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The Fokker-Planck equation is solved for the distribution function of the phase and the voltage 
across a high-Q Josephson junction. An exact expression is derived for the lifetime of the resistive 
state of the junction. If the current through the junction is reduced slowly and linearly with time, 
the distribution of the currents of the stochastic switching of the junction between the resistive 
state and the superconducting state is Gaussian with a half-width on the order of eT/RCw, where 
e is the electron charge, Tis the temperature, and R, C, and w are the resistance, capacitance, and 
Josephson frequency of the junction. A measure of the dispersion of this distribution is derived as 
a function of the position of the distribution maximum for currents on the order of I, /RCw 
(RCw ) 1 ,  where I, is the critical current of the junction). 

1. INTRODUCTION 

In the resistive model of a point Josephson junction' the 
current through the junction, I ,  is the sum of the supercur- 
rent I, sin q, and the normal current V/R + Cd V/dt, where 
I, is the critical current, q, is the phase difference between 
the order parameters, Vis the voltage across the junction, R 
is the resistance of the junction in its normal state, and Cis its 
capacitance. Here V and g, are connected by the Josephson 
relation, so the system of equations for these properties. 

CclV/dt+V/R+I, sin rp=I. dq/dt=ZeV,  

is equivalent to the single equation 

d2q 1 drp 2e 
- + --- + - ( I ,  sin rp-I) =0, 
dt2 RC dt  C 

which describes the motion of a particle with friction in a 
sloping periodic potential. We consider a high-Q junction, 
for which the friction coefficient l/RC is small in compari- 
son with the small-oscillation frequency at I = 0:  

Our results will then hold under the condition 8% 1, where 
P= RCw. It can be seen from Eq. ( 1 ) that as the current is 
increased slowly from I = 0 there is no voltage across the 
junction (dp  /dt = 0 )  as long as the potential has minima 
(I < I, ). For I >  I, the junction goes into its resistive state, 
with dq, /dt #O, and a nonzero average voltage V(I) appears 
across the junction. This average voltage is determined by 
the condition that the energy dissipated by friction is offset 
by the energy acquired from the slope of the potential. This 
condition is not tied to the existence of potential minima, so 
as the current decreases the resistive state may persist, even 
if I falls below I,. The voltage across the junction remains 
nonzero as the current is lowered to 

At lower currents, the state of the junction with dg, /dt = 0 is 
the only one possible. For I >  I,, there can thus be only a 
resistive state, while for I < 41, /I$ there can be only a super- 
conducting state; at intermediate currents, both of these 
states are stable. This effect is familiar as hysteresis in the I- V 

characteristic of a Josephson junction. Switching between 
stable states can be accomplished, as pointed out above, by 
increasing or reducing the current I beyond the hysteresis 
interval. When thermal fluctuations are taken into account, 
rve see that switching between the two branches of the vol- 
tage-current characteristic are possible even at constant I. 
The probGbility for such switching events is small as long as 
the energy barrier between the two states, I,/e, is large in 
comparison with the temperature T. This condition gives us 
a second large parameter of the problem: y = I,/eT. Under 
the conditions 8% 1 and y > 1, we can take up the question of 
calculating the lifetime of the superconducting and resistive 
 state^.^ 

The lifetime of the superconducting state is determined 
by the rate at which the Brownian particle modeling the state 
of the junction leaves the deep potential well. This lifetime 
was calculated in Ref. 3, where the partial probabilities for 
the trapping of an escaping particle in neighboring potential 
wells (i.e., the probabilities for a jump of 2 ~ n ,  where n is an 
integer, in the phase of the junction) were also found. To 
determine the lifetime of the resistive state we need to know 
the distribution of the particles which move high above the 
barriers. This problem was solved in the exponential approx- 
imation by Vollmer and R i ~ k e n . ~  In the present paper we 
offer a complete solution for the lifetime of the resistive state, 
taking the approach of Ref. 3. We use the result to find the 
distribution of the currents at which the junction switches 
from the resistive state to the superconducting state for the 
case in which the current I decreases very slowly and linearly 
over time. The results show that this distribution is Gaus- 
sian. We find a measure of the dispersion of this distribution 
as a function of the position of its peak. 

2. DISTRIBUTION FUNCTION AT HIGH ENERGIES 

We begin with a discussion of the I- V characteristics. 
For a high-Q junction, currents I 2  I, /@& I, are important. 
To first order we can thus ignore the effect of the slope and 
the dissipation and assume that the total energy 

is conserved. We can then find the functional dependence 
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p ( t )  for a given E. For the time-averaged voltage across the 
junction we then find 

where 
n/Z  

p (z) = J (r + sin2 rp) -% drp. ( 4 )  
0 

The rate of energy dissipation is 
de 
dt  

so when p changes by 2~ the energy decreases by an amount 

where n,2 

0 

The energy E is described as a function of the current by 

This equation relates the energy dissipation to the slope of 
the potential. Equations ( 3 ) - ( 7 )  parametrically determine 
the time-averaged I- V characteristic of the junction. Equa- 
tion ( 7 )  has a solution for E only at I >  41,/1~/3, SO we have 
V ( I )  = 0 as long as the condition I < 41, / ~ / 3  holds; there- 
after, V ( I )  increases sharply and quickly assumes an ohmic 
(linear) dependence.' An important point is that the charac- 
teristic values E - I, /e correspond to the largest of the ener- 
gy scales of the problem. 

At a nonzero temperature the current I in Eq. ( 1 ) must 
be supplemented with a fluctuation I f ( t )  with a correlation 
function 

The state of the junction in the presence of fluctuations 
is described by a Fokker-Planck equation for the distribu- 
tion function f(  t,p,Q,) : 

where 4 - d p  /dt. We wish to find solutions of the form 

which are periodic in p. We show below that under the con- 
dition I > 41, /@ the parameter T which we have introduced 
here is determined unambiguously by the conditions of the 
problems and thus gives the lifetime of the resistive state. 

Substituting ( 9 )  into (8  ), and transforming from the 
variables p, + to p, E, we find 

where @ ( E ,  p )  is determined from ( 2 )  and is positive, since 
only particles with positive velocities are present in the re- 
gion E ,  T. The right side of ( 10) is small because the dissipa- 
tion is small, and the last term on the left side is small be- 
cause the slope of the potential is small. The first term on the 

left side is even smaller, since the lifetime is exponentially 
large. If we ignore these terms we find df / d p  = 0.  In the next 
approximation, we follow the customary procedure of inte- 
grating ( 10) over the interval ( 0 ,  2 ~ ) .  The integral of the 
leading term, df /ap ,  vanishes identically because f is period- 
ic in p, and in the other integrals we can assume f to be 
independent of p.  As a result we find the equation 

d df 
pf+ -18 de ( E )  T + [ 6  ( e )  -nIle] f ] =O,  

where p =2p(&e/IC ) /wr .  The term pf distinguishes this 
equation from that derived previously4 for the static case. If 
we ignore the termpA we find that the solution of this equa- 
tion is 

de' 
6 ( E ) - n I / e '  (12) 

where C ,  is a constant. The solution ( 12) does not hold in a 
small neighborhood of the energy B which satisfies Eq. ( 7 ) .  
In this neighborhood we use the expansion 

and we set S ( E )  = S ( B )  = d / e .  The replacement 

and the switch to the variable x= ( E  - 2) (eA/n-IT) ' I 2  lead 
to the equation 

i.e., a Schrijdinger equation for an oscillator whose energy 
exceeds the ground-state energy by p/A < 1. The function 
f ( ~ )  is normalizable if $ ( x )  decays as x+ CO. A nonzero 
value ofp/A would then mean that $ contains an exponen- 
tially growing term at large negative x: 

Comparison of this expression with ( 12) yields the con- 
stant C, .  In the region B $ E )  T, where we can now set 

but in which we do not yet have to allow for the change in 
f ( ~ )  due to the reflection of particles from the potential bar- 
riers, we find 

where f = 1 - ?rpl/41c. We will use this expression below 
as a boundary condition on the function describing the dis- 
tribution of particles at energies E -  T near the crest of the 
barrier. Here we have ( < 0 ,  so the first term in ( 13) in- 
creases exponentially with the energy. 

3. DISTRIBUTION FUNCTION NEAR THE TOP OF THE 
BARRIER 

We can draw the following picture of the decay of the 
resistive state. As the Brownian particle representing the 
state of the junction moves above the periodic sequence of 
potential barriers, it eventually strikes one of them, is reflect- 
ed, and-after a relaxation time, and with a nonzero prob- 
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ability-is trapped by one of the potential wells. The time 
scale of the inverse process-the escape of the particle from 
the well-is large, proportional to exp (I, /eT) , so that pro- 
cess can be ignored. The particle flux in energy space is de- 
termined by the second term in expression ( 13 ), so in order 
to determine p we need to determine the structure of the 
distribution function at an energy at the level of the barrier, 
with I E I  - T. In this energy region, we introduce the func- 
tions f R ( ~ )  and f L ( ~ )  to describe the particles whose veloc- 
ities are directed to the right and to the left. We write the 
periodicity condition for the transition from one barrier to 
another as the system of integral equations3 

We see that the function f R ( ~ )  is made up of particles which 
have moved above the neighboring barrier with energies 
E' > 0 [the term with f R ( ~ ' )  ] and particles which have been 
reflected from the same barrier and which have energies 
E' < 0 [the term with f L ( ~ ' )  1 .  The kernel of the integral 
equations ( 14). 

g(e-e ' )  = ( 4 ~ 6 T ) - ' ~  e x p [ -  ( E - s ' f  6) ' /46T] 9 

is the Green's function of Eq. ( 1 1 ) in the casep = 0, I = 0. It 
describes a Gaussian spreading of the distribution function 
due to the friction and the fluctuations when a particle is 
displaced by 27~. Argument shifts + r I / e  allow for the fact 
that energy is acquired or lost when a particle undergoes a 
displacement of 2.77 to the right or left. Since the range over 
which the energy varies is small, ( E I  - T, we set 
S(E) = S(0) = S in Eqs. ( 14). After taking one-sided Four- 
ier transforms, 

c p ,  ( h )  =) f ( E )  0 (*e) csp  ( i ? , ~ / T ) d e .  

we put the system ( 14) in the form 

~p+"+q-"=g+(cp+"+(p-~), rp+L+cp-L=g-((p-R+~+L), ( 15) 

where 

g,(h)=exp [ - 6 h 2 / ~ - i h ( 6 ~ n l / e ) / T I .  

Solving ( 15 ) for pPR and pPL, and forming the differ- 
ence p = p - p =, we find a Wiener-Hopf equation for the 
new function: 

cp+(h)=G(h)rp-(h), (16) 

where 

G(h)=(1-g+g-)/(1-g+)(l-g-). (17) 

The resulting equation relates the function p + ,  which is 
analytic in the upperil half-plane, to the function p-, which 
is analytic in the lower half-plane. Our problem differs from 
that d v e d  in Ref. 3 in that there is no equilibrium popula- 
tion of the potential minima; there is only a particle flux in 
energy space due to the relaxation of the particles which are 
moving high above the barriers [the second term in ( 13) 1 .  

What are the conditions under which Eq. ( 16), should 
be solved? The presence of a certain number of particles with 
a Boltzmann distribution function a exp( - E/T), in the 
potential wells would correspond to a pole p- ( A )  at point 
A = - i. In the absence of such particles, p- ( - i)  would be 
finite, and by virtue of the condition G( - i)  = 0 the follow- 
ing condition would hold: 

In turn, asymptotic expression (13) shows that p+ ( A )  has 
poles at the points A = - ic and A = 0. If we define p+ (A) 
in such a way that we have 

[this case corresponds to the amplitude of the first term in 
( 13) 1, then we could use the residue p+ (A ) at the point 
A = 0 to find the unknown parameter p .  A solution of Eq. 
( 16) satisfies conditions ( 18) and ( 19) as 

if we use the following expression for the factorization 
GiA) = G+(A)G-(A): 

m 

dh' In G (A') 
G + ( h ) =  exp[* j % h ' - ? i ~ i 0  

-ce. 
I .  

Condition ( 18) would then in fact hold, by virtue of the 
condition G+ ( - i )  = 0 [a change in the sign of the imagi- 
nary part of A in (21) would take a factor G(A) out of the 
coefficient of the exponential function], and the validity of 
condition ( 19) is obvious from the way (20) is written. For- 
mally, the problem has now been solved. It remains to find 
explicit expressions for G+ (A). We return to the expression 
for G(A) in the form of a product, ( 17), and we transform 
the integrals corresponding to the various factors, introduc- 
ing a shift along A ' in order to make the expressions in the 
logarithm real. We find 

where { = 1 + n-PI/4IC and f = 1 - PPI /41c. The func- 
tion <P, (x ,y )  is determined by the expression 

n / 2  

We recall that y = IJeT and P = RCw. Relation (22) is 
suitable for calculating G+ ( - ic) if we use the condition 
< < 0. To calculate G+ ( A )  near A =. 0 we need to consider 
the region I d  < - </2. In this case the shift of the integra- 
tion contour for the factor l - g-  ( A )  leads to an intersec- 
tion of the singular point A ' = A and to a change in the form 
of G+(A): 

Q2(1-2ih, 1 )  0, (5-2ih, b )  
G+ (A)  = 

@ 1  (t,-zih, E )  [ 1-g- ( a )  I ' (24) 

We see that G+ ( A )  has a pole at A = 0. Substituting expres- 
sion (2)  for G+ ( - i<) and expression (24) for G+ ( A )  into 
(20), and taking the limits A -. 0, we find 
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The right side of this expression must be the same as the 
second term in ( 13) if we replace 6 by If 1. Making use of the 
relationship betweenp and r, we write the final result for r as 
a function of the reduced current q = ?rp1/4IC, in the form 
of parametric relations: 

~ ( q )  =2n(RClm)'"B(q, r/P)exp [yA (9) I ,  
I 

The functionp(x) and r(x)  are defined by expressions (4)  
and (6); the functions a, (x,y) are defined by (23). Figure 1 
shows the functional dependence A(v),  and Fig. 2 shows a 
family of curves of B versus 7 for various values of the ratio 
*//B = I,/(eTRCo). 

4. DISTRIBUTION OF SWITCHING CURRENTS 

We assume that the current I decreases very slowly and 
linearly with time: 

The normalized probability that the junction will 
switch from the resistive state to the superconducting state 
at the current I is given by the expression 

a, 

This expression simplifies dramatically in the limit s + 0. We 
will now show that the distribution P(I) is Gaussian, and we 
will find a measure of its dispersion as a function of the posi- 
tion of the peak, I = I,. 

Working in the eikonal approximation, and using (25), 
we can write 

The extremum of P(I) is reached at a current I, such that 
the following relation holds: 

This equation implicitly determines the functional depen- 
dence I, (s). To calculate a measure of the dispersion of the 
switching current it is sufficient to differentiate the term 

7 , 7 m  

FIG. 1. The functions A ( 7 )  and 2 (7, ). 

FIG. 2. The coefficient of the exponential function, B, versus the reduced 
current 7 = n-I/(4ICRCo) for various values of the parameter 
y/P= I , / (eTRCo) .  

[ s r ( I )  ] - ', since the relative contribution of the second term 
is small, on the order of the parameter y- ' 4 1. Again differ- 
entiating only the exponential functional which appears in 
1 /T, we find 

This expression, taken at I = I, , where we can use (26) 
to replace the factor [sr(I, ) ] - ', determines the dispersion 
of the switching current. Transforming to the distribution of 
the reduced current, P (v ) ,  through the substitution 
P ( 7 ) d ~  = P(I)dI,  we find 

where 8, the measure of the dispersion, is given parametri- 
cally as a function of the peak position 7, : 

5. CONCLUSION 

The problem of the lifetime of the resistive state of a 
Josephson junction has a long history, and its solution has 
been the subject of several papers.4-8 In the eikonal approxi- 
mation, which is sufficient for calculating the switching-cur- 
rent distribution, (27), a solution has been found by Vollmer 
and R i ~ k e n . ~  In our opinion, the approach suggested by Ben 
Jakob is incorrect. The results found in Refs. 6-8 differ 
from our own results and also from the results of Ref. 4. 

Calculating the coefficient of the exponential function 
in expression (25) for the lifetime of the resistive state will 
require solving a Fokker-Planck equation with two variables 
in the case at hand, in which the friction is small, this equa- 
tion can be reduced to a system of Wiener-Hopf equations. 
This method was used in Ref. 9 to find an exact solution of 
the Kramers problemlo of the lifetime of a Brownian particle 
in a deep potential well. In Ref. 3, the fluctuational I- Vchar- 
acteristic, the lifetime of the superconducting state, and the 
partial probabilities for phase jumps of a high-Q Josephson 
junction were calculated. The Kramers problem has also 
been solved for the case with quantum-mechanical effects. I '  

That approach has made it possible to find the fluctuational 
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I- V characteristic of a Josephson junction for the case with 
Nyquist noise and tunneling through the potential bar- 
riers. '' 
Editor's note: G. Iche and P. Nozitres [J. de Phys. 37, 1313 (1976); 40, 
225 (1979)l previously pointed out the possibility of passing from the 
Fokker-Planck equation to a system of integral equations for the energy 
distribution function in the limit of vanishing small dissipation. 
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