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It is shown that the collective effects due to the quasiadiabatic, quasilinear increase in the 
fluctuation-induced electromagnetic field of a system of charged particles are important for the 
radiative corrections to the Landau damping of intense plasma waves. The high-energy particles 
produce power-law spectra as they interact with the electromagnetic fluctuations. Under 
conditions when most particles are nonrelativistic (p (m),  the dominant contribution to the 
radiative corrections to the Landau damping is made by the generation from a small number of 
relativistic particles (p - m ) with power-law spectra atp $ m. In this approximation the radiative 
corrections, like the Landau damping itself, are proportional to the derivative of the particle 
distribution, and also contain the small quantity (8e2/3&) (In 2-1 1/24). In the next order in 
p2/m2 ( 1 the nonrelativistic particles make a substantial contribution to the radiative 
corrections; these corrections are not analytic inp2/m2 [they contain (p2/m 2)ln(p2/m2) 1,  and 
also depend on the resonance-particle distribution function itself. If the effects determined by the 
derivatives of the particle distribution function are severely suppressed in the quasilinear- 
relaxation processes, then the part of the radiative corrections that is determined by the 
distribution function can exceed the normal Landau damping. 

1. INTRODUCTION 

The damping of the electrostatic oscillations in a system 
of charged particles was first considered by Landau.' He 
.showed that the initial perturbations attenuate asymptoti- 
cally like exp( - ~ t ) ,  where q is the wave vector and y is 
the q-dependent Landau damping constant. 

We consider here the problem in its more general for- 
mulation, when the damped oscillations are sufficiently in- 
tense, and are capable of changing the particle di~tribution.~ 
The Landau damping is then determined not by the initial 
particle distribution cPp (O), but by the instantaneous distri- 
bution cPp ( t)  

for the oscillation-field distribution and for the particle dis- 
tribution as effects of induced Cherenkov emission and ab- 
sorption of waves by  particle^.^ 

We consider hereafter precisely the case of sufficiently 
intense oscillations, for which allowance for the t-depen- 
dence of cPp is important. 

The quantity ~ describes the damping of the correla- 
tion function W, ( t )  defined by the relation 

or by its integral 

W .  ( t )  = 5 Wq(t)  dm= l q ,  ( 4  1'. 
Using the kinetic equation for the fluctuational part Sfp 

of the distribution function: 
The equation governing the variation in time of cPp ( t )  is a d 
simplest in the case of random oscillations2:  IS^*,^ ( t )  + i q ~ G f ~ , ~  ( t )  -ieqq ( t ) q  - mp(t)  =O ( 5 )  

dt d p  

and the Poisson equation 
I A 

Here p, ( t )  is the spatial Fourier component of the potential exp( - iw . t )~(  oq+ik, q )  exp( iwqt)qq( t )  
in which the oscillations occur; q and w, = - w-, are the 4ne 
wave vector and frequency, respectively, of the oscillations; d p  =-S ah.q(t) -@-p ( 6 )  +, ( t )  describes the fluctuation-averaged distribution of the q2 

particles over the momenta p; and ~ ( w , q )  is the real part of as well as the relations 
the longitudinal permittivity. The normalization of cPp and 1 d 
of the correlation function of the potential are given by the E ( a , ,  q )  =0, - exp (--ioqt) - 

o,  at 
exp ( ioq t )  q q (  4.1, 

relations I 'P .  
I I 

and 
(cp,(t)cpqV(t))=Iqq(t) I26(q+q'). ( 3  sin (aq-qv)  t 

-n6(oq-qv) ,  
Equations ( 1 ) and (2)  have a simple physical meaning. wq-qv t+-  

They describe the variation of both the correlation function we obtain 

959 Sov. Phys. JETP 66 (5), November 1987 0038-5646/87/110959-09$04.00 @ 1988 American Institute of Physics 959 



where 6 ( t )  is given by the relation ( 1 ). This result is in line 
with Landau's ideal' [cf. the t -+ cc limits in (7 )  and Ref. 1 1, 
but is naturally more general (see Refs. 3-5). 

In the present paper we consider the problem of first- 
order-in e2/tic-radiative corrections to the damping of 
high-intensity plasma oscillations described in the zeroth 
approximation by the relations ( 1 ) and (2) .  We shall thus be 
dealing with the radiative corrections for the fluctuation- 
averaged quantities W, ( t )  and @, ( t ) .  

There is no reason to think that, for such average char- 
acteristics, the radiative corrections can be reduced to the 
radiative corrections to the probabilities for induced Cher- 
enkov radiation emission by the individual particles in the 
external stray fields q,. Indeed, there are at least three fea- 
tures here. 

First when the true microdistribution f, is split up into a 
regular averaged @, ( t ) ,  and a random Sf, , distribution, the 
random component describes oscillations, and, thus, it is as 
if part of the particle motion is connected not with the parti- 
cles (i.e., with @, ), but with the oscillations. 

Second, good examples are known which show that the 
cross sections for the processes in the equations for the 
"dressed"partic1es (described by the fluctuation-averaged 
distribution O, ) differ essentially from the cross sections 
for the "bare" particles. The presence of the polarization 
jacket (Debye screening) for the quasiparticles described by 
O, is important. As is well known, this leads to a situation in 
which the collision integral (which contains O,) obtained 
through averaging over the fluctuations of the single-parti- 
cle distribution contains in the denominator the square of 
the permittivity5 (screening of the field of the colliding parti- 
cles). The most striking example is the manifestation of the 
new plasma-wave-scattering mechanism, namely, transition 
~cattering,~ and the new mechanism for radiation emission 
during  collision^,^ namely, transition bremsstrahlung (see 
Ref. 8). The radiation-emission and scattering processes in a 
homogeneous medium are connected with fluctuations, and 
averaging over these fluctuations leads to new scattering and 
radiation-emission mechanisms that can radically change 
even the orders of magnitude of the cross sections for the 
corresponding proces~es.~ Entering into the equations for 
the fluctuation-averaged quantities describing the scattering 
and bremsstrahlung-emission processes is @, with modified 
cross sections. 

Thirdly, the ground state of the system @, ( t )  is nonsta- 
tionary in time, and this can lead to additional effects in the 
radiative corrections because of the dependence of the per- 
mittivity on the time. All these arguments indicate that the 
collective effects in the radiative corrections to ( 1 ) and (2)  
can be important. The problem of the following analysis is to 
compute such collective effects. 

Below, by the term "averaging over the fluctuations" 
we shall mean averaging over the quantum fluctuations and 
the zero-point  oscillation^.^ We shall give the relativistic 
quantum generalizations for ( 1) and (2 ) ,  and take account 
of the effects that occur in many-particle systems, and are 
described in the averaged equations by terms containing the 
additional parameter e2/tic. Further, the final formulas will 
be expanded in powers of +iq/p (q is the wave vector of the 
resonance fields) up to the first nonvanishing term. This 

presupposes the quasiclassicality of the resonance fields p, , 
and are of greatest interest for applications. 

Participating in the radiative corrections are the virtual 
quanta of the electromagnetic field. We shall denote the 
wave vector and momentum of these quanta by k and fik, 
respectively, and set p' = p + fik. The value of p' is arbitrary. 
It is nevertheless assumed that the magnitude of k is so large 
that the contribution of the macroscopic mass renormaliza- 
tion" can be neglected: the transverse permittivity E' (w, k)  
is close to unity. But because of the nonstationarity of @, ( t ) ,  
we must take account of the derivatives 6 ' ~ '  (w,k)/at, which 
leads to one of the collective effects in the radiative correc- 
tions (an effect which would not occur for the individual 
particles). 

Another collective effect is the "exchange" interaction, 
in which a virtual photon is absorbed "not by that" particle 
which emitted it: The photons can transfer energy from sev- 
eral particles to one of them. 

Allowance for the radiative corrections leads to a situa- 
tion in which the longitudinal-wave packets described in the 
zeroth approximation by the potential (p, also envelop them- 
selves with a jacket. This jackets corresponds to fluctuating 
electromagnetic fields, and, consequently, the wave packet is 
not strictly classical, but strictly longitudinal waves. There- 
fore, dW/dt should describe the total change in the field 
energy. 

It is easy to use the fact that, for random waves, the 
change in the energy is equal to the sum of the contributions 
of the individual harmonics. For the Landau damping ( 1 ) it 
is sufficient to know the change in the longitudinal energy 
W',  whereas for the radiative corrections we must know the 
change in the total energy. For ( 1 ) we obtain 

It is significant that (d~(w,q)/aw), = ,q has dropped out of 
this expression. The physical meaning of this derivative is 
quite clear: The absorption rate is determined by the reso- 
nance particles, while the dispersion (i.e., the w = w, depen- 
dence) is determined by entirely different (specifically, the 
nonresonance) particles. 

Below we shall assume that w, is determined by a given 
classical subsystem, the investigation of which is beyond the 
scope of the present calculation, and that the influence of the 
resonance particles on w, is negligibly weak. This gives us 
ground to neglect also the influence of the radiative correc- 
tions on w,. The problem is to make allowance in (8)  (with 
d W/dt on the left-hand side instead of d W1/dt) for the ef- 
fects that are of the order of e2/tic and linear in Iq, 1 2 .  This is, 
Ip, 1'. This is, in fact, sufficient for the computation of the 
radiative corrections to the Landau damping. 

To obtain the Landau damping ( 1 ) from (8),  it is suffi- 
cient to use the general expression for the energy W" : 

In view of the additivity of (8)  and (9)  with respect to the 
contributions of the various harmonics (i.e., with respect to 
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the terms with different q),  we can set 
lpq I *  = 141q012S(q - qO),and, bydividingdw,, /dtby W,,  
obtain 2yq,,. From (8)  and (9)  we thus obtain (1)  for 
Q =  90. 

Let us choose here this simplest method of representing 
the radiative-correction results obtained independently in 
the present paper and those obtained by other methods. 

In the subsequent discussion we use the system of units 
wi thf i=c= 1. 

2. THE BASIC RELATIONS 

Let us set forth the general computational scheme that 
allows us to find a simple relativistic quantum-mechanical 
generalization for, and the radiative corrections to, the Lan- 
dau damping. 

The general Wigner spinor-field density matrix opera- 
tor, defined by the relation9 

can be expressed in terms of the free-particle density matrix 
operator f ~~~,,,, with the aid of the S matrix: 

h 

where a and 0 are the spinor indices and T,,,(t) is the 
spinor field operator in the momentum representation. The 
spatial component of the Fourier operator for the current 
density (the y, = {y,fi) are the Dirac matrices) 

dp 
i .k ( t )=e l  SP iP~PfP,k(f) - 

(an)" 
(12) 

will enter into the S-matrix interaction Lagrangian: 

t (t) =- yiO' (t, r) A:'' (1, I) dr, S=T exp (-i 1 L dt) . 
(13) 

A 

For the description of the noninteracting A, 'O' fields, 
we use the Coulomb gauge. The longitudinal fields are de- 
scribed by the classical subsystem, and satisfy the equation 
E ( w , ~ )  = 0, where E is the longitudinal permittivity of the 
classical subsystem. We denote the potential of the long@- 
dinal fields by 41, and the corresponding Lagrangian by L,. 
The quantum suQsystem of resonance particles is described 
by the oxerators f ;P,' and the zero-point-oscillation field op- 
erators Ak'O'(t) in L A .  We have 

( 0 )  ^ + ( O )  - ( 0 )  
f a ,B ,P ,k  ( t )  ='/z(ya,~-kll ( t )  ~ P , P +  (t) 

( 0 )  " + ( O )  

-YIP~,P+L/Z (t) Ya,p-~z(t) 1 t (14) 

C$(t) = ~2:~&:'~ eap (-ihept), ep= (p2+mz)Lh, ( 15) 
fit& 

whereA = & 1 is the sign of the energy, p = 1 is the sign 
of the spin component along p, the u$;>re bispinors, and the 
firA are tke particle annihilation (creation) operators. The 
operator L, describes the interaction with the classical field: 

h 

while LA describes the electromagnetic fluctuations: 

where 
(0)  = Ak , ( O ) +  p=*l, A:o)(-') = A , 

7t=r--k (k7) I 
and the vacuum average is not equal t g  zero oniy for the 
following combination of the operators A Lo' and A Lo' + : 

A 

For the ensemble of particles under consideration here, LA 
also describes all the fluctuations of the electromagnetic 
fields in the particle system, which are proportional to the 
particle distribution function @, . 

In operator form, the relations written down above de- 
scribe any fluctuations in any particle system. Let us consid- 
er systems of particles that, in the absence of interaction, are 
described by the distribution function (occupation 
numbers) @:'. Let us assume that the particles are unpolar- 
ized, and that there are no antiparticles, i.e., that 

(d,*""&p~;')= f /z@Lo)  6,,,,,6 (q) . (19) 

The invariant quantity used in the relativistic calcula- 
tions in the general case is the charge density per electron 
charge e, i.e., in accordance with ( 12), 

@P(t) = I SP(fP,., (t) )dqr.  (20) 

From ( 19) and the relations 

we easily find that 

The averaging in (20) is over the vacuum of the electro- 
magnetic fluctuations (electromagnetic waves are not emit- 
ted), the statistical particle ensemble, in accordance with 
( 19), and the statistical ensemble of random classical fields 

419 . 
Since in the classical p, field the resonance particles 

could, on account of the quasilinear acceleration (2 ) ,  ac- 
quire infinite energy the formulation of the problem should 
be as follows: The p, field is switched on adiabatically at 
t = 0, and the asymptotic behavior at t- co is investigated. 
Only the resonances of the type ( 7 )  are considered; in the 
quantum-mechanical case these resonances have the form 

sin (E,-E,-,-o~) - ~ ~ ( F ~ - E , - ~ - w , ) .  
Ep-Ep-q-wq 1-co 

The pair-production resonances containing E, + E,  + , 
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- w, = 0, are discarded on account of the classical nature 
of the field, and the scattering resonances containing 
E, - E, - - wq + I k 1 = 0 are neglected because these 
conditions cannot be fulfilled simultaneously with the condi- 
tion (22) for Cherenkov resonance in a plasma (this would 
have led to the condition E,  - ,  - E, -, _, + I kl = 0, which 
is not fulfilled for free particles). 

Since a jacket of electromagnetic fluctuations grows 
around the longitudinal-wave packets, we consider the time 
variation of the total mean energy ( W )  of the field. The 
calculation is carried out with allowance for only the terms 
linear in Ipq 12: 

The relation (23 ) is the definition of Gq . The quantity Gq is 
sought up to terms of first order in e2/kc, i.e., ( f i  = c = 1 ) 

In the radiative corrections we can, in the first approxima- 
tion, now separate the longitudinal- and electromagnetic- 
field fluctuation effects G:"' and G:'", respectively. 

In the general case Gq is a functional of @, ( t )  . Without 
allowance for the radiative corrections, we find, in accor- 
dance with (8),  that 

Below we shall take account of only the linear functional 
dependence of Gq on @, ( t ) .  We can use the fact that the 
functional G  : = G  :'I' + G  :''I in the radiative corrections 
can be found on the set @$', whereas G  ,L should be found on 
the more correct set that takes account of that part of the 
temporal dependence @, ( t )  which corresponds to a relative 
order of e2/kc. The resulting equations, into which a, ( t )  
enters through both G  t and G :, correspond to the Dyson 
summation of the irreducible diagrams. 

On account of the assumption, made above, that the 
dispersion is determined by the classical subsystem, the rela- 
tion (23), together with (9),  allows us to write down the 
relations 

This method can be tried out in the calculation of the 
linear Landau damping in the general case of relativistic par- 
ticles and in the case when allowance is made for the quan- 
tum effects. The operator equation 

obtained from (6) ,  can be used to derive an expression for 
the rate of variation of the longitudinal-field energy (taking 
account of the fact that q'- - q and (a&(@, - q)/  

a m )  ,=, = ( - d~(w,q)/dw) m = m a  ): 

If we introduce for S  an index (i) corresponding to the 
exponent L in ( 13 ), then, to obtain the linear Landau damp- 
ing, it is sufficient to take into account in (29) only the linear 
term S'" with the Lagrangian L, [see ( 16) 1, i.e., 

I')  6fP,, (t).=S(')+ (t)^bfr:(t)  +65:: ( t )  S") ( t )  
t 1 

Using (22), (19), and (16), we obtain 

x S ~ A ~ + ~ A ~ ~ P ( @ ~ - @ ~ - ~ )  = 3 1 cp, 12mqGqLdq. (31) 

The expression obtained for the linear Landau damping 
with the aid of (3  1 ), (23), and (26) corresponds to a relativ- 
istic quantum generalization of ( 1 ), and coincides with the 
expression found earlier in Ref. 10 by the Green-functions 
method for many-particle systems. The difference is that 
( 3  1 ) is suitable for nonequilibrium distributions. If q(p the 
relation (3  1) gives, when account is taken of the fact that 

and 

the same result as (25). 

3. THE RADIATIVE CORRECTIONS DUE TO THE VARIATION 
OFTHE LONGITUDINAL-FIELD ENERGY 

Since the calculations are tedious, and their basic 
scheme has already been expounded, we shall give the re- 
sults, emphasizing the most important physical aspects. 

In the calculations we should take into account the fact 
that 

6?f,), ( t )  = tsgpqh ( t )  3(3) ( t )  + 5+(3) ( t )  67;; ( t )  

+ 3""' ( t )  6jEb ( t )  3'" ( t )  

$- st"' ( t )  63:; ( t )  s'~' ( t ) ,  (32) 
h h 

retaining the terms linear in L,and quadratic in LA.  We 
should also take into account the renormalization counter- 
terms by standard methods," the renormalization of @, , 
and the radiative modification of the functional G: (which 
was discussed above). 

The final result, expanded in powers of q/p 1 up to the 
first nonvanishing term, has the form 

where 
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The expression (33) contains an integral taken over the 
virtual momenta k (see ( 17) ) or p' = p + k. 

Let us discuss the limits of applicability of ( 33 ) . Since 
we have found the terms linear in @, , (33) takes account of 
the change that occurs in the electrostatic-field energy as a 
result of the electromagnetic fluctuations connected with 
the presence of particles, i.e., that additional part of the zero- 
point fluctuations which is proportional to @, . The expres- 
sion (33) describes the appearance and absorption of virtual 
photons in the many-particle system when the emitted vir- 
tual photon can be absorbed by any of the particles of the 
system. The radiation damping force due to the emission of 
real photons is ignored in (33). It is assumed that k)w,. 
The emission of real photons is possible when k-w, in the 
case of nonrelativistic particles and when k - w, E, '/m2 in 
the case of ultrarelativistic particles (the process of scatter- 
ing of the p, fields into electromagnetic waves on the parti- 
cles). But those particles which participate in the resonance 
interaction, i.e., for which w, = qv (see (33) ), cannot par- 
ticipate in the scattering. Therefore, the effects of the radi- 
ation damping force (which moreover, are more often than 
not weak) can be described by the standard methods, and are 
simply combined with the radiative corrections. Since k -  m 
in (33), and k% wq , the condition of applicability of (33) is 

which is usually fulfilled in the cases of practical interest. 
The expression (33) describes the possibility of the ab- 

sorption of a virtual photon by any of the particles of the 
system, and therefore takes account of the collective effect 
due to the presence of the particle system. From this it fol- 
lows that the result (33) should differ from what would be 
obtained if we took account of only the radiative corrections 
to the probabilities for induced Cherenkov emission and ab- 
sorption of thi longitudinal p, waves by the individual par- 
ticles, and then found the change in the energy ( W )  with 
allowance made for both the transitions from the states and 
the transitions from the states a, -, and the transitions from 
the a, states, i.e., if we multiplied the the probability by 
(Q, - a, -, )w, and integrated over all p. The difference 
should correspond to the loss of the collective effect in which 
the virtual photon is absorbed by any particle of the system, 
and not by only a particle that figures in the computation of 
the probability. Of course, in this case the indistinguishabi- 
lity of the particles is taken into account in the correct calcu- 
lation through averaging over the fluctuations, as was done 
in the derivation of ( 33 ) . 

It is natural that no collective effects of the indicated 
type will occur in the first-order approximation, i.e., in the 
linear Landau damping (without allowance for the radiative 
cor~ct ions)  . Thi2is confirmed by direct computation. Tak- 
ing S'" and and L, into account, we obtain, in accordance 
with the rules of quantum electrodynamics, " the probability 
for a p - q - p change in the particle state in the random field 
p, (the second angle brackets in (37) correspond to statisti- 
cal averaging over the classical random fields p, ) : 

and hence the expression 

which coincides with (3  1 ) . 
According to the standard rules," the radiative correc- 

tions to (37) are given by the expression 

where M ' "=  (plS'"lp - q) takes account of L,, while 
M"' = (p/S'3'lp - q) takes accont of one L, and two LA.  
Allowance for the renormalizing counterterms, the balance 
equation (38), and the expansion in powers of q leads to a 
result different from (33), although it contains the same 
quantity R,, .  . Let us denote the corresponding Gq quantity 
that does not take account of the collective effects by 

G Y d i V )  . We have 

A comparison of (33) and (39) reveals the striking fact 
that (33), as it were, takes account of the exchange effect 
(the half-difference between the two terms, which coincide 
up to the interchange pizp'). It is natural that the correct 
expression (33) can be obtained only through averaging 
over the fluctuations. The existence of operators that do not 
commute with Sf, and take account of such fluctuations can 
be seen even from the expansion (32) [the terms with LA on 
either side of 6f always lead to the relation a, +, = a,., 
which does not occur in (34) 1. 

We must draw attention to two other circumstances. 
The relation (39) contains an infrared divergence at 
p - p' - 0 ( k  - 0) , whereas this divergence does not occur in 
(33). Its elimination by the standard methods" in (39) 
gives rise to large logarithms ln(m/w,), which actually do 
not occur in the correct expression (33). The presence of 
only the qd /dp derivative of R,,, in (39) is natural, since the 
renormalization requires the subtraction of the expression 
for it at q = 0 from (3),  and the degree of accuracy allowed 
in the q expansion will be exceeded if we take account of the 
difference between p + q and p in the expression for a, . But 
the first term in (33) contains the derivative (qd /dp)@, as 
well. This is due to the fact that (39) describes the total 
effect, while (33) describes, in the case of a many-particle 
system, only that part of the effect which is connected with 
the change that occurs in the longitudinal-field energy as a 
result of the electromagnetic fluctuations, whereas the 
change G;("(t) in the energy of the electromagnetic fluctu- 
ations of the many-particle system should also be taken into 
account. 

4. CHANGE INDUCED IN THE ENERGY OF THE 
ELECTROMAGNETIC FLUCTUATIONS BY INTENSE 
RESONANCE ELECTROSTATIC FIELDS 

The indicated change occurs only in a many-particle 
system, and in the presence of sufficiently strong electrostat- 
ic fields. It describes an additional collective effect insepara- 
ble from the one considered in (33). In the absence of real 
photons, the energy of the fluctuation field will vary because 
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of the fact that, in a system of particles, it depends on @, , 
and @, varies quasilinearly in time in accordance with (2 ) .  
Because k s  w,, we can assert that this variation should be 
quasiadiabatic. The specific content of this assertion can be 
established by analogy with the adiabatic variation of the 
real quanta of electromagnetic radiation. 

Let N, > 1, where N, is the number of quanta of the 
electromagnetic waves with k$ o, . The variation of the en- 
ergy of such waves in the presence of the quasilinear accel- 
eration (2)  is considered in the nonquantum limit k < p  in 
Ref. 12. We can generalize the result obtained in Ref. 12 to 
the case of arbitrary k and arbitrary @, , i.e., to the general 
quantum relativistic case. Let us show how this can be done. 
Let us first note that, in Ref. 12, it is shown (for k<p)  that 
the variation of @, in time causes [in the case of the standard 
description of the quasilinear equation ( 2 )  containing the 
instantaneous @, ( t )  ] the permittivity for the transverse 
waves to acquire an imaginary part, 

that differs by a factor of two from the one found in Ref. 13, 
and does not guarantee the conservation of the photon num- 
ber N,. But there arises an additional S(w, - q-v) I@, 1'- 
containing imaginary part of the nonlinear response, that, in 
combination with the imaginary part due to the nonstation- 
arity, guarantees the conservation of the adiabatic invariant, 
namely, the photon number N, : 

Let us generalize this result to the quantum relativistic 
case for N, % 1, and then find its N, = 0 analog, ~ h i c h  is of 
interest to us here. Let us use the equation for A, ( t )  (the 
Coulomb gauge) : 

a 2  A : t - 2 k (kf,) 
n&. ( t )  + -T A. ( t )  = 4njr . j k '  = ~k - , at: (41 

wherej, ( t )  is given by (12). From (41) we obtain the ener- 
gy conservation law in the form 

where we have taken account of the fact that k' = - k, and 
have set exp[i(k + k ' ) r ]  = 1. In (42) 

h h h 

wher%SA takzs account of only L A ,  while S takes account of 
both LA and L,. The time-integrated term on the left-hand 
side of (42),  a term which is proportional to A2, gives the 
contribution of the linear permittivity to the energy of the 
fluctuating fields, since it takes account of the presence of 
the particle ensemble. 

LeiusAfirst fiz$ the left-hand side of (41 ) for N, s 1, 
when ( A  + A  ) -- (AA +) a N,. We have 

where the obtained transverse permittivity has the form 

f 6~ ' ' - I  (-a, k), (44) 

ykl=y-k (ky) /kZ. 

It is easy to verify (after taking the traces) that the expres- 
sion (44) for E' coincides with the one found in Ref. 10. The 
reason why w = Ikl figures in (43) is that the result was 
obtained within the framework of perturbation theory with 
the aid of the S matrix for the case of waves with k s w , ,  
when E' is close to unity, and only the term linear in is taken 
into account. Therefore, the deviation of w, from Ikl is 
small, and (43) takes account of this deviation in first order 
perturbation theory, expressing the corresponding correc- 
tions in terms of the zeroth approximation, in which 
w, = Ikl. 

Because of the quasilinear [according to (2 )  ] variation 
of st in time, we find from (43) that 

The superscript L on Wf, s 1 is there to indicate the fact that 
this variation is governed by the variation of the linear E' . 
The explicit expression of (45) in terms of Ip, 1' can be ob- 
tained with the use of (2) .  

As in Ref. 12, we must also take account of the nonlin- 
ear contribution, which, in the present case, is given by the 
right member of (42). A fairly tedious computation yields 
the result that the obtained d WgF,'/dt is exactly canceled 
out by the second term in the last expression in (45). Thus, 

N dl ,  
aE'(6Lk) ) = J <$( ,t w = , k l  

This is precisely the sought generalization of the result ob- 
tained in Ref. 12. Indeed, on account of the equality 
(ak ( t ) ) 2 ~ '  (w, (t),k,t) = k2, we have 

and, on account of the fact that E' =. 1, 

- - 
d ~ ' ( w ,  k, t )  

2- 
at 

which gives in the general case the relation (40). 
Let us now gener~lize this result to the case in which 

only the averages of AA + are nonzero. According to (44), 
both the intermediate [SE'(+) in (44) ] and the intermediate 
negative [a&'(-) (44) ] energies contribute to the permittivi- 
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%ANow since thezxp~ess ion for the energy Wcontains the 
AA +,and not theA +A, combinations, thecalculation shows 
that the expression will contain SE"+'( lkl ,k) and 
a&'(-'( - Ikl,k), i.e., only energy denomiantors having the 
sameform(lkl + E , + ,  -E, and Ikl +E,+,  + E , )  asthose 
contained in (34) (in (34) I kl = Ip - p'l I .  Apart from this, 
we must take into account the renormalization terms in the 
first two terms in the left member of (42), since the renor 
malization of the mass gives risz to effects of the same order 
of magnitude, and is due to (AA + ). In the present case we 
take account of the renormalization term that makes a con- 
tribution proportional to @, . Let us give the result for the 
part connected with the positive intermediate energies Wtf 
after the expansion in powers of q<p: 

In deriving (47), we used the quasilinear equation (2)  to 
write down the specific expression for dEt/dt. The index L in 
(47) indicates that the nonlinear effects described by the 
right member of (42) have been ignored. They give for 
d W y '  /dt, as a result of rather tedious calculations an 
expression that reduces to the form 

This result has been written in such a form as to bring 
out the analogy with the last term in (45), a term which is 
also canceled out by the nonlinear term. The relation (47) 
can also be written in a form in which the term that cancels 
out (48) [this is the term with / k /  in the curly brackets in 
(47) 1 is separated out: 

d w ;  e4 j dk s ~ A ~ + ~ . ~ A ~ : ~ ~ ~ ~  
-=- - ( E P + ~ - E P )  

dt 8x Ikl ( I k l + ~ ~ + k - ~ ~ ) ~  

Similarly, we can find d W- /dt = d W t  /dt + d W:""' /dt, 
and, from a comparison with (23) and (24), the sought Gi 
(with p' = p + k) :  

(50) 
Let us note that this expression, like (33 ), does not pos- 

sess an infrared divergence (at p-p') on account of the fac- 
tor (E,. - E, ). In (50) R,, ,  is given by the relations (34) 
and (35). The total contribution to the radiative corrections 
is, according to (24) and (27), given by the sum of (50) and 
(33). By integrating by parts [i.e., by transferring to the left 
the first q (a  /ap) derivative in (50) 1, we find that the final 
result contains only derivatives of R,,,. : 

The expressions obtained from ( 5  1 ) and (27) for the 
radiative corrections to the Landau damping differ qualita- 
tively from the expression (5)  for the Landau damping itself 
in that they contain, besides terms proportional to the deriv- 
ative of the distribution function, terms proportional to the 
distribution function itself. Often, the quasilinear relaxation 
can lead to the decrease of the derivatives of the distribution 
function, which, without allowance for the radiative correc- 
tions, were limited to the pair-collision q~ant i t i es .~  Such 
quasilinear relaxation should have no effect on that part of 
the radiative corrections which does not depend on the de- 
rivatives of the particle distribution function. If most of the 
particles are nonrelativistic (p  < m ), then estimates and cal- 
culations show that the terms proportional to @, in (5  l ) are 
nonanalytic when expanded in powers ofp2/m2 < 1, and 
their ratio to the derivative dependent terms in (5  1 ) is of the 
order of I (p2/m2) ln (p2/m2) I in smallness. This means that 
the part of the radiative corrections that is determined by @, 
can be greater than the linear damping (1)  (and, conse- 
quently, that part of (5  1 ) which depends on qd@, /ap, and 
contains the additional small factor e2/&), if, roughly 
speaking, 

where N, is the number of particles in the Debye medium 
that determine the frequency of pair collisions. 

5. RADIATIVE KINETICS OF PARTICLES 

The energy of the fluctuational electromagnetic fields 
of quite high frequencies (i.e., with Ikl -m or even with 
/ k 1 > m ) increases, according to (50), quasiadiabatically in 
time because of the quasilinear particle acceleration (2) .  
The presence of such increasing-in time-electromagnetic 
fluctuations leads to the possibility of large energy transfers 
to some particles. This changes the distribution @, . The 
variation of <P, ( t )  is described by the radiative corrections 
to Eq. (2) .  The equation for @, ( t )  can be obtained by differ- 
entiatingwith respect to the time the relation J\20), inghich 
allowance is made for the terms quadratic in L, and L A ,  as 
well for as the renormalization counterterms: 

d o  " d -2 = - sp j (j$ ((,gP!> ( t )  $4' ( t )  +S+") ( t )  lsj:,: ) - 
dt l,, dt 

-I- <s+(') ( t )  6f;P,'. ( t ) 3 3 )  ( t )  +,?+(3)  ( t )  69;,0q)r ( t ) ; ( ' )  ( t )  ) 

+<2"" ( t )  6f:;:r ( t )  2") ( t )  ) ). (53) 

Allowance must be made in the calculations for the renor- 
malization of <P, in the quasilinear equation. As a result of 
tedious calculations we 
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It is easy to see that the energy conservation law is obeyed, 
namely that the change that occurs in the particle energy as a 
result of the radiative corrections, and is given by ( 5 4 ) ,  is 
equal to minus the field-energy change given by ( 5  1 ) . Equa- 
tion ( 5 4 )  can also be obtained by methods closer to those 
usually used to derive Eqs. ( 1 ) and ( 2 ) .  For the operator&,, 
[see ( 10)  1, by using the equation of motion and t i e  commu- 
tation relations for the one-time operators Y, we can 
obtainI4 

The procedure for deriving ( 5 4 )  from ( 5  5  ) is similar to the 
procedure for deriving ( 1 )  and ( 2 )  in the classical th~ory.  
We average Eq. ( 5 5 )  over the fluctuations, introduce (f,, ) 
and s',,, =A,, - (j6,, ), and construct perturbation theory 
in terms of the fields g, and A [see ( 16)  and ( 17)  ] both in Eq. 
( 5 5 )  and in the Maxwell equations with the current ( 1 2 ) .  
We take account of the terms quadratic in q, and A, the re- 
normalization terms, and the fact that, in the zeroth approx- 
imation, the particle distribution varies quasilinearly in time 
in accordance with (2).  The latter is extremely important, 
since it allows us to take into account by another method the 
role of the quasiadiabatic variation of the fluctuations dis- 
cussed in Sec. 4  of the present paper. We should, in deriving 
the kinetic equation ( 5 4 ) ,  use for the mean fluctuations the 
following relation, which is easily proved with the aid of 
( 1 9 ) ,  ( 2 1 ) ,  and ( 1 0 ) :  

In the perturbation theory in ( 5 5 ) ,  66:; arises as the zeroth 
approximation in the absence of fields. The structure of the 
relation in ( 5 6 )  that contains the indices a,B 'and a',B ', and 
also the presence of a @ that depends on the shifted momen- 
tum p k / 2 ,  indicate the presence of exchange effects and 
the fact that their consideration will give rise to a,.. This 
explains why the equation for the radiative corrections 
should contain @,. = @, + , [see the first and last terms in 
(5411.  

The relation ( 5 6 )  is a generalization of the well-known 
classical relation for the Sf in ( 5 ) :  

6 fp ( :  ( t )  =6fp!:exp ( - iqv t ) ,  ( 5 7 )  

with the aid of which we can easily obtain the Landau- 
Balescu pair-collision integral from ( 5  ) (see, for example, 
Ref. 5 ) .  The collision can also be realized through virtual- 
field exchange between different particles. 

The derivation of ( 5 4 )  from ( 5 5 )  with allowance for 
( 5 6 )  sets off from a somewhat different standpoint the ques- 
tion of the occurrence of high-energy particles in ( 5 4 ) .  As 
has been pointed out, a virtual photon considered in the cal- 
culation of the radiative corrections is absorbed in the parti- 
cle system, i.e., can effect energy exchange between different 
particles, in particular, between particles that differ greatly 
in their energies. In contrast to the pair collisions, which are 
proportional to @, @,, here the first order-the Cherenkov 
interaction-and, consequently, the effects described by the 
product of this interaction and the virtual-photon exchange, 
which are linear in @, and @,. , do not vanish. Notice that 
the exchange terms containing @,. in ( 5 4 )  do not contain 
renormalizations, since the exchange occurs between "dif- 
ferent" particles, and there are no self-energy parts in the 
graphs. 

The terms containing @,. in ( 5 4 )  can exceed by far not 
only the remaining terms in ( 5 4 ) ,  but also the quasilinear 
acceleration ( 2 ) ,  if the number @, of particles is many-or- 
ders-of-magnitude smaller than @,, , i.e., if the exchange pro- 
cesses describe the production of a very small number of 
particles of very high energies. For the computation of the 
spectrum of the high-energy particles, it is sufficient to know 
the asymptotic form of the first term in ( 5 4 )  atp)pl, which 
requires knowledge of Rp,p . .  The general expression for R,,. 
has, after the evaluation of the traces in ( 3 4 ) ,  the form 

2 
RPIP.  = - 

I P-P' I &Pepr 

- m2+&P&P'+ ( P  ( P - P ' )  ) (P' ( P - P ' )  1 (P-p' )  
( & P ' + & P +  I P-P' l ) 2  

( 5 8 )  
The asymptotic form obtained for R , , ,  from ( 5 8 )  atp)pl,  
p' < m  under conditions of isotropic particle distribution has 
the form (the bar denotes averaging over the angles) 

This gives for the isotropic relativistic-particle distribution 
the universal power-law spectrum 

Similar results are obtained in Ref. 15 for the spectrum of 
particles of zero spin (the equation for @, in this case coin- 
cides in form with ( 5 4 ) ,  the difference being that R , , .  is 
given by a different expression, although it has the same 
asymptotic form ( 6 0 )  ) . For the anisotropic case ( 58 ) yields 
the spectrum l / p Z ,  instead of ( 6 0 ) .  The indicate power-law 
spectra are close to the observed cosmic-ray spectra. l6  

Let us show that the above-described effect of power- 
law spectrum generation is, in the present approximation, 
entirely due to that part of the radiative corrections to the 
Landau damping which is connected with the quasiadiabatic 
variation of the fluctuational electromagnetic fields (Sec. 
4 ) .  To obtain the rate of acquisition of energy by the fast 
(p)pl, p ' g m )  particles, we must multiply the first term in 
( 5 4 ) ,  which is just the term that describes this generation, by 
the kinetic energy of the fast particles ( E ,  - m ) ,  and inte- 
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grate over p [the index 1 in (61 ) indicates the fact that the 
first term in (54) is considered] : 

To prove the assertion made above, it is sufficient to turn to 
the relations (50), (23), and (24), make the substitution 
p s p' in (50), and take account of the fact that most of the 
particles are nonrelativistic: E,. zm. It can then be seen that 
(50) yields (61 ) with the opposite sign. 

Thus, we have obtained an interpretation of the accel- 
eration effects as being due to the quasilinear pumping of the 
high-frequency electromagnetic fluctuations. It is naturally 
connected with the idea of exchange-governed acceleration. 
Using the approximation (59) in (23 ), (24), and (50), we 
find that, in this approximation, the radiative corrections are 
entirely due to the acceleration of the particles, and that 

The last numerical estimate in (62) is for e2/fic = 11/37. 
The quantity ~ / e  gives the relative fraction of the energy, 
that is transferred for the generation of fast particles. 
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