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In this paper we solve analytically and numerically the problem ofthe interaction between a 
magnetized electron beam and a magnetized plasma in a waveguide system of an arbitrary shape. 
We study the non-linear dynamics of the main regimes of the beam-plasma interaction-the 
single-particle Cherenkov effect and the anomalous Doppler effect-for strong and weak 
dispersions of the plasma waves. We determine the energy contributions of the beam to the 
excitation of plasma oscillations. We show that the realization of any interaction regime is easily 
accomplished through the choice of the densities and geometries of the beam and the plasma. This 
gives us the possibility to control the beam-plasma interaction for the purpose of solving many 
experimental and applied problems. 

1. It is well known that when electron beams interact with a 
plasma many processes are observed which are interesting 
both from a practical and from a theoretical point of view. 
Depending on the geometric parameters of the systems of 
interacting particles and their densities, one observes such 
effects as the single-particle Cherenkov effect,' the anoma- 
lous Doppler effect,ls2 or an instability in a medium with a 
negative permittivity.' The study of these processes enables 
us to solve the problem of controlling the beam-plasma inter- 
action which is important for applications to microwave 
generation, for collective methods for modulating and accel- 
erating beams, in the study of beam-plasma discharges, and 
so on. In the single important case of a beam and a plasma, 
which are "thin" in the transverse cross-section and com- 
pletely magnetized, various regimes of the beam-plasma in- 
teraction can be studied in a waveguide in quite some detail. 
We note that thin beams and plasmas have recently been 
studied also e~perimentally.~ 

The electromagnetic properties of thin, completely 
magnetized beams and plasmas are determined in the poten- 
tial approximation from the following set of non-linear equa- 
t i o n ~ : ~  

d2za e d@ 
-=--- 
dt2 m dz '  

Here @ = @(r,,z,t) is the electrostatic potential, r, the 
coordinate in the transverse cross-section of the waveguide, 
A, the transverse part of the Laplace operator, a the kind of 
particle (a = p: plasma electrons, a = 6: beam electrons), 
S, the area of the transverse cross-section of the system of 
particles of kind a ,  n, their unperturbed density, r, the co- 
ordinates in the transverse cross-section of the waveguide, 
and z, the longitudinal coordinates of particles of the kind 
a. The potential @ vanishes at the metallic wall of the wave- 
guide and, moreover, satisfies some boundary conditions 
with respect to the z coordinate. As such we choose these to 
be the periodicity conditions 

where L = 2.rr/kl, is the period of the perturbations of the 
system. On the other hand, we define the initial conditions 
for Eqs. ( 1 ) as follows: 

where u is the unperturbed velocity of the beam electrons. 
Problem ( 1)-(3) clearly corresponds to the initial problem 
of the evolution of a perturbation which is adiabatically 
switched on in the infinite past. Just this problem will be 
considered in what follows. Our main attention will be fo- 
cused on an explanation of how the interaction between the 
beam and the plasma depends on their geometry and density, 
and on finding analytical solutions of the problem. 

2. We transform the set ( 1 ) to a form which is more 
convenient for what follows. To do this we expand the poten- 
tial @ using (2)  in the following double series: 

where q, (r, ) are the eigenfunctions of the waveguide. Ex- 
pressing the coefficients A,,, from the first equation of the set 
( 1 ) and substituting the expansion (4)  into the equation for 
z, we get a set of the form 

X [pP, exp ( i l yb )  - C.C. I ,  
m 

Here 
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S ,  is the area of the transverse cross-section of the wave- 
guide, 

are geometric factors determining the frequencies of the 
plasma oscillations of particles of the kind a, Ilp, 11  are the 
norms of the eigenfunctions, k :, are the transverse eigen- 
wavenumbers of the waveguide, while 

rn 

are factors determining the coupling of the beam and plasma 
waves, y, = kl l  z,, 

are the amplitudes of the Fourier components of the density 
perturbations of particles of the kind a (made dimensionless 
by the unperturbed density ), and yo = kilt,. It is convenient 
to introduce also the following quantities: 

The functions (6),  (7),  and (9)  were obtained and 
studied in Ref.6. It is important to note 8< 1, with equality 
reached when r, = 5. With increasing distance from the 
beam to the plasma G decreases monotonically to zero, i.e., 
this quantity can be a small parameter. We give a few more 
results of the linear analysis of Eq. (5)  which are important 
for what follows. 

The spectra of the beam and plasma waves are deter- 
mined from the dispersion equation 

whence one can obtain at = 0 the spectra when the beam 
and the plasma are not interacting. Writing down the disper- 
sion equation in the form ( 10) gives a perfectly clear phys- 
ical meaning to the quantities ( 6 ) ,  ( 7 ) ,  and (9).  In the point 
where the plasma and the slow beam waves are in synchro- 
nism, i.e., when kl l  satisfies the equation f i  = kkll u - f i b ,  one 
gets easily from ( 10) an equation for the growth rate 60. In 
the case when fii & 6; and 8- 1 , the instability growth rate 

satisfies the inequalities 

The instability with the growth rate ( 1 1 ) is caused by the 
single-particle induced Cherenkov effect. However, if the 
factor 8 is small, the instability growth rate 

satisfies the inequalities 

The instability with the growth rate (13) is caused by the 
collective Cherenkov effect or by the anomalous Doppler 

effect. In what follows we consider the case ( 12) and, main- 
ly, the case (14)." 

We give two more integrals of Eq. ( 5 ) ,  which reflect 
respectively the momentum and energy conservation laws: 

Here 
2n 

is the (kinetic + electrostatic interaction) energy of the par- 
ticles of kind a, and 

co 

1 1 
8 b " p z 8 b p  =-i-ba,'R,' z1,6, ( ~ p f ~ b l ~ + ~ p l ~ ~ b f )  (17) 

1 = 1  

is the energy of the electrostatic interaction with particles of 
another kind. We note that in obtaining ( 15) and ( 16) we 
used the initial conditions ( 3 ) .  

3. We start the analysis of Eq. (5)  with the case of the 
single-particle Cherenkov effect. Under the conditions ( 12) 
we can assume that the plasma electrons are linear (see be- 
low) and change to the slow amplitudes of the plasma wave: 

In that case, substituting ( 18) into (5),  performing the sub- 
stitution yb = kl l  ut + y, and using the condition for syn- 
chronism between the plasma wave and the slow beam wave 
we get, after linearizing with respect to the plasma electrons 
and changing to the dimensionless variables 

the following set of equations: 

where Y = 6lSuI-', while - 

determines the force of the hf electron beam space charge. 
The infinite sum in (21) plays then the role of a non-linear 
correction to the frequency of the beam Langmuir wave. 
This correction arose as the result of the induced modulation 
of the plasma at higher harmonics and the reaction of the 
harmonics of the plasma wave on the beam. This non-linear 
effect is negligibly small. Since the parameter v is small by 
virtue of the left-hand inequality ( 12), the set (20) reduces 
to well known equations describing the capture of beam elec- 
trons by the field of a plasma wave7: 
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It follows from a numerical analysis of Eq. (22) that the 
maximum value of the amplitude p is of the order of unity. 
Therefore the criterion for the linearity of the plasma 
Ip, I < 1 (we bear in mind that the quantities (8)  are normal- 
ized by the unperturbed density) reduces to the inequality 

which is the same as the right-hand inequality ( 12). We note 
also that Eqs. (22), in contrast to the initial Eqs. (5),  have 
only a single first integral. The fact is that under the condi- 
tions (12) the general integrals (15) and (16) are equiva- 
lent. Indeed, when ISw I <6, z kl l  u the relative change in the 
beam electron velocity is small and, hence, the change in 
their momentum is proportional to the change in their kinet- 
ic energy. Moreover, when 6, < ISw/ the electrostatic ener- 
gies 8, and 8,, are small. 

4. Equations (20), like (22), are correct only if the dis- 
persion of the plasma oscillations is strong, i.e., 
I 'a: - OgR,, # O  (or 1 'R,, # R,, ). In the opposite case 
there appears a divergence in the second equation of the set 
(20). The case of weak dispersion requires a separate consi- 
deration, since account must be taken of the resonance exci- 
tation of the harmonics of the plasma wave. We consider the 
case of weak dispersion assuming in that case that inequal- 
ities ( 12) are satisfied. Using the substitution ( 18) and 
changing to the dimensionless variables ( 19) we reduce Eqs. 
(5)  to the following form: 

where 

is the detuning from the Cherenkov synchronism and takes 
into account the dispersion of the plasma waves. To obtain 
(24) we put G, zI2G, which is admissible for weak disper- 
sion. The first integral of Eqs. (24) 

reflects the momentum (and energy) conservation law. 
Linearizing Eqs. (24) one can show that the growth 

rate of the Ith mode of the plasma oscillations (when 
I q, I g 1 ) is proportional to 1, i.e., the instability spectrum has 
in its linear stage a tendency to shift to the high-frequency 
region. The harmonics for which 171 >I are weakly excited 
and it makes no sense to take them into account. We consider 
the results of a numerical integration of Eqs. (24). 

We show in Fig. 1 the result of the solution of the equa- 
tions for the case when ten harmonics of the fundamental 
mode (I< 10) are excited, under the following initial condi- 
t i ons :~ ,  = 0 . 0 1 a n d p l = O ( l = 2 , 3  , . . .  ) a t ~ = O a n d t h e  
beam is not perturbed. In the initial stage the fundamental 
basic harmonicp, grows and the higher harmonics are infin- 
tesimally small and then the set (24) is equivalent to (22). 
However, already for ~ = 1 2  [long before saturation of the 

FIG. 1. Temporal evolution of the harmonics of the plasma wave 
[ p , ( r = O ) ]  = 0 , 1 = 2 , 3 , .  ..). 

solutions of the single-mode Eqs. (22) are reached] higher 
harmonics up to the tenth one are excited by non-linearity. 
As the growth rate of the tenth harmonic is a maximum, it 
grows strongly already at T Z  3 and reaches a saturation lev- 
el, causing thereby growth of all lower harmonics. At a later 
stage, all harmonics are excited to one degree or other and 
their time dependence is very irregular. Recall that in the 
case of the set (22) the amplitude [pi varies regularly after it 
is saturated, and the saturation itself is reached at r z8  
(when pi, = , = 0.01 ), i.e., considerably later than in the 
many-mode regime. 

Figure 2 corresponds to the case of changed initial con- 
ditions: at T = 0 allp, up to the tenth one are equal to 0.01. 
Here the tenth harmonic already grows right from the start 
and reaches saturation at r -  1 . At later stages all the re- 

FIG. 2. Temporal evolution of the harmonics of the plasma wave [ p ,  
( r = O ) # O ] .  
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FIG. 3. Energy contribution of the beam to the plasma: 1 :  I,,, = 3; 2: 
lmax = 10. 

maining harmonics also grow, i.e., a broad spectrum of plas- 
ma oscillations is excited in the system. 

When the oscillation spectrum is broadenened the ener- 
gy contribution from the beam to the plasma grows. This 

contribution is proportional to the quantity 8 = -& C (p, l 2  
I 

[see (26)]  which is shown in Fig. 3 for the two cases I,,, 
= 3 and 10. It is clear that in the second case the energy 

contribution increases almost by a factor two. We note that 
the choice of I,,, is not an artificial cutoff of the infinite sum 
over lin (24).  The cutoff is automatically due to the increase 
of the detuning 7, when I increases. An analysis of actual 
spectra shows that the detuning can be small up to rather 
large numbers I .  As to order of magnitude, the upper bound 
of the spectrum is determined by the equation [see (25) and 
(1 1 )  1 

We note that for all real spectra the quantity I -2Rpl/Rp, 
changes from unity for I = 1 to zero as I - ,  co . 

5.  We now turn to an analysis of the beam-plasma insta- 
bility under the anomalous-Doppler-effect conditions when 
inequalities (14) are satisfied. We shall, however, now as- 
sume that the ratio of fib and fi, is arbitrary. When the 
inequalities ( 14) are satisfied the beam and the plasma are 
equivalent to high-Q coupled oscillating systems. The inter- 
action between these systems is efficient only if the reso- 
nance condition is very accurately satisfied. On the other 
hand, the latter can be violated due to a number of non-linear 
factors.'" Among such factors we must reckon the change in 
the mean velocity of the particles and the dependence of the 
plasma frequencies on the amplitudes of the waves. If the 

resonance of the waves is destroyed even at a small depth of 
the modulation of the particles with respect to the density, it 
is possible to solve the problem analytically. We shall look 
for it by the method of "expansion in particle trajectories,"' 
the more so because Eqs. ( 5 ) are already directly suitable for 
using this method. 

We write the solutions of Eqs. (5 )  in the form 

where W, and a,, are functions of the time and describe, 
respectively, the change in the mean velocity of the system of 
particles and the excitation in its field. We assume the fol- 
lowing hierarchy of smallness of the various quantities: a,, 
is of first order of smallness, a,, of second order, and so on, 
and we restrict ourselves in considering in Eqs. (5)  all non- 
linearities up to the cubic ones. It is then sufficient to take 
into account in Eqs. ( 5 )  only the first two terms in the sums 
over I .  In such an approximation we get, after some rather 
complicated cal~ulations,~ from ( 5 ) and ( 8 ) the following: 

d k 6 z / d t L + Q b 2 R b 2 ~ b ~ = i / 2 i Q b z  (HcP-Rbi) abt2 

- 1 / 2 i Q p 2 G l a ~ l a p l  esp [ i (1Y6-  W , )  ] 

+ Qp2G2(1 / z iap12-apZ)  esp [2 i (  W 6 -  W , )  1, (28) 

p~i=[-i(l-118~abl~2)abl-i/2a61~a621 e x p ( - i W b ) ,  

paz=- (2iabz+ablz) exp ( - 2 i W a ) .  
(29) 

The equations for a,,,, and W, and the expressions forp,,,, 
are obtained from (28) and (29) through a simple permuta- 
tion of the subscripts (replacing b by p and vice versa). One 
can show that (28) and (29) contain without exception all 
non-linearities up to the cubic ones.5 An obvious condition 
for the applicability of Eqs. (28) are the inequalities 

the explicit form of which is given below. 
We introduce in the formulae the slow wave amplitudes 

ZI,,,, [slow in the sense of inequality (14) ] : 

f l l 7 l = Z P l  esp  ( - i Q , t ) ,  ap2=a",, exp ( - 2 i Q , t ) ,  
(31) 

~ s , = Z b t  exp ( i Q b t ) ,  abZ=Zb2 esp ( 2 i Q b t ) ,  

we make the substitution Wb - k, ,  u t  + W,, and use the syn- 
chronism condition. Moreover, we neglect in Eqs. (28) all 
terms containing the interaction parameter in powers 
higher than +.21 We can then, using the first-order differen- 
tial equations for the amplitudes ii,, and 6, , obtained as the 
result of this procedure and also the initial conditions (3 ) ,  
integrate the equations for the W, once: 
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after which one can show easily that the equations for GP, 
and ii, , themselves have a first integral 

One can obtain from (32) and (33) the momentum 
conservation law in the form of the first Eq. ( 15). As to the 
integral (33) itself, one can obtain it also independently 
from the energy conservation law in the form of the second 
Eq. ( 15). We note that (33) does not have the meaning ofan 
energy conservation law (although it is a consequence of it), 
but that it is a Manley-Rowe type of relation. 

Introducing the new functions 

and using the integrals (32) and (33) we get the following 
set of equations for the amplitudes of the interacting waves: 

where 

The method for solving equations such as (35) with a 
cubic non-linearity is well known.'' We elucidate here the 
meaning of the non-linear terms in Eqs. (35) : the terms pro- 
portional to C, determine the non-linear frequency shift 
caused by the generation of a second harmonic of the Lang- 
muir waves of particles of the kind a (in the quasi-one-di- 
mensional limit, when k,, - w and R,, = R,, , this frequen- 
cy shift does not occur, as should be the case5,"); the 
non-linear term which is independent of C, is due to the 
acceleration of the plasma electrons and the retardation of 
the beam electrons. 

Omitting the standard procedure, we write down the 
solutions of Eqs. ( 35 ) : 

The maximum values of the amplitudes of the beam and 
plasma waves are reached at t = 0 and are given by the 
expression 

in which a = b when a' = p and vice versa, while Sw is the 
growth rate determined by Eq. ( 13). One can see easily that 
the main criterion for the applicability of the results (37) 
and (38)-inequality (30)-reduces to (14) or, what 
amounts to thesame, to the condition 54 1 or, more precise- 
ly, C244  min {fib/fip, fip/fib.} 

The instability is thus stabilized in the anomalous 
Doppler effect regime by the non-linear frequency shift, as is 
confirmed by the numerical integration of the exact Eqs. 
(5).  We note that one can see from (6)  and (36) that the 
quantities 2 + C, never vanish, i.e., the non-linear frequen- 
cy shifts of different kinds do not cancel one another. 

6. The results (37) and (38) are no longer applicable 
for weak dispersion of the beam and plasma waves, when 

R,, = 4R,, . We consider the anomalous Doppler effect for 
this case, using the method of expansion in trajectories and 
restricting ourselves to the non-linear terms up to and in- 
cluding the third order. Putting R,, = 4R,,, using ( 14) and 
the substitution (3  1) and 

bi=Epi, b2=Gp2, 
(39) 

a,=ab, exp [ i (  W p - W b )  1, a2=Cb2 exp [ 2 i ( W p - W b ) ] ,  

we transform (28) to the following form: 

da, 1 5 2 "  3 - 
- = - i ~ ~ ( ~ + ~ ) ( ~ a ~ ~ ~ + ~ ~ a ~ ~ ~ ) a ~ - -  dt 2 QP 2 Qbal'az 

da2 52 * 3 -=iab( i  +A) ( l a l l z + ~ l a z l z ) a z + - Q b a ~ ,  
dt QP 8 

dbl 3 3 1 
(40) 

- = - Qpb,*b2 - -iQ.I b,  1 'b ,  - - i52b2Qp-1G,a1, 
at 2 4 9 

Equations (40) have only one first integral 

and can thus not be solved analytically. However, one can 
easily give a qualitative study of their solutions. Indeed, the 
time for the development of the instability is of the order 
T,,,, - ISwl - I .  However, on the background of the general 
(due to the instability) growth of the wave amplitudes there 
proceeds an energy transfer between the harmonics of the 
plasma (6, s 6, ) and beam ( a ,  F? a, ) waves. One can show 
that the characteristic transfer times5 are waves determined 
for the beam and plasma, respectively by the expressions 

Using now (38) and the inequality ( 14) we get 

Hence, during the time for the development and saturation 
of the instability there are multiple energy transfers between 
the harmonics of the waves. This is also confirmed by the 
numerical integration of equations such as (40). 

It is appropriate to turn here to the single-particle Cher- 
enkov effect, or more precisely, to Eqs. (24) and to compare 
their structure with Eqs. (40). It is clear that Eqs. (24) take 
into account the excitation of the harmonics of the plasma 
wave by the non-linear beam wave, but the interaction 
between the harmonics of the plasma wave is neglected. To 
justify this we estimate the ratio Ti,,, /Tp. Here, as before, 
Tp - fi; ' lppl 1 &f and Ti,,, - ISw 1 - I .  We then have, using 
the second Eq. ( 19) 

since ( 12) is satisfied for the single-particle Cherenkov ef- 
fect. The energy transfer between the harmonics of the plas- 
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ma wave is thus in the Cherenkov effect a negligibly slow 
process. 

7. We formulate the main conclusions. The beam-plas- 
ma instability mechanism and its non-linear dynamics de- 
pend significantly on the parameters of the system. The main 
instability regimes studied in the present paper are: the sin- 
gle-particle Cherenkov effect for strong dispersion of the 
plasma waves; the single-particle Cherenkov effect (with 
resonance harmonics generation) in the weak dispersion 
case; the anomalous Doppler effect for strong disperion of 
the beam and plasma waves; the anomalous Doppler effect 
(with resonance interaction between the wave harmonics) 
in the weak dispersion case. All these effects lend themselves 
completely to a theoretical study, either analytically or on 
the basis of universal (not containing free parameters) equa- 
tions such as (22) and (24). Finally, in the framework of the 
present paper we are not ableto elucidate a whole number of 
specific features of the beam-plasma interaction. However, 
on the level of a general discussion this is hardly expedient. A 
detailed analysis is necessary only for a consideration of each 
actual system and experimental situation. It is clear from 
this paper that such an analysis is completely realizable at 
the present time, at least in the case of thin beams and plas- 
mas. 

'?he case G=: 1 and 6, - 6, can be studied only numerically, using, e.g., 
the-very complicated Eqs. (5).  As to the instability for G- 1 and 0, 
<0,, it can be discussed in the same way as in the case ( 12). 

"From Eqs. (37) and (38) below it follow_s that the wave amplitudes are 
cz [more precisely, they are cz 16w/R, Ill2, where Sw is the growth 
p t e  ( 13) ] so that the expansion of the solutions in the small parameter 
G ' I2  is natural and easily realizable. 
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