected. It is also readily verified that, 
when q = q, = koa,/zT and q2 = koa2/zT, we again have 
IM(q)I = 1. 

Figure 1 shows the Brillouin zone for a triangular array, 
together with the vectors q, and q,. Figure 2 shows the phase 
distribution for the sources in the array in the case of a self- 
reproducing mode with q = q, [ E  = exp(2n-i/3) ]. We note 
that M(q , )  = M(q,) = exp( - 2?ii/3), i.e., the modes are 

TABLE I. 
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Type of array Number n of modes as a 

(elementary cell) 
lattice function of distance z, 

vectors from the mirror 

Triangular a l = ( l , O ) a  
2 

2 
(m-integer), then 

a bz=-( 'J , f )  n = 3m2 
a I / u  
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Rectangular with integer 
ratio of periods P 

al = (Pa, 0) 

aa = (0, a) 

1 
~ I = ( ~ . O )  

b = ( 0  ) 
~ f z , = n i > ,  

4 

then n = mlP' 



FIG. 2. 

degenerate in frequency and differ from the fundamental 
mode (q = 0) by the amount c/6L0, wherec is the velocity of 
light and Lo the separation between the cavity mirrors. 

In the case of an infinite rectangular array, the system 
defined by (3) can be factored. It will therefore be sufficient 
to consider a uniform periodic structure of radiators. In this 
case, in addition to the mode q = 0, we have the self-repro- 
ducing mode with q = koa/zT, when neighboring channels 
radiate in antiphase. 

It is thus clear that we have a positive answer to the first 
question. The Table shows the number of self-reproducing 
modes for distances between the mirror and the ends that are 
multiples of zT/4. 

The answer to the second question depends on the sym- 
metry of the array. For a triangular array, it can be shown 
that the minimum z for which the self-reproduction effect 
occurs is z,. For a one-dimensional periodic structure, the 
minimum distance is z = zT/4. This will reproduce a single 
structure with phase modulation (0, T),  i.e., C(n)  
= exp(im). 

In applications in which phase screens are not used, the 
most convenient situation is that of a uniform field phase 
distribution over the channels. Since, for a sufficiently large 
number N of tubes, there are a number of modes with similar 
losses, we have to consider the question of mode selection. 
We shall examine this for a triangular array. Some of the 
mode-selection methods can be based on the difference 
between the eigenfrequencies, i.e., on the use of elements 
with loss dispersion. Here, we shall consider the method 
based on the difference between the lateral structure of self- 
reproducing modes in an intermediate plane, e.g., at a dis- 
tance zT/3 from the ends of the tubes. Figure 3 shows the 
distribution of spots produced at this distance for different 
modes (q = 0, q = q,, q = 9,). The circles in Fig. 3 represent 
the channel ends and the points are the coordinates of the 

FIG. 3.  
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spot centers in the zT/3 plane. The numbers 0, 1,2 represent 
spot centers formed in the case where, for z = 0, the field 
distribution has the eigenvalues C(R)  = 1, C(R)  
= exp(iq,.R), and C(R) = exp(iq2-R), respectively. An 

analogous picture is obtained in the z = 2zT/3 plane by in- 
troducing the replacement 1 - 2,2 - 1. It is clear from these 
distributions that, by using the corresponding amplitude 
screen, located at a distance 2,/3 from the channel ends 
(i.e., at a distance xT/6 from the mirror), it is possible to use 
the losses to select the mode with C(R) = 1. 

THE INFLUENCE OF FINITE NAND OF ADJUSTMENT 
PRECISION 

Having established the field structure in the limit of an 
infinite array of lasers, we can now proceed to the question of 
the influence of a finite aperture and of effects associated 
with mirror adjustment errors. It is clear that, as the number 
of tubes is reduced, the diffractive image deteriorates, which 
should lead to an increase in the losses. The characteristic 
size for which the tubes are efficiently coupled is determined 
by the angle of divergence of radiation issuing from a single 
laser, Of k 8,,, -A /A, where A is the channel radius. We 
then have ISRIM -OfzT k a2/A, i.e., the number of strongly 
coupled channels is -a2/A2. Suppose that the size of the 
array is L$  /SR/, ?a2/A. One would then expect that the 
structure of the fundamental modes is not greatly distorted. 
We shall seek solutions of (3)  in the form 

C(R) =Y (R)  exp(iqo*R),q~=O, qi, q2, 

where q, corresponds to one of the self-reproducing modes 
and \V (R)  is a function that varies appreciably over a charac- 
teristic scale L. Since L % ISRIM, we shall suppose that \V (R)  
is a continuous function of its argument, which enables us to 
expand T ( R )  in (3)  into a Taylor series in powers of R'-R. 
We can then reduce (3)  to a differential equation for the 
envelope of the source amplitudes: 

where 

In deriving (8),  it was assumed that the matrix M had a 
finite second moment, i.e., ZR2M(R) < CQ. In other words, 
the Fourier transform of M(q)  [see (6 ) ]  should have the 
following form for I q - qo 1 -+ 0: 

It can be shown that this expansion is obtained when f (p )  
has no discontinuities, i.e., it vanishes on the boundary of the 
radiating region. The precise form off ( p )  is unknown, but 
the assumption that f (p )  has this property seems reasona- 
ble. 

To estimate the complex "diffusion coefficient," we 
note that /Vf 1 - f /A if the end of a channel radiates a plane 
wave. It follows that Re D- (a2/A2) Im D. In the weak- 
coupling limit (a%A),  Eq. (8)  reduces to the well-known 
diffusion eigenvalue problem. 

Equation (8)  requires the boundary conditions before 
the amplitude envelope can be determined for the array. It is 

Golubentsev etal. 678 



clear that, near the edge of the region occupied by the lasers, 
the radiation amplitude should fall because of uncompensat- 
ed diffractive losses. The shape of Y (R)  at this edge can be 
found by solving (3)  by the Wiener-Hopf method (see, for 
example, Ref. 13) for a semi-infinite array of lasers. Using 
the analogy with the Milne problem in neutron transport 
theory,14 one can argue physically that the solution of the 
problem for a semi-infinite array of lasers will yield the "ex- 
trapolated" length 1, whose order of magnitude is the same as 
that of a2/A. The boundary condition for (8)  is that Y(R)  
must vanish at a distance 1 from the boundary of the array. 

Suppose that the lasers are confined to the band - (L / 
2) (x< (L /2). The solution of (8)  for the lowest mode satis- 
fying the conditions Y [ f (L /2 + 1) ] = 0 (or the equiva- 
lent "impedance conditions" l5 in the leading order in 1 /L, 
i.e., a*/& + Y/l = 0 for x = + L /2) has the form 

We then have 

It is important to remember that the length 1 is, in gen- 
eral, complex. Since Re D +O, and 11 I (L, it is sufficient to 
confine our attention to the following expression when the 
losses, ie., Iyl, are ~alculated:~' 

We have also taken into account the fact that a2/LA 4 1 
and a/L ( 1. If the array occupies a circle of radius L, the 
lowest mode is described by a Bessel function, 

Y , ( R ) = J O ( P ~ ~ R I / ( L +  l ) ) ,  (13) 

where y/y, = 1 - p i D  /(L + 1)2 and p, is the first zero of 
the Bessel function J,. 

Thus, the approach formulated above enables us to find 
the modes for a finite array of sufficiently large size and a 
givenf ( p 1. 

We now turn to the question of the effect of a deviation 
of the distance to the mirror from the value zT/2. It is clear 
that, for zfz,, the diffractive images of the individual ends 
will spread. We shall calculate the correction to the eigen- 
mode losses, neglecting the overlap between the image of a 
given channel and the ends of neighboring channels. It can 
be shown that, in this case, the eigenvalues given by 

where f (q)  is the Fourier transform of f ( p )  and 
Sz = z - z,. The correction to the frequency that is connect- 
ed with Im (y/y,) can be found in an obvious way from the 
linear term in the expansion in 6z. To find the losses due to 
the fact that Sz+O, we must expand the exponential in ( 14) 
up to second order. The result can be reduced to the form 

Order-of-magnitude estimates of the integrals yield 

Hence it is clear that, as the relative spacing A/a of the lasers 
is reduced, losses associated with the misalignment of the 
mirror rise rapidly. This behavior is consistent with intuitive 
ideas. 

Finally, consider the effect of the angular adjustment of 
the mirror. Suppose that the inclination of the mirror is char- 
acterized by the angle 0/2, 0 = (Ox, 6, ). In this case, the 
matrix M(R, R') can be a difference matrix. The inclination 
of the mirror gives rise to a shift of the diffractive image and 
to additional losses. The expression for the elements of the 
matrix M can be conveniently written in the form 

where f (q)  is the Fourier transform of the function f (p).  It 
is clear from (16) that the plane wave exp(iq*R) rotates 
during the propagation to the mirror and back, so that 
q -+ q + ko6. The matrix M is nearly a difference matrix when 
6&/2 /a, since exp(ik00-R) varies slowly in comparison with 
M(R) .  As before, transforming to the continuous variable 
R, and expanding Y (R') into a Taylor series, we obtain the 
large-scale equation 

y Y  (R) =yo [erp ( i k , ~ . ~ )  
PC 

+D exp (iko0*R/2) exp ( i k ,0 -~ / i ) ]  Y  (R) . ( 17) 

This cannot be solved in general. We shall therefore find the 
change in y due to the inclination of the mirror, using pertur- 
bation theory in the parameter ko6L and taking as our 
starting point the eigenfunctions of (9) that form the 
orthonormal set Y,, (R) .  The expression for the correc- 
tion to the fundamental-mode eigenvalue, for which 
J ( Q . R ) I Y , ~ ~ ~ R = O ~ S  

where V,, = JY,, 0-Rld R. Since y, - y,, -D /L *, we 
find that, in second-order perturbation theory, 

Estimates show that, as the size of the array of lasers in- 
creases, the precision of adjustment rapidly becomes critical. 
The formula given by ( 18) is obviously valid for I6y 1 -4 1. 

When the mirror inclination angle is not small, the solu- 
tions of (3)  with M(R, R') given by (16) exhibit a number 
of singularities for certain values of 0. 

In particular, when koO = 47rb, where b is an arbitrary 
reciprocal lattice vector, M(R, R') is again a difference ma- 
trix. The mode structures of the infinite array of lasers is 
then the same as that found for 0 = 0, but the expression for 
the eigenvalues y now acquires the factor 

P= J ~ P Y  (PI exp (ikoO*p), (19) 

which governs the losses due to the phase modulation of the 
field amplitude reflected from the inclined mirror. These 
losses are small for A 4 a: 
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For koO = 2rb#4rbi,  we again have three high-Q 
modes, namely, three plane waves with wave vectors 
q = k00/2, k00/2 + q,, and k,0/2 + q,. 

The foregoing discussion can be illustrated by a simple 
geometric analysis (Fig. 4). Suppose that the field ampli- 
tude of one of the collective modes for 0 = 0 is E (p ) .  After 
reflection from the inclined mirror, a field of amplitude 
E ( p ) exp ( - ikoO-p/2 ) will again enter the channel ends and 
acquire an additional phase factor exp(ikoO.p). 

For koO = 2rb, the distances I, and I ,  from the ends of 
neighboring channels will again differ by an integral number 
ofhalfwaves, and the function C(R) exp ( - ikoO-R/2) will 
be a mode of the resonator with the rotated mirror. On the 
other hand, when kOO = 4rb, the modes become identical 
with those corresponding to 0 = 0. The factor given by ( 19) 
describes losses due to the oblique incidence of radiation on 
the channels. 

In the case of a triangular array, there are a number of 
values of 0 for which high-Q modes are possible (for A < a ) .  

Let us consider, for example, the case kOO = q,. The 
vector 3k00 then coincides with one of the reciprocal lattice 
vectors. Consider three plane waves with wave vectors 
qa = ko0/2 = q1/2, qb = q1/2, q, = 5qI/2. When the ma- 
trix M(R, R'), given by ( 16), is applied to one of the three 
plane waves, it turns it into one of the other two: 

=p exp (iqb OR) exp (-2ni/3), 

=p exp (iq,-R) exp(-2ni/3), 

~ ~ ( ~ . ~ . ) e x p ( i q ~ - ~ ' ) = p e x ~  R ' (iqa-R). 
(20) 

It is therefore natural, in this case, to seek high-Qmodes (for 
A <a)  in the form of linear combinations of these three plane 
waves. The eigenvalues turn out to be 

The field amplitude distribution in the channels is shown in 
Fig. 5 for one of the modes. The fields of the two other modes 
are obtained by applying translations a, and 2a,, 
and the amplitudes c,, c,, c, are, respectively, 

FIG. 4. 

FIG. 5. 

given by c, = 1 + 2 cos (2r/9),  c, = 1 - 2 cos ( r / 9 ) ,  
c, = 1 + 2 cos (4r/9).  The particular feature of this case is 
the considerable difference between the intensities in differ- 
ent channels. 

It is thus clear that, when k,0 = mq, + nq,, we have 
virtually dissipation-free modes (for A <a ) . If, in addition, 
we have koO = 2rb, the mode frequencies are equal to those 
found for 0 = 0 and, for k,0 = 4rb, the modes themselves 
are the same. 

Analysis shows that there are no other values of 0 for 
which such modes are possible. The dependence of the mode 
Q- values for 0 # O  on the dimensions of the array and on a 
small deviation of the inclination of the mirror from the fixed 
values defined by k,0 = mq, + nq, can be found by the 
method used for 0 = 0, and turns out to be similar to that 
found for the latter case. 

INFLUENCE OFTHE ACTIVE MEDIUM 

We have assumed, so far, that all the channels were 
identical. This enabled us to characterize the propagation of 
radiation along the channels by the single constant A [see 
( 13 ) 1,  which was the same for all the channels. In practice, 
when an active medium is present in the channels, the quan- 
tity A is a functional of the field amplitude C(R)  and of its 
distribution f ( p )  over the channel aperture. Moreover, 
there are several factors that will ensure that the phase gain 
in the different channels will be different even in the absence 
of an active medium. In the situation most often encountered 
in experiments the phase gain is uncorrelated in different 
channels and constitutes a random variable. Nevertheless, 
direct averaging of the system ( 3 )  over the phase fluctu- 
ations is unjustified in general. Note that in the limit of low 
relative pulse duration, A <a, or, more precisely, if 8, $A /a  
holds (Of is the divergence angle of radiation leaving a chan- 
nel), then diffraction couples a large number of channels: 
- (~9,-a/A)~ 1. This condition corresponds to effective self- 
averaging of phase fluctuations per transit across the resona- 
tor, which enables us to average (e).  We take A in the form 
A(R) =A, exp{i6p(R)). We assume further that the ran- 
dom quantity Sp(R)  has a Gaussian distribution and that 
there is no correlation between phases in neighboring chan- 
nels. We then obtain ( A  ) = A, exp( - (6p 2)/2). The 
spread in the phase gain in different channels thus leads to 
additional damping of the field and to a higher generation 
threshold: 
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When the active medium is present, we have 
A,-exp(gLk ), where g is the gain and Lk the channel 
length [it is more correct to speak of the gain corresponding 
to a mode with amplitude distribution f ( p) 1. If the array of 
lasers has a large enough aperture, and if we neglect random 
spreads, we find that A ( R )  is a smooth function of the chan- 
nel coordinates as compared with M ( R  - R'). This enables 
us to transform in ( 3 )  to the large-scale description. It can be 
shown from this that the equation for the field amplitude 
then becomes 

where the eigenvalue is naturally written in the form 
y = 1 ylexp(iv) = exp(g, Lk + iv), g, is the threshold gain 
for an infinite array, and v is a phase factor determined by 
the resonator parameters. Since the gain depends on the field 
intensity in the channel, i.e., g = g(  19 ( R )  12, Eq. (21) is a 
nonlinear complex second-order equation that cannot be 
solved in the general case. To illustrate the application of 
(21), consider the case of near-threshold generation for 
which exp[(g, - g)Lk ] -- 1 + (g, - g)Lk and the radi- 
ation intensity in a channel is less than the saturation value 
lYsI2, g = g o ( l  - 1912/19s 12), wherego is the unsaturated 
gain. Using the approximate boundary condition 9 ( + L / 
2) = 0 for a band of width L occupied by the channel ends, it 
can be shown that Eq. (21 ) for the lowest mode reduces to a 
real equation for Y = I 9 1 : 

Y"+P(go-gn-goY2/1 Ys12)Y=0 (22) 

wherep = Lk Re D /ID 1'. This equation has beenextensive- 
ly investigated and the qualitative behavior of its solutions 
can be understood in terms of the analogy with the classical 
anharmonic oscillator. The generation threshold is defined 
by g,, = g, + ?/pL '. The field amplitude can be expressed 
in terms of the Jacobi elliptic function:16 

where 

and the parameter a IS determined from the given parameter 
L and the excess at,ove the generation threshold, using the 
equation 

1 

u2 
% ~ = - 2 ( 3 ~  [ I-(I --)It'] amZ -I. 

When the excess above the generation threshold is small, i.e., 

(go-gn-nz/PL" )" n V v  

the field distribution has the usual form 

When the laser array is large enough, so that 
go - g, %$/pL ', the amplitude distribution has the form 

The generated power is then determined by the excess of the 
gain above the generation threshold, and can be calculated 
from the Rigrod formula. l7 

In conclusion, let us summarize our main results. The 
collective modes of a periodic laser array are similar to the 
modes found for a plane-parallel resonator. Mode discrimi- 
nation based on losses is, however, found to be appreciably 
greater. The number of low-loss modes depends on the sepa- 
ration between the array and the plane mirror, and on the 
symmetry of the laser array. 

In addition to the in-phase mode, there are modes with 
phase modulation of low-loss channels. Selection of a phase- 
locked mode in the triangular array can be achieved by using 
an amplitude array inside the resonator. For a quadratic la- 
ser array in which the distance to the coupling mirror is z,/ 
4, only the antiphase mode exhibits low losses. Its radiation 
can be corrected by inserting a periodic phase screen at the 
exit. 

Our analysis has shown that the angular misalignment 
of the mirror has a significant influence on the modes and the 
structure of the generated radiation. Random phase gains in 
the individual channels tend to raise the collective genera- 
tion threshold. 

"A phase-locked array of seven Nd lasers was recently constructed7 using 
a phase-conjugate mirror. 

''It is important to note that a similar eigenvalue problem for a resonator 
with periodic boundaries was solved in Ref. 10. The distinctive feature of 
our approach is that the field distribution over the ends of all the chan- 
nels is assumed to be given. Resonators with lattice mirrors, and also 
with a set of retroreflecting mirrors, were investigated in Refs. 11 and 12, 
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