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An analysis is made of the evolution of off-diagonal elements of the density matrix in multi- 
quantum NMR Fourier spectroscopy. Under certain conditions this evolution can be regarded as 
a random Markov process. An equation describing the dynamics of off-diagonal elements is 
derived. The dependence of the intensities of n-quantum resonances on the duration of a 
preliminary pulse sequence (the preparation sequence) agrees well with the available 
experimental results. 

The methods of multi-quantum (MQ) NMR Fourier 
spectroscopy developed recently1-' make it possible to ob- 
serve transitions in systems of N coupled spins subject to the 
selection rules applicable to the Zeeman quantum number 
Am = 0, + 1, 2, ..., + N. Usually, MQ spectra are better 
resolved and easier to interpret than conventional spectra 
arising from Am = + 1 transitions. In particular, in a sys- 
tem of N coupled 1/2 spins the frequency of an N-quantum 
transition is independent of the dipole-dipole interaction, 
but is governed solely by the Zeeman frequency and by the 
magnitude of the chemical shift. Investigations of ( N  - 1) 
and ( N  - 2) quantum spectra usually make it possible to 
determine all the dipole  constant^.^ These characteristics of 
MQ spectroscopy make it very attractive in studies of the 
structure of complex organic compounds. Applications of 
MQ Fourier spectroscopy methods to solids have been re- 
ported A satisfactory theoretical description of 
the relevant range of topics is still lacking. An attempt to 
provide such a description will be made below. 

The following MQ experimental procedure is the one 
most frequently employed. A spin system, which is in a state 
of equilibrium in a strong static field is, subjected for a time T 

to a sequence of pulses (called a preparation sequence) and 
then the system evolves freely for a time t as described by the 
spin-spin interaction Hamiltonian. Then another sequence 
of pulses (called a detection sequence) is applied. At the end 
of this sequence and after a 90" pulse, the transverse magneti- 
zation is measured. This experiment is repeated for different 
values o f t  and then the resultant dependence of the trans- 
verse magnetization on the time t is Fourier-transformed. In 
a rotating coordinate system it is described by the expression 

sequence are shifted, compared with the corresponding 
phases of the preparation sequence, by an amount Ae, pro- 
portional to the time t (Ap = Awt) and, moreoever, the 
pulses in the detection sequence act in the reverse order, i.e., 
the evolution operator Vcan be represented in the form 

Then, Eq. ( 1 ) can be rewritten as follows: 

where 

If we calculate the trace in Eq. ( 3 )  in the representation of 
the eigenfunctions of the Hamiltonian (4)  : 

Izlk, a)=klk, a), Hd2(k, a>=o,(k,  a), 

where k is the Zeeman quantum number and a is the dipole 
quantum number (this is possible because the parallel mag- 
netization satisfies the condition [I,, H i ]  = O), and if we 
consider the Fourier transform, we obtain 

Equation (5)  shows that the spectrum consists of a series of 
lines corresponding to transitions accompanied by the ab- 
sorption of n quanta of the rf field (n = k - I). In the case of 
nonzero transitions (n # O), we find from Eq. ( 5  ) [subject to 
Eq. ( 2 ) ]  that the intensity of an n-quantum transition is 

( I , ( t ) ) = ~ r  {I, exp(--inI,/2) V exp(-iHdzt)Up(0) described by 

where U and V are the evolution operators describing the Therefore, the intensity of an n-quantum transition is pro- 
action ofthe pulse sequences on the spin system, H ;  is the portional to the sum of the squares of the absolute values of 
secular part of the dipole-dipole interaction, and the corresponding off-diagonal elements of the density ma- 

p(0) =(i-aZz)/Tr(i). (2) trix. Finding how the intensity I, depends on T is the main 
task of the theory of MQ spectroscopy. The following simple 

In Ref. 6 the phases of the rf pulses of the detection model was proposed in Ref. 6: a pulse sequence produces a 
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cluster of Nspins and the number of spins Nincreases direct- 
ly proportional to the time 7. All transitions in such a system 
are regarded as equally probable and the intensity of an n- 
photon resonance is described simply by the corresponding 
number of possible transitions. However, this model does 
not predict the experimentally observed maxima in the de- 
pendence of I, on 7. Moreover, the model in question is 
insensitive to the structure of the pulse sequences used. 

Our aim will be to obtain equations for off-diagonal ele- 
ments of the density matrixp(r), or equivalently, for matrix 
elements of the evolution operator U(r) .  The main approxi- 
mation which will be used here is the assumption of the Mar- 
kov nature of the evolution of a spin system under the action 
of a pulse sequence. 

The evolution operator is known to have the group 
property: 

or, in terms of the matrix elements 

'nT 

We shall introduce the probability of a transition from a 
state I k, a) to a state (I, 0 ) : 

Then, multiplying both sides of Eq. (8)  by complex conju- 
gates and assuming that summation of the right-hand side of 
Eq. (8)  involves averaging over the phases of the matrix 
elements, we obtain 

We shall introduce the density of the number of states f ( w )  
in the space of the eigenfunctions of the Hamiltonian (4): 

which gives the following expression if we pass from summa- 
tion to integration in Eq. ( 8) : 

w t ,  1 ti) =I d o 2 W ( ~ . .  I a , ,  t2) ~ ( a ~ ,  t21 mi,  t,). 
(11) 

where 

Equation ( 11 ) has the form of the Smoluchowski equation 
for the transition probability. Hence, in the usual manner7 
we can readily obtain the Fokker-Planck equation 

where 

We calculate the transport coefficient D by going over to 
summation in Eq. ( 14): 

We can assume approximately that the expression 
I Uka;lg ( t )  I2/t, which represents the probability of a transi- 
tion per unit time, depends only on the difference k - I, and 
not on the initial state. Then, Eq. ( 15) can be represented in 
the form 

D = lim I ( W ~ , ~ - M ~ , P ) ' /  ~ k a , i @ ( ~ )  11. 
,-0 2t Tr (1) k a ; l p  

We can easily see that in this approximation the coefficient A 
vanishes. 

In calculating the transition probability I Ukailp ( t )  I2/t 
we note that, according to the averaging method of Ref. 8, 
slow evolution of the spin system under the action of a pulse 
train is governed by a time-independent effective Hamilto- 
nian 

H,,,=R+'I~[R,H] f . . . , 
where 

and t, is the period of a pulse sequence. 
The pulse sequence 

(1112-90,-2A-90,-A-901-2A-90X-A 
-90-,-2A-90-x-A-90-,-2A-90-x-A/2) ", 

was used in Ref. 6,  where t, = 12A is the period of the se- 
quence and 90,, are rf pulses rotating the magnetization by 
angles + 90" about the x axis. For this sequence the first 
approximation for the effective Hamiltonian is 

where 

Since the matrix elements of the evolution operator are cal- 
culated using the eigenfunctions of the Hamiltonian (4), we 
can assume that evolution of the spin system during the ac- 
tion of a pulse sequence is described by the Hamiltonian 

H = H , + v ( ~ ) .  

H O = A o I , + H d z ,  V(t) = H 2  e x p  ( 3 i h o t )  +H-"xp ( - % l o t ) ,  

where H, is the ground-state Hamiltonian and V(t) is the 
perturbation operator. 

We can now readily calculate D using conventional per- 
turbation theory: 
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where 

( H Z ( t ) H - ' ) = T r  [ e x p ( - i H d Z t ) H Z  e ~ p ( i H ~ ' t ) H - ~ ] / T r  (I). 

( 2 1  

Employing the Gaussian approximation for the correlation 
function ( 21 ) 

< H 2 ( t )  H-'> = ( HzH-') e x p  ( -M,t2j2), 

where 

MZ=-Tr  ( [Hdzr H Z ]  [Hdzr EI-'1 )/Tr (H2H-' )  

is the second moment, we obtain 

D = 4  ( 2 n / M Z ) ' "  (60)  2 ( H 2 H - z > .  ( 2 2 )  

Therefore, Eq. ( 13)  assumes the form of a conventional 
diffusion equation 

d l Y / d ~ = D r j ~ T ~ ' / d ~ ' .  ( 2 3 )  

The initial condition for this equation can be determined as 
follows: since U ( 0 )  = 1 and the matrix elements satisfy 
U,,,,,, ( 0 )  = 6,,SaB, it follows that by going over to a contin- 
uous distribution, we obtain 

W ( 0 ,  0 ~ 0 0 ) = S ( 0 - 0 0 ) .  

The solution of Eq. ( 2 3 )  subject to this initial condition is 
well known: 

I V ( o ,  7 1 0 ~ ) = ( 4 n D 7 ) - ' ~  e x p  [ - ( ~ - - w ~ ) ~ / ~ D T ] .  ( 2 4 )  

We can now readily determine the dependence of the intensi- 
ty of an n-quantum resonance on T. Equation ( 6 )  can be 
rewritten in the form 

ce 

1, d w o W ( o + n A o ;  t l o ~ ) W ( a , ~ l w o )  
- m 

a T - ' I  e x p [ - n 2  ( A W ) ~ / ~ D T ] .  ( 2 5 )  

The expression for I,, is independent of Aw, since the diffu- 
sion coefficient D of Eq. ( 2 2 )  is proportional to ( Aw ) '. It is 
clear from Eq. ( 2 5 )  that the maximum value of the intensity 
of an n-quantum resonance is observed when 

where 

It also follows from Eqs. ( 2 5 )  and ( 2 6 )  that the maximum 
intensity of an n-photon resonance falls as n increases, in 
accordance with the law 

Equations ( 2 6 )  and ( 2 7 )  are in good agreement with the 
experimental results of Ref. 6 .  

The proposed method for calculating the intensities of 
n-quantum resonances can be used to find the optimal dura- 
tions of pulse sequences used in MQ Fourier spectroscopy. 
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