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Phase transitions in singlet magnets with ferromagnetic exchange were investigated theoretically 
and experimentally in the presence of an external magnetic field H perpendicular to the "easy 
plane." The T-Hphase diagrams are plotted for different ratios of the one-ion-anisotropy and 
exchange constants. The order structure is investigated in the spin configurations realized in 
various ranges of the external parameters. It is shown that only one of the three possible structures 
is truly ferromagnetic, and the ordering structure at low temperatures in other phases is 
connected with the quadrupole or with the quadrupole-ferromagnetic order. This causes the 
magnetic characteristics (magnetization and susceptibility) as functions of the field and 
temperature to have a unique behavior different from the traditional ferro- and paramagnetic 
behavior. 

1. INTRODUCTION 

Singlet magnetism is investigated theoretically and ex- 
perimentally, using as an example the simplest and at the 
same time most typical system, a magnet with ferromagnetic 
exchange and easy-axis one-ion anisotropy (OA), D ( S  ' )', 
D >  0. The specific object investigated as nickel fluorosili- 
cate NiSiF,.6H20, which is a magnetodielectric character- 
ized by isotropic exchange interaction and a uniaxial OA 
whose constant depends strongly on the pressure and goes 
through zero at P = 1.3 kbar (Ref. 1 ). At P> 1.3 kbar, when 
D >  0, i.e., the ground state of the Ni2+ ion is a singlet and 
the excited state is a degenerate doublet (the node spin is 
S =  I ) ,  nickel fluorosilicate is a typical representative of 
singlet ferromagnets. 

Theoretical investigations of such systems date back to 
the work by Moriya,' who introduced a criterion for the 
existence of ferromagnetism (antiferromagnetism), having 
shown in the molecular-field approximation that at D /Jo > 2 
the ground state in the absence of an external field is non- 
magnetic (J ,  is the zeroth Fourier component of the ex- 
change integral). The behavior of such systems was investi- 
gated later3v4 in a magnetic field perpendicular to the "easy 
plane," and it was shown that the nonmagnetic ground state 
remains stable in a certain field interval 0 < H < He[,  while at 
H > H,, there is restored a cooperative phase, which is ferro- 
or antiferromagnetic, depending on the sign of the exchange 
interaction. These predictions were confirmed by experi- 
m e n t ~ ~ - ~  carried out on Ni compounds characterized by 
strong OA and weak antiferromagnetic exchange. The theo- 
retical phase diagrams at finite temperatures were construct- 
ed in Refs, 4, 10, and 11 for magnets with easy-plane OA in 
the presence of an external field perpendicular to the easy 
plane. The possibility of reconstructing the energy spectrum 
of a magnetic ion from magnetic-measurement results was 
discussed in Ref. 12. 

Interest has increased lately in the study of such sys- 
tems under conditions when the OA and exchange constants 
are of the same order.I3-l8 It was shown in Ref. 17, in partic- 
ular, that in this case between these two ordering mecha- 
nisms, OA and exchange, leads to the existence of unique 
types of spin structures at T = 0, viz., tensor, tensor-ferro- 
magnetic, and finally ordinary ferromagnetic. 

Our purpose here is to investigate the structures of the 
singlet-ferromagnet spin configurations realized in various 
temperature and field intervals, of the distinctive features, 
due to the peculiarities of these structure, of the behavior of 
the magnetic characteristics, and of the character of the 
phase transitions (PT) between them. Another aim is to plot 
the T-H phase diagrams at various ratios of the OA and 
exchange constants. 

The magnetodielectric NiSiF, . 6H20 used for this pur- 
pose is an ideal object for the investigation of singlet magne- 
tism. Primarily, it is the first experimentally investigated 
magnet with strong OA, in which the exchange interaction is 
ferromagnetic. Next, as established in Ref. 18, the OA con- 
stant of this crystal depends strongly on the pressure, so that 
the D / J ,  can be smoothly regulated and perform the re- 
search in the least investigated parameter range which is of 
greatest interest. (Figure 1 shows the dependence of D /Jo on 
the pressure, obtained in Ref. 18 from an analysis of the 
high-temperature susceptibility measured in a zero field.) 
The necessary pressure is produced by using the hydrostatic 
compression method described in detail in Sec. 2. Some pre- 
liminary'results were reported in Refs. 1 1 and 19-2 1. 

2. EXPERIMENT 

The magnetic properties of nickel fluorosilicate in a 
magnetic field were measured in a special 3He-4He dilution 
refrigerator," in which the sample could be to cooled to 

P, kbar 

FIG. 1. Pressure dependence of the parameter ratio D /J ,  of nickel fluoro- 
silicate. 
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- 50 mK. Features of this setup, ensuring simple and con- 
venient operation, are the possibility of placing the sample- 
containing high-pressure vessel directly in the dilution 
chamber, and the absence of low-temperature hermetic 
joints. The temperature in the dilution chamber was stabi- 
lized with a heater and determined using Speer carbon ther- 
mometers (nominal resistances 100 and 200 0) having a 
negligible magnetoresistive effect in fields up to 5 kOe. The 
thermometer dc resistance was measured with an RZ003 
voltage comparator. The power released by the thermometer 
did not exceed 10-lo W. The temperature error did not ex- 
ceed 5 mK. A hydrostatic pressure up to 10 kbar was pro- 
duced in a usual beryllium-bronze chamber of the cylinder 
+ piston type. At helium temperature the pressure was de- 

termined accurate to -0.3 kbar from the temperature of the 
superconducting transition of single-crystal tin. The mag- 
netic susceptibility of NiSiF6.6H,O in a constant external 
magnetic field H was measured by an inductive method us- 
ing a low-frequency differential magnetometer. The chosen 
amplitude of the alternating magnetic field h of frequency 30 
Hz ranged from 0.3 to 1.0 Oe. The investigated single-crystal 
sample was a cylinder ( 1.55 mm diam, 1 = 6.0 mm) with a 
demagnetization factor 4n-N=: 0.7; the cylinder axis was par- 
allel to the trigonal axis of the crystal. A measuring coil of 
three pairs of coaxial oppositely wound sections with the 
NiSiF6.6H,O and Sn samples were placed in the high-pres- 
sure cell. A superconducting solenoid and modulation coils, 
producing the constant uniform field H and the alternating 
field h were placed in a 4He bath at 4.2 K. The directions ofH 
and h coincided in the experiment in all cases (accurate to 
- 3") with the axis of the cylindrical sample. We measured 
thus the longitudinal component xll of the susceptibility in a 
field perpendicular to the easy axis. This is just the field di- 
rection that yields the most interesting results, since it will be 
shown that magnetic structures of three different types are 
realized then. Inasmuch as we measured in fact the tempera- 
ture of the thermostat (the dilution bath), much attention 
was paid to preservation of thermal equilibrium between the 
sample and the heat bath when the field was turned off. A 
condition met when plotting XI, (H) at constant T was that 
the field-variation time be longer than the sample thermal 

FIG. 2. Experimental field dependence of the longitu- 
dinal susceptibility at the following pressures: a) 
P =  4.2 kbar (D/J,, = 1.1): 1-T= 181 mK, 2-124 
mK, 3-120 mK, 4-110 mK, 5-103 mK 
(T, (0) = 156 mK); b) P =  9.6 kbar (D/J, = 1.9): 
1-T= 168 mK, 2-132 rnK, 3-112 mK, 4-108 
mK (T,(O) = 114mK). 

bility in a constant magnetic field and the field dependence 
of the susceptibility at constant temperatures. These mea- 
surements revealed the complicated features of a singlet 
magnet with ferromagnetic exchange. 

Figures 2a and 2b show the experimental field depen- 
dences of the susceptibility for two typical pressures, 4.2 
kbar (D/Jo = 1.1) and 9.6 kbar (D /Jo = 1.9). Whereas at 
high temperature this dependence is monotonic, at tempera- 
tures below some pressure-dependent value of the xll (H)  
curves exhibit a maximum that shifts, with increase of pres- 
sure, towards stronger fields. The fields in which the maxi- 
mum ofx l l  (H) is observed tend, with decrease of tempera- 
ture, to a value D /p,g ( g  is the g-factor and p, the Bohr 
magneton). With increase of temperature, the maximum of 
thexII (H) curve shifts towards weaker fields and decreases 
in amplitude. A characteristic feature of the XI, (H)  depen- 

relaxation time. 
FIG. 3. Experimental temperature dependences of the longitudinal sus- 

plot the T-H phase diagram fluOrOsilicate ceptibility in a constant magnetic field at a pressure P = 9.6 kbar: 1- 
we investigated the temperature dependence of the suscepti- H = 1065 Oe, 2-1775 Oe, 3-2130 Oe, 4--2660 Oe. 
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FIG. 4. Experimental T - Hphase diagrams of nickel fluorosili- 
cate at various pressures: a-P = 4.2 kbar ( D  /Jo = 1.1 ), b-7.0 
kbar ( D / J o  = 1.6), c-8.6 kbar ( D / J o  = 1.8). 

dence is that at high pressures P >  7 kbar (or D /Jo > 1.58) a 
maximum appears also at temperatures higher than Tc (0) 
Fig. 2(b). 

We analyze now the temperature dependence, obtained 
from independent experiments, of the longitudinal suscepti- 
bility at finite H. Figure 3 shows plots of xIl ( T) for P = 0.6 
kbar for various magnetic fields. All the curves show a 
jumplike change of xIl ( T) at a certain temperature Tc (H) 
that depends on the field strength; this is reminiscent of the 
behavior of the susceptibility in second-order phase transi- 
tions. 

Besides the noted jumplike changes of xII (T),  a 
smeared maximum, that vanishes with increase of field, is 
observed in weak field at temperatures Tz250-350 mk. A 
rigorous theoretical discussion of the nature of the singulari- 
ties and maxima of xll ( T) and xII (H) will be carried out in 
Sec. 3. 

Using the experimental field and the temperature de- 
pendences of the susceptibilities of NiSiF,.6H20, we plotted 
on the T-H plane (Fig. 4) the lines of the maxima ofxl l  (H) 
(the Hc2 ( T) and H * ( T) lines) and the lines of jumplike 
changes of xll ( T) (Hc , ( T) and Hc2 ( T) lines), which coin- 
cide on the Hc ( T) section within the limits of experimental 
error. We assume at the present stage that the lines Hcl (T)  
and Hc2(T) correspond to second-order phase-transition 
lines (for the finite-size samples used in the experiments, the 
susceptibility singularities typical of second-order phase 
transitions in an infinite crystal broaden into maxima). Be- 
sides the closed line H, , ( T) - Hc2 ( T) (or, in other words 
the Tc (H) line), the T - H diagram has a line H * ( T) corre- 
sponding to the maxima of xll (H) and observed in experi- 
ment only at values D /Jo 2 1. We discuss the nature of these 
lines in Sec. 3. 

The main error of the measured Tc (H)  dependence is 
determined by the deviation of the direction of the constant 
magnetic field H from the C, axis. Unfortunately, it was 
impossible in our experiment to adjust the orientations of the 
fields H and h relative to the trigonal axis of the crystal 
(these difficulties are caused by the experimental condi- 
tions-high pressure and infralow temperatures). This 
made it difficult to obtain exactly reproducible results in 
different experimental runs at identical parameters H, P, 
and T. Since the appearance of a weak transverse component 
of the field H only lowers the phase-transition temperature 
at fixed values of H( if only a transverse field component is 
present, there are no phase transitions at all, since the mag- 
netization is parallel to the easy axis for all field values), the 
phase-transition temperature corresponding to the most ac- 

curate orientation H )I C, was taken to be the maximum value 
of the temperature Tc ( H ) .  

To conclude this section, we note that the form of the 
phase diagrams plotted in accordance with the positions of 
the maxima of ( T) at constant H and ofxll  (H) at constant T 
depend substantially on the ratio of the OA and exchange 
constants. These phase diagrams have the standard form 
typical of a ferromagnet with easy-plane exchange anisotro- 
py at small D /Jo and acquire new qualitative features when 
D /Jo is increased. In particular, for D /Jo 2 1.6 the Tc (H) 
plot rises in the weak-field region, while near the critical 
value D / J o  = 2 (at which Tc (0)  vanishes) the phase dia- 
gram is abruptly restructured at small H, so that even an 
insignificant change of D /Jo leads to an appreciable change 
of Tc (H)  for weak H. 

3. THEORY 

Nickel fluorosilicate, a magnetodielectric with isotrop- 
ic ferromagnetic exhange and easy-plane anisotropy,'." 
placed in a magnetic field perpendicular to the easy plane, is 
described by the Hamiltonian 

We construct the theoretical phase diagram by using 
the microscopic theory Is-" developed for the description of 
the dynamic properties of magnetic dielectrics of arbitrary 
symmetry and OA intensity. We confine ourselves in the 
present paper to the zeroth approximation of the self-consis- 
tent-field (SCF) theory. In this approximation Hamiltonian 
takes the form 

It is reduced, by the unitary SU(3)-group transformation 
described in detail in Ref. 15, to the diagonal form 

where the effective fields are equal to 

E=B cos 2L-D2 sin 2L, 

-V2H sin (F sin 2KA3/,Jo sin2 2K(h+a sin 2 L ) ,  (4) 
R=H cos cp cos K-'/,D sin 2cp sin K+Joo cos2 K cos 2L, 

D2=-1/2H sin cp sin 2KC1/,D(cos2 K cos2 cp-cos 2 q )  

-'/,J, sin2 2K ( h f a  sill 2L) 
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(the tilde labels operators connected with the initial opera- 
tors by the indicated unitary transformations). 

For the angles p, K, and L, of the unitary transforma- 
tion we have the equations 

'/,D sin 2cp cos K+H cos cp sin K+'I2J0(r sin 2K cos 2L=0, 

'/,D cos2 rp sin 2K+H sin cp cos 2K 

+'/,Io sin 4K(h+o sin 2L)  =0, (5 
i7 sin 2L+D2 cos 2L=0. 

They contain the mean values a = (3 ' ) and A = (6  ) de- 
fined by the transcendental equations 

The five quantities p, K, L, a ,  A, obtained by explicit 
solution of the set equations (5) and (6) determine uniquely 
the structure of the spin order and the equilibrium magnetic 
properties of the considered magnetodielectric. In particu- 
lar, the structure of the spin order is determined by the eight- 
dimensional order parameter (OP) q introduced in Ref. 17, 
whose independent components are the spin and quadrupole 
components (S") (a = + , - ,z) and ( 0  7) 
(m = 0, f 1, f 2).' The spin components, i.e., the magne- 
tizations, are connected here with the indicated five quanti- 
ties by the relations 

M,,=<S')=a cos 2L cos cp cos K+' / ,  sin cp sin 2K(h+o sin 2L ) ,  

(7) 
M,=(S">=o cos 2L sin cp cos K-'1, cos cp sin 2K(h+a sin 2L) ,  

and the quadrupole components Qo = (3 0 ) , 
Q 2 = ( 0 i  + 0 ~ ~ ) ,  and Ql=(O: - 0;') are related by 
Eqs. ( 13) of Ref. 15. The absolute value of the order param- 
eter is1' 

and its orientation in spin-quadrupole space is determined 
by the direction cosines that are connected with p, K, L, a ,  A 
by Eqs. (9) and ( 11 ) of Ref. 17. Equations (7) for the mag- 
netizations make it also possible to calculate the longitudinal 
and transverse components of the susceptibility 

by numerical or analytic differentiation. 
We point out that, according to Eqs. (6),  three variants 

of solutions are possible for a and A: 

Each corresponds to different values of the angles given in 
(5). This means the possibility of having that three types of 
local coordinates (coordinates in which the zeroth Hamilto- 
nian is diagonal) determined, naturally, by different "gener- 
alized Euler angles" p, K, and L (see Ref. 17 for details). It 
is convenient to fix the type of local frame and use these 
coordinates to describe the possible ordered phases and the 
phase transitions between them. We use in the present paper 
coordinates in which a( T = 0) = 0 and A ( T = 0) = - 2. 

Let us investigate the solutions of the system (5) for 

arbitrary T. There are three different solution branches. 
Two are trivial solutions determined by the angles 

sin cp=sin 2K=sin 2L=0, (11) 

cos cp=cos 2K=cos 2L=0. (12) 

The third solution is described for T = 0 by the equation 

cos 2K=8[1- (HID) ' ] ,  sin cp=-(HID) {[ I&-1  

+(HID)2]I[1/~+1-(11T/D)Z])'i~, (13) 

t g  2L=-Dz/H,whereEsD/2Jo, 

and can be described for finite T only numerically. It is im- 
portant that in the latter, in contrast to the solutions ( 11 ) 
and (12), the angles are smooth functions of the Hamilto- 
nian parameters H, D, and J,. 

It is easy to verify that the nontrivial solution corre- 
sponds to a canted ferromagnetic structure M  +O, M, #O, 
while the trivial solutions correspond to collinear structures 
(m, = 0). The latter are substantially different at T = 0. 
Solution (12) corresponds to a structure with M I (  = 1 and 
M, = 0, i.e., to a saturated ferromagnetic structure, while 
solution (1 1) corresponds to a structure with 
M I I  = M, = 0. For a nonmagnetic structure we have here 
Qo = - 2, which corresponds to presence of quadrupole or- 
der when all the spins are located in a plane perpendicular to 
the z axis.,' 

This symmetry difference between the structure vanish- 
es at finite temperatures: in both cases the longitudinal mag- 
netization component M I I  and the quadrupole mean value 
Qo differ from zero. The difference is that the dominant con- 
tribution to the eight-dimensional order parameter is made 
by the ferromagnetic components (FM structure) in one 
case and in the quadrupole components (QO structure) in 
the second. 

The foregoing is easily understood by analysis in a 
somewhat different language, in particular, by analyzing the 
level scheme relative to an individual ion in the molecular 
field. For the solutions ( 11) and ( 12) the levels can be num- 
bered by the projections of the spin on the z axis. In this case 
the solution (12), i.e., the FM structure, corresponds to the 
usual scheme, in which the lowest is the level with maximum 
projection, I 1 ) in this case. For solution ( 1 1 ), i.e., for the QO 
structure, the lowest is the nonmagnetic 10) level. The first 
of these level schemes corresponds to the relation 
M I I  > - Qo between the ferromagnetic and quadrupole 
components of the order parameter, and the second to 
M I ,  < - Qo (Q, < 0).  The condition 

IMI, = - Qa (14) 

corresponds to crossing of the levels 10) and I 1 ) . The line on 
which this condition is met (it will be shown below to be the 
H * ( T) line on the phase diagram of Fig. 5 )  is a line of addi- 
tional degeneracy, with the system having .effectively only 
two levels. 

A nontrivial solution requires in addition to nonzero 
components M I I  and Qo (the mean values of the diagonal 
spin and quadrupole operators) also the components M,, 
Q,, and Q,, which are the mean values of the off-diagonal 
spin and quadrupole operators. The reason is the spontane- 
ous loss of symmetry with respect to three-dimensional rota- 
tions about the z axis in the corresponding structure, which 
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FIG. 5. Theoretical T - Hphase diagrams of nickel fluor- 
osilicate at different values of the parameter D /J,: a-D / 
J, = 0.5; b-1.9; -2.5. The H, , ( T )  line corresponds to 
the phase boundary ( 15), H, ,(T) to the phase boundary 
(16), and H * ( T )  to the boundary (19a). 

we shall name angular quadrupole-ferromagnetic 
(QFM , ) . A nonzero component M, makes it impossible to 
number the levels of an ion in the molecular field in terms of 
the spin projections along the z axis, so that no simple quali- 
tative analysis similar to the carried out above is possible. It 
can only be noted that in a QFM, structure the relative 
contribution of the quadrupole and ferromagnetic compo- 
nents to the order parameters varies with the parameters T, 
H, and D. In particular, the contribution of the quadrupole 
components is a maximum on the phase boundary with the 
QO phase and a minimum on the boundary with the FM 
phase (see the theoretical phase diagram in Fig. 5). 

We procede now to describe the construction of the 
theoretical phase diagrams. A nontrivial solution exists in a 
bounded region of the parameters H, D, and T. On the boun- 
daries of this region the angles take on values corresponding 
to the trivial solutions ( 11 ) or ( 12). These respective boun- 
daries can be determined after eliminating from the system 
(5) the trivial solutions and substituting the condition that 
the angles be equal to their values ( 1 1 ) and ( 12). 

The boundary determined in this manner, where the 
angles take on values corresponding to the QO solution 
( 1 1 ), is described by the equation 

in which a and A are determined by Eqs. (6) with 
sin p = sin K = sin 2L = 0, while the boundary where the 
angles take on values corresponding to the FM solution ( 12) 
is described by the equation 

in which a and A are determined by Eqs. (6) in which 
cos p = cos 2K = cos 2L = 0 is substituted. 

On the other hand, the trivial solutions ( 1 1 ) and ( 12) 
exist for all D, T, and H. They are expected to be stable only 
in a certain region of the T-H plane. The instability lines can 
be obtained by investigating the spectrum of the collective 
excitations of structures corresponding to the solutions ( 1 1 ) 
and (12), as lines of relaxation of the lower-lying mode. 
Equations for the corresponding spectra can be obtained 
from Eqs. (35) and (36) of Ref. 16, where a dispersion equa- 
tion is given for arbitrary p, K, and L in the zeroth approxi- 
mation in the reciprocal of the exchange-interaction radius 
for the irreducible part of the diagram. Substituting the val- 
ues of the angles ( 1 1 ) and ( 12), we obtain respectively for 
the low-lying branch of the QO spectrum 

w, ( k )  = [ D 2 + D J , l . + ( J r ~ / 2 ) 2 ] " ' -  (H-lOo+ Jr012) ( 17) 

and for the low-lying branch of the FM structure 

WFM ( k )  = { [ H -  (210-lk) (h+o) / 4 1 ~ + 1 k ~ o ( o - h ) / ~ ) ' ~  

(J, is the Fourier transform of the exchange integral and k is 
the quasimomentum). 

It is easily verified that the equations for the stability 
boundaries of each of the collinear structures, determined by 
the conditions ww (0) = 0 and w,, (0) = 0, are equal re- 
spectively to Eqs. ( 15) and ( 16)-the lines Hc , ( T) and 
Hc2 ( T) in Fig. 5 are lines of second-order phase transitions 
between the QO and QFM, and between the QFM, and 
FM structures, respectively. It follows from Eqs. (7), ( 1 1 ), 
and ( 12) of the present paper and from Eqs. ( 13) of Ref. 15 
that three off-diagonal components M,, Q,, and Q, of the 
order parameter vanish on these lines; the longitudinal mag- 
netization M I I  and the quadrupole mean value do have kinks, 
while the susceptibilities have irregularities in the form of a 
jump of the longitudinal component xll and of a singularity 
of the off-diagonal componentx, - IH - Hci 1-'I2 (i = 1,2). 

Note that the condition MI ,  < - Qo(Qo < 0) which, as 
noted above, is in general typical of the QO structure, is 
satisfied on the entire Hc2( T) line, while the condition 
M I I  > -Qo, which is typical of the FM structure, is met on the 
Hc2 line. Since we wish to determine the coordinates of the 
phase-diagram point 0 at which Hc , ( T) = Hc2 ( T) , we put 

M I I  = Qo or, the relation a = A equivalent at the angle 
values ( 11 ) and ( 12). It is easy to verify, however, that un- 
der this condition the equations ( 15 ) and ( 16) for the phase 
boundaries are identically equal and can take the form 

or, explicitly, 

H=D-lo[  2-exp ( - 2 / T ) ]  / [2+exp  (-212') 1, "T kke T / D  . 
(19a) 

It can be simultaneously seen from (6) that Eq. ( 19) is pre- 
cisely the condition for satisfaction of the equality a = A. 
This is readily verified by calculating the effective fields h 
and 2 in Eq. (6) for the angle values ( 1 1 ) and ( 12). Thus, 
Eqs. ( 15 ) and ( 16) describe not only the lines Hc, ( T) and 
H,, ( T) but no more line, ( 19a), shown dashed in Fig. 5 and 
labeled H * ( T) . 

The coordinates of the intersection point 0 of the lines 
H, , ( T), H, , ( T )  and H * ( T) can be determined from the 
explicit forms of the equations for the phase line Hc , ( T) or 
Hc2 - ( T) for small u - A, when these equations take the form 
T = [26(H / D  + 1) ] - I ,  and substituting in (19a). As are- 
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sult we obtain for the temperature at this point, which we x,, 4 
designate To, the equation 

I I f  2/To-exp (-2/To) 
(20) 2 - -  = 0, 

2E 2 f e x p  ( - 2 / T o )  

and for the corresponding field we have 

Ho/D=112ETo-I. (21 

In constrast to the lines Hc , ( T) and Hc ,( T), H * T is 
not a phase-transition line, since there is no symmetry differ- 
ence between the QO and FM structures at-finite tdmpera- 
tures. This line, however, separates structures with qualita- l.--- 
tively different behavior of a number of properties as o Q S  r a  H/D 

functions of the field at T = const. For example, the longitu- 
FIG. 7 .  Theoretical field3ependences of j_he longitudinal susceptibility 

dinal susceptibility xll (HI increases with increase of H in for the case D / J ,  = 1.9 (T ,  + 0.303):  1-_T=>,O; 2---0.45; 3-4.38;  4- 
the QO phase and decreases in the FM phase (see Fig. 71, the 0.28; 5-4 .26;  6-02; 1-3-T> To, & b T <  T,,. 
frequency of the lowest mode decreases with increase of H in 
the QO phase and increases in the FM phase [see Eqs. ( 17) 
and ( 18) 1, and so on. This makes H * ( T )  the line of the 
maxima ofxll (H),  the line where the frequencies of the fer- 
romagnetic resofiance vanish, etc. The reason for this cir- 
cumstance is that the degree of ordering in the system at a 
fixed temperature increases symmetrically in both direc- 
tions on moving away from the indicated line; in particular, 
the quadrupole order increases and the ferromagnetic order 
decreases when the field decreases. The absolute value of the 
order parameter, which characterizes the aggregate order in 
the system and is given by Eq. (8) turns out to be zero on this 
line. 

Although the absolute value of the order parameter in- 
creases symmetrically on both sides of the indicated line, the 
predominance of the different types of ordering in the QO 
and FM phases leads to a qualitatively different behavior of 
the measured quantities (the magnetization and the static 
magnetic susceptibility) as functions of Ta t  fixed H, since 
these quantities characterize only one subsystem. In particu- 
lar, a feature of fields belonging to the FM structure is the 
traditional behavior of a ferromagnet at T >  T, (H), namely 

FIG. 6. Theoretical temperature dependences of the longitudinal magne- 
tization and ofthelongitudinal susceptibility for thecase D  /Jo = 1.9. The 
figure shows the dimensionless quantities M I ,  andx,, defined by Eqs. ( 7 )  
and (9):  1-H/D = 0.3; 2-4.4; 3 - 4 8 ;  4 - 0 . 9 ;  1 ,  2-H<H,; 3,  4- 
H > H ,  lndD/J,= 1 . 9 H J D = 0 . 7 3 ) .  

the montonic decrease of the longitudinal magnetization 
and of the longitudinal susceptibility with increase of T a t  
constant H (see curves 3 and 4 in Figs. 6a and 6b). On the 
contrary, fields where a QO structure exists, and at values of 
H not too close to H * ( T), are have at T >  T, ( H )  values of 
M and xll that depend anomalously on T, first increasing 
with increase of T, passing through a maximum, and only 
then begin to decrease (see curves 1 and 2 in Figs. 6a and 
6b). The quantities that characterize the spin order on the 
whole, the absolute value of the order parameter 7, and the 
generalized susceptibility x = d7/dh have a traditional be- 
havior and decrease with Tat T >  Tc (H) for all values of the 
parameter H. 

As shown by the calculations, the indicated differences 
in the behavior of M ( T,H) and xll (T,H) in QO and FM 
structures manifest themselves at sufficiently low relative 
temperatures Tb. 0.7, and vanish at higher T (see, e.g., curve 
1 of Fig. 7 for T = 1 .O, on which there is no maximum of 

(H), and therefore do not exist at all at D /J,  5 1.05, when 
the entire paramagnetic phase is in the region of higher T. 
The reason is that as the temperature is increased the ther- 
mal fluctuations weaken both types of disorder, ferromagne- 
tic and quadrupole, the difference between the QO and FM 
structures decreases, and their properties approach those of 
an ordinary paramagnet. We have discussed in so much de- 
tail the cause of the H * ( T) line and some of the features of 
the properties connected with its existence, because igno- 
rance of these features may impede the interpretation of the 
experimental data, as will be shown in the next section. 

4. COMPARISON OF EXPERIMENTAL AND THEORETICAL 
RESULTS. CONCLUSIONS 

We turn now to an interpretation of the experimental 
data and to a comparison of the experimental and theoretical 
susceptibility curves. In experiments, the locations of the 
second-order phase transition points at finite H are deter- 
mined from the behavior of the longitudinal susceptibility 

(H).  For samples of infinite size, this quantity should 
change jumpwise at phase-transition points. For finite sam- 
ple dimensions, as in experiment, the jump is smeared out 
and the phase-transition points are actually determined 
from the positions of thexll (H) maxima. If this procedure is 
used to construct the phase diagrams in our case, we obtain 
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the picture given in Ref. 20, where preliminary experimental 
results were published, i.e., we get a phase line consisting of 
two sections, Hc2(T) and H * (T). The position of the 
H, , ( T )  line is not determined in this case. 

According to the developed theoretical premises, the 
H * (T) line drawn in this manner is not a phase-transition 
line, and the nature of the xll (H)  maxima on it was ex- 
plained in Sec. 3. On the other hand, the theory predicts the 
existence of xll (H)  jumps on both the Hc ,( T) and the 
Hc , ( T) lines. Why are the latter not determined in experi- 
ment? The reason became clear after the theoretical plots of 
xll (H) were obtained (see Fig 7).  It turns out that at the 
points H = Hc , ( T) the numerical values of the jumps are 
very small and, most importantly, they appear above a back- 
ground, a smooth monotonically increasing section of the 
XI, (H) curves, whereas at the points H = H, ,( T) the jumps 
are above the background of a plot of xll (H) that is as a 
whole nonmonotonic. This makes it impossible to determine 
these jumps and accordingly the H,, line is determined in 
experiment by m e a s u r i n g ~ ~ ~  (H)  at constant T. 

On the other hand, the H, , ( T) line can be recorded by 
measuring xll ( T) at fixed H (see Fig. 6b). The same mea- 
surements yield also the Hc2 ( T) line, whose position coin- 
cides, as it should, with the position determined by measur- 
ing xll (HI. 

As a result we obtain the experimental phase diagrams 
shown in Fig. 4 for different D /Jo.  When comparing the ex- 
perimental and theoretical phase diagrams, notice must be 
taken of the characteristic transformation, in both types of 
closed phase-transition line, of Tc (H) from a monotonically 
decreasing plot in the case D /Jo ( 1, the same as for a ferro- 
magnet with exchange anisotropy, to a strongly nonmono- 
tonic one at D /Jo - 1 (see the experimental, Fig. 4, and theo- 
retical, Fig. 5, phase diagrams). The case of intermediate 
values of D  /Jo is particularly interesting. It corresponds at 
first glance to the situation standard for an easy-plane ferro- 
magnet: in the-absence of low T there is realized a ferromag- 
netic phase with a magnetization oriented parallel to the 
easy plane, which goes over next with increase of T into a 
nonmagnetic phase via a second-order phase transition at 
T = Tc. At intermediate D /Jo,  however, the phase line is 
transformed in such a way that it becomes possible at 
T >  Tc (0)  to restore cooperative order in the easy plane 
when the field is applied along the "difficult axis." The rea- 
son lies in the more complicated phase structure, described 
in detail in Sec. 3. 

To determine the theoretical value of ( D  / J o )  *, at which 
a restructuring of the character of the plane lines takes place, 
namely, the appearance of an increasing section of Tc (H),  
we write down the equation that follows from ( 15) for 
Tc (H) at small H: 

where 

The value of ( D / J o ) *  is determined from the condition 
C = 0 and turns out to equal 1.48. Note that this value agrees 

150 

0 0 

100 
QFM, 

FIG. 8. Comparison o f  the experimental and theoretical T - H phase 
diagrams for the case P= 8.6 kbar ( D / J , ,  = 1.8): points-experiment, 
solid curve-theory. 

well with the experimental ( D / J , ) *  = 1.58. 
As a whole, the quantitative comparison of the experi- 

mental and theoretical phase diagrams for the most typical 
experimental case (D / J o )  * = 1.8 (P = 8.6) kbar is shown in 
Fig. 8. 

Summarizing briefly the features of the phase diagrams 
and phase transitions in ferromagnets with easy-plane one- 
ion anisotropy in cases when D-Jo and S = 1, compared 
with the semiclassical limiting case D /J ,  ( 1 or S )  1, we note 
the following. . 

1. The existence of three structures (QO), QFM , , and 
FM) rather than two in the indicated semiclassical cases 
leads to a characteristic form of the phase diagrams and to 
their unusual transformation with change of D / jo.  

2. At low temperatures ( T <  To) the phase transitions 
with respect to field between these structures are of second 
order. At high temperatures ( T >  T o )  the transitions 
between the QO and FM structures are smooth. 

3. A feature of the QO structure is an anomalous behav- 
ior of the longitudinal magnetization and of the longitudinal 
susceptibility as functions of T, particularly their growth 
with temperature at H = const in a certain region of tem- 
peratures T. This behavior goes over into the standard 
"paramagnetic" behavior with further increase of T. Since it 
is connected with the unusual structure of the order, one 
should expect also an unusual behavior of other magnetic 
properties. 

4. In the paramagnetic region there exists a certain line, 
H * ( T) , on which the character of the dependence of a num- 
ber of quantities on H varies. This variation was observed in 
the present experiment for the longitudinal susceptibility 
xII (H)  , which has a maximum at H = H * ( T) . Similar varia- 
tions of other quantities, such as the ferromagnetic-reso- 
nance frequencies, are predicted. 

"The tensor operators 0 ;  are defined in Ref. 15 viz., 
0: = (SZ)'  - 1/3S(S+ 1),0$' = - ( S z S  * + S  * S ' ) , 0 : 2  
= ( S  * )2. 

The quadrupole mean value Qo is so difined that Q, = 0 for a random 
disposition of  the spins ( ( ( S z ) 2 )  = ( ( S x  ) 2 )  = ( ( S y  ) 2 )  = 2/3.  
Q, = 2 in the case of  complete quadrupole order ( ( ( S  * )') = 0,  and 
Qo = 1 for complete ferromagnetic order along the z axis ( ( (S' )') = 1 .  
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