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A phase-shift analysis is presented of electron scattering by a Coulomb center in a gapless 
semiconductor whose band structure is described by the spherical Luttinger Hamiltonian in the 
limit where the electron mass is much smaller then the hole mass me/mh < 1. It is shown that the 
Born approximation is valid for all energies greater than the electron Bohr energy, i.e., that its 
validity is determined by the mass of the lighter particle. This assertion is found to be valid 
everywhere except for a narrow energy region near the hole energy level in the case of scattering 
by a negatively charged center. Here the scattering is resonant, as was shown in the well-known 
paper by Gel'mont and D'yakonov. 

1. In semiconductors, scattering by Coulomb centers is cus- 
tomarily described within the Born approximation. For the 
case of a degenerate band structure, however, the cross sec- 
tion differs from the Rutherford formula by a factor which 
depends on scattering angle;'s2 this factor is related to the 
matrix character of the Hamiltonian. An interesting, and to 
our knowledge uninvestigated, problem is to determine the 
region of applicability of the Born approximation for this 
case. 

In ordinary quantum mechanics (or the equivalent for- 
malism for a nondegenerate parabolic band in a semiconduc- 
tor) this problem does not arise, due to the "accidental" 
equality of the exact cross section and the cross section cal- 
culated according to the first Born appr~ximation.~ This is 
because the (Born) series for the scattering 
amplitude is simply the expansion of a pure phase which 
multiplies the Rutherford formula; the expansion param- 
eters is (EB /E) ' I2  < 1, where EB is the Bohr energy while E 
is the particle energy. Formally, however, the Born approxi- 
mation is valid only for E >  E, . - 

In the case of a degenerate spectrum, it will be clear 
from what follows that for scattering by a Coulomb center 
the perturbation series for the scattering amplitude is not 
simply an expansion of a phase factor; consequently the 
Born approximation begins to be valid only at rather large 
energies E) E, . However, since the carrier masses associat- 
ed with the bands of a degenerate spectrum are very different 
as a rule, the problem of how to relate the convergence of the 
Born approximation to the masses of the scattered carriers is 
in fact one of some importance. 

In this paper, electron scattering by a Coulomb center 

in a gapless semiconductor is investigated, where the semi- 
conductor is described by the spherical Luttinger Hamilto- 
nian4 (sketched in Fig. 1) in the limit of very different car- 
rier masses me/mh < l;me, m, are the electron and hole 
masses, respectively, x is the permittivity, and Z = * 1 is 
the charge of the center. The spectrum of the gapless semi- 
conductor is degenerate only at the point k = 0. 

What follows is a phase shift analysis of the wave func- 
tion of an electron which is scattered by the potential ( 1 ). It 
is shown that the Born approximation is valid for all electron 

energies E greater than the electron Bohr energy 
E,, = mee4/2fiZx2, i.e., that the light particle mass deter- 
mines the validity of the approximation. An exception is a 
narrow energy region in the case of scattering by a negatively 
charged center near the hole energy level. Within this region 
the Born approximation is not valid: the cross section has a 
resonant character, as shown by Gel'mont and D'yakonov. 
The energy level is determined in order of magnitude by the 
Bohr energy of a hole E,, ,EBe, while the resonance width 
is small compared to the parameter (m,/m, ) 'I2. 

2. The wave functions for the free-particle Hamiltonian 
are a plane "circularly-polarized" wave 

11.1, k)= I p(k) >exp (ikr), 

in which the helicity p along the momentum 
fik(k = (2meE)"2/fi) takes on the values + 1/2 for the 
electron band. The amplitude for scattering from an initial 
state lpO,kO) into a final state lv /k)  at an angle A = kik is 
determined by the scattering phase shifts5 

where F, I are eigenvalues of the operators of total angular 
momentumandparity (F= 1/2,3/2 ,... ;I= I,,,),DE,,,(ii) 
are finite-rotation matrices, 

1 for Z=I, 
E ={ (-1)*-h for 1-1, 

FIG. 1. 
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while 6, are the scattering phase shifts of electron wave 
functions Y,, (r) ,  which by virtue of the degenerate charac- 
ter of the bands are related to the hole functions X,, ( r )  in 
pairs for the two values of parity I ,,, by the Gel'mont-D'ya- 
konov  equation^,^ by introducing the new functions 

( E - V ( r ) ) %  ( E -  V  ( r )  ) '" 
Y F I ( r )  = Y F I ( ~ ) ?  XFI(r) = xpr ( T I ,  

( 3 )  

we can write in the form (F # 1/2) 

- 

AZ r  
- - 3 rV' rVN .' [ ( I - A , + - -  

2 r ( E - v )  2  E-V + -) v ~ , I + B ~ X F ~ ]  . 

where 

h l . = F 7  l / n ,  I,,, = (-lj"", A ,, = 2F cns aI,, 

AI, = 2 (F  + 1 )  cos a,?, 
2F-3 B , , = ~ F  sin a,,, Br,=2 ( F i - I )  sin art, cos a r t  = - 
4F ' 

2F+5 
COS Ur2 = - 

4 ( F + 1 )  ' sin ~ r 2 O  

For F = 1/2, the equations decouple: the right side of (4a) 
reduces to zero, and I,,,, = 1,2. 

In the case of scattering by a potential ( 1 ), as we will 
show below, the asymptotic behavior of the function YFI ( r )  
in the limit r-* oo exhibits a logarithmic term 

y,, ( r )  - sin ( k r  - + z($) " In 2kr+bFr)  , 
7-m ( 5 )  

however, as in ordinary quantum mechanics, Eq. (2)  re- 
mains valid. 

Let us write the phase in the form of a sum 
8, = a,, + 7FI.  The first term corresponds to Eq. (4a) 
when the right side is zero. In this case, Eq. (4a) coincides 
with the usual Schroedinger equation in a Coulomb poten- 
tial, and consequently3 uFI = a:;, where 

is the Coulomb phase shift. The second term corresponds to 
the right side of Eq. (4a). We emphasize that for F = 1/2 the 
additional phase is 7 ,  = 0. 

Let us rewrite the amplitude (2)  for the cases of scatter- 
ing with and without change in helicity (corresponding to 
p = p,) by substituting expression (2a) into Eq. (2) .  We 
obtain 

m 

F n 

- exp (2i ( ~ , , + q p I ~ )  ) ] - [exp{2iuF1O- exp (2ioprJ I } D - M N ( ~ )  9 

(7b) 
where f hx (ii) is a quantity determined only by the Coulomb 
phase shifts: 

m 

- exp {2ioFIS)  ) ID:,,,, ( f i )  . 
We will make an important assertion here: for energies 
E9EBe the scattering amplitude is determined by the term 
f :Lo ( 8 )  in (8),  which leads (as is shown in the Appendix) to 
the equation 

which corresponds to the Born appro~imation ' ,~,~ where 8 is 
the scattering angle. It remains for us to show that in com- 
parison to (8)  the terms dependent on the additional phase 
shift vFI in Eq. (7a), (7b) give a small contribution to the 
scattering amplitude when the conditions E )  E,, and 
me/m, 4 1 are fulfilled. In what follows, it will be clear that 
for all of these phases the inequality vFI4 1 will be valid, 
thanks to which we can calculate them using plane waves; in 
addition, we can assume that the phases from the sum of 
terms of the right-hand part of Eq. (4a) are additive. 

3. A characteristic length which appears in analyzing 
the equations (4)  is the quantity r, = e2/xE-the length for 
which the potential energy ( 1 ) is comparable to the electron 
energy E. The additional phase shift is conveniently ex- 
pressed as a sum of two terms: a contribution 7g' connected 
with the right side of Eq. (4a) at large ( r  > r,) distances, plus 
a contribution qg' from the right side for r 5; r,. 

Let us obtain an estimate of 7;:) = 7;;' + 7g'. The first 
term is related to the hole function XFI ( r )  in the right side of 
(4a); when the conditions E>) EB,, m,/m, 4 1 and r > r, are 
fulfilled, it is easy to show from equation (4b) that 

h2 
X F ,  % - -- Zro BIYFI. 

2m;E 2r3 (10) 

Let us substitute ( 10) into Eq. (4a), and calculate the phase 
7;;) of a plane wave in the first Born approximation: 

m 

(we recall that 1, > 1 ) . In the integral ( 1 1 ) , the characteristic 
length over which the integrand varies is r- l / k s  r,, so that 
it does not depend on r,; hence the integration can be ex- 
tended down to zero. Because the phase ( 1 1 ) is smaller than 
the Coulomb phase ( 6 )  (T, - (E,,/E) ' I2  for E>)E,, it fol- 
lows that the correction to the scattering amplitude from the 
term on the right side of Eq. (4),  which is proportional to 
X,, for r  > r,, is small compared to ( 8).  

Let us obtain an estimate for the quantity ~ g ) ,  the scat- 
tering phase from the potential 
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which is the contribution from terms in the right side of Eq. 
(4a) for r > r,, which are independent of the hole functions. 
Within the Born approximation it is easy to obtain 

i.e., it is found that the phase ??&) is a quantity of the same 
order of magnitude as the Coulomb phase. However, as is 
clear from Eq. (7a), (7b), the correction to the amplitude 
from the phase v&) to a first approximation equals zero, and 
in subsequent approximations is small, of order the param- 
eter (EBe/E) 'I2. 

4. The correction ~g' from the right-hand part of Eq. 
(4a) for small distances r 5 r, can be estimated based on the 
inequality (kr,) - ( EBe/E) 'I2 4 1 . In ordinary quantum me- 
chanics for scattering by a potential of radius a, when the 
condition k a g  1 holds we can introduce a single param- 
eter-the scattering length-and express the scattering 
phases in terms of it.3 Beyond the resonance region the scat- 
tering length is of order a, and all the phases are small in the 
parameter ka. They can be found in the hard-sphere approx- 
imation by using the condition that the wave function reduce 
to zero at the potential boundary. As bound levels appear in 
a given potential, the scattering length becomes much larger 
than the radius of the potential, and the cross section in- 
creases sharply, which signals the onset of the resonance. 

For scattering by a short-range potential5 of radius a the 
situation in a gapless semiconductor is almost the same. As 
in ordinary quantum mechanics, outside a resonance region 
the hard-sphere approximation is valid so long as ka 4 1. The 
difference lies in the fact that the resonance corresponds to 
the appearance of a hole level in the potential which is of 
short range for electrons. However, the width of the reso- 
nance, which is proportional to the probability of a transi- 
tion from a local state to the continuum, is small, scaling 
with the density of final states in the electron band." 

The analogous situation also obtains in our case for 
r 5 r,. In the hard-sphere approximation, we must subject 
the electron wave function yFz ( r )  to the boundary condition 
yFI (r,) = 0. The function y, is a superposition of Coulomb 
functions which, as we have noted already, we can replace by 
spherical Bessel functions with the same boundary condi- 
tion. From this it is easy to verify that even the largest of the 
phases 77::; ,I, - (E~, /E)~/ '  is small compared to the phases 
(6) ,  i.e., even at small distances there is no contribution to 
the cross section for E )  EBe . However, this holds only in the 
region outside the resonance region. 

We have already said that the hard-sphere approxima- 
tion is valid outside the resonance region. For energies close 
to resonance, as for the case of scattering by a short-range 
potential,5 it is necessary to "mix in" the hole wave function 
to the superposition of electron wave functions depending on 
the electron parameters (there will be a non-Coulomb func- 
tion involved in the exact solution even for r - r,) ; because of 
this, the cross section at the resonance point will be much 
larger than its Born approximation value, and will be ap- 
proximately equal to the squared wave length of an elec- 
t r ~ n . ~ - ~  Therefore, in the resonance region the long-range 
character of the Coulomb potential cannot enter in any way. 
The scattering amplitude can be cast in the form of a sum of 
the Born term (8)  and a resonance term in the case where the 
resonant phase is small compared to unity, i.e., outside the 

width of the resonance. For energies within the width of the 
resonance, this representation is not valid, because it is not 
correct to treat the scattering phases from a sum of poten- 
tials as additive when these phases are not small. However, 
the correction due to the principal resonance term coincides 
in order to magnitude with the Born term, because the reso- 
nance is described by only one p h a ~ e . ~ - ~  

5. Thus, we have shown that for electron scattering by a 
Coulomb center in a gapless semiconductor, the Born ap- 
proximation works for electron energies E) EBe . In the case 
of a negatively charged center there is an exceptional region 
of energies near the hole level. Thus, the principle contribu- 
tion which limits the validity of the Born approximation 
arises from those terms in Eq. (4a) which do not depend on 
the hole function XFI, in contrast with the energy region near 
resonance. 

An alternative to the approach we give here is to ana- 
lyze the perturbation series for the scattering amplitude. 
Such a discussion is outside the framework of our paper. We 
remark only that this approach is found to be constructive in 
the case of the Kane Hamiltonian, i.e., when taking into ac- 
count nonparabolicity of the conduction band. In place of 
the ratio (EBe/E)'/2 for the Born parameter we use the 
quantity (e2/xP) [ ( E  - Eg )/Eg ] 'I2, where P is the Kane 
matrix element and Eg is the spacing between the symmetry 
points l?, and r, (in ordinary semiconductors, i.e., with 
nonzero gaps, the quantity Eg is positive and plays the role of 
a forbidden gap). For E, > 0 and a large inband electron 
energy E = E - E, (E) lEg I ), corrections to the Born ap- 
proximation are determined by the "fine structure constant" 
e2/xPof the Kane Hamiltonian, which was already noted in 
Ref. 7. In ordinary quantum mechanics, this case corre- 
sponds to scattering of a relativistic electron by a Coulomb 
potential. 

In conclusion, I am deeply grateful to A. L. Efros for 
posing this problem, and for a multitude of useful discus- 
sions along with his support and friendship. I am also appre- 
ciative of very useful discussions with B. G. Gel'mont, M. A. 
Zhusupov, M. Yu. Kuchiev and M. E. Raikh. 

APPENDIX 

In what follows, we use the relation3 
F .. F r. 

Dpr, ( n )  =e''ad,,f ( n )  eiw'T. 

Here, a, 0, yare the Euler angles ( 0  is the scattering angle), 
and 

cos (012) pfi'h, (cos O ) ,  p = p' 
d:Fw, (0) = E , N ~  (A21 

sin (012) ~ $ 3 ) ~  (cos O), p = - p' ' 

where /{,,. I = l,P : J ' ( x )  are Jacobi polynomials. 
Let us begin with the casep = p,, and turn to the first of 

Eqs. (8) .  Taking into account the relation 

(2FY-1) d,,/(O) =4S (1 - cos 0) 

(a proof of this is given below), and also the relation 
uFz = 4z ( F  f; + ), u1 12,11,2 = u; ,~,  where a; are the Cou- 
lomb phases (6) ;  the quantity fh (ii) can be written in the 
form 
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Substituting the expressions ( A l )  and (A2) into this latter 
equation, and using the relation8 N = F - 3: 

( n + l )  P~O"' ( x )  +n~do':' (x) = (2n+1)  P ,  (z) , (AS) 

where P,, ( x )  are the Legendre polynomials, and then the 
summation formula for P, ( x )  which leads to the Ruther- 
ford f ~ r m u l a , ~  we obta.in 

f;;) (6) = - 2 cos ( 0 / 2 )  Z (EB,/E) '" 
4ik 

erp (2ioOc) [---- - 
sin2 (01 2) 

X exp { i p a + i p l y ) .  (A61 

Substituting for a: and a; from equation (6) into this for- 
mula, we obtain the final Eq. ( 9 )  with p = p, as 
(EBe/E)112 -0. 

In deriving equation ( 9 )  for p = p,, we must use the 
relation8 

( n + i )  P ~ " ~ '  ( x )  -n~y:O,' ( x )  = (2n-t I )  P, ( x ) .  (A71 

The remaining procedures of the derivation are analogous to 
those presented above. 

Expression (A3)  follows from (A5)  together with the 
well-known summation formula for Legendre  polynomial^.^ 
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