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The method of a quantum transport equation is used to deal with the renormalization of the 
thermoelectric force of an impure metal due to the electron-phonon interaction and the effects of 
an electron-phonon-impurity interference. The electron-impurity interaction is not assumed to 
be small and it is included in all orders of perturbation theory. It is shown that the magnitude and 
sign of the thermoelectric effect depend strongly on the electron-phonon interaction constant and 
on the amplitude of electron scattering by impurities. In the Born approximation for the electron- 
impurity interaction and on the assumption of a parabolic energy band the total phonon 
correction to the impurity thermoelectric force vanishes because of canceling of terms, which 
differs considerably from the results of previous studies. An investigation is also made of the 
influence of the electron-magnon interaction and of the electron-magnon-impurity interference 
on the thermoelectric effect of an impure ferromagnetic metal. 

'I. INTRODUCTION 

Studies of thermoelectric effects in normal metals are 
difficult because of the extreme sensitivity of these effects to 
the characteristics of the electron and phonon spectra, and 
also to the presence and nature of imp~rities.'-~ From the 
theoretical point of view the greatest problem is that of the 
phonon renormalization of the thermoelectric force (ther- 
mopower) of an impure conductor. It should be pointed out 
directly that such renormalization is possible because of the 
pure electron-phonon interaction and also because of an 
electron-phonon-impurity interference. 

The influence of the electron-phonon interaction on the 
thermoelectric effect of metals is analyzed in Refs. 4 and 5 by 
the method of linear response in which an important feature 
is an allowance for the interaction effects in the heat flux 
operator. However, in our opinion, analytic continuation of 
the diagrams containing the electron-phonon corrections to 
the heat flux operator was carried out incorrectly in these 
investigations. An important role played by electron- 
phonon-impurity interference processes was first pointed 
out in Ref. 6 .  This effect was subsequently investigated by 

A semiclassical transport equation was used in 
Refs. 6-8 so that all the interference processes could not be 
allowed for. The calculation reported in Ref. 9 was made by 
the linear response method and the electron-impurity inter- 
action was not assumed to be small, i.e., the non-Born nature 
of the scattering of electrons by impurities was taken into 
account. However, the treatment in Ref. 9 was confined to a 
narrow class of diagrams obtained ignoring corrections to 
the vertices of the momentum and energy fluxes. Since al- 
lowing for the additional diagrams representing the elec- 
tron-phonon-impurity interference effects may alter not 
only the numerical value but also the sign of the quantity 
being calculated, the problem of the influence of the interfer- 
ence processes on the thermoelectric effect of an impurity 
metal remains unsolved. Moreover, a separate discussion of 
the electron-phonon interaction and electron-phonon-im- 
purity interference is artificial because the contributions 
made to the thermoeiectric effect by these effects have a simi- 

lar structure and, as shown below, largely cancel out one 
another. 

It therefore seemed of interest to analyze all the phonon 
renormalizations of the thermoelectric force of an impurity 
metal by the same method. The approach presented in Sec. 2 
is based on a quantum transport equation and it makes it 
possible to allow for the full variety of quantum interference 
effects. Moreover, it has a number of advantages compared 
with the linear response method. Firstly, in this approach we 
have to consider a much smaller number of diagrams (twen- 
ty-four diagrams were considered in Ref. 9 and if the vertex 
corrections are included, then the number of diagrams rises 
catastrophically). Moreover, in calculations of the electric 
current due to a temperature gradient there is no question of 
corrections to the heat flux operator due to the interaction of 
electrons with phonons and impurities. The Keldysh dia- 
gram technique is used in Sec. 3 to construct the effective 
vertices of the interaction allowing for the non-Born scatter- 
ing of electrons by impurities. A direct calculation of the 
corrections to the thermopower of an impure conductor is 
reported in Sec. 4. In Sec. 5 the method is extended to the 
case of a ferromagnetic metal when the corrections to the 
thermoelectric force are due to the electron-magnon inter- 
action and electron-magnon-impurity interference effects. 
The results obtained differ considerably from the conclu- 
sions reached in previous investigations, and this is dis- 
cussed in the final section. 

2. QUANTUM TRANSPORT EQUATION METHOD 

We shall calculate the phonon corrections to the ther- 
moelectric force of an impurity metal using the quantum 
transport equation method developed on the basis of the 
Keldysh diagram technique in Ref. 10. This model has been 
used earlier to calculate temperature-dependent corrections 
to the extrinsic conductivity as a result of the electron-elec- 
tronl and electron-phonon12 interactions. 

In the Keldysh diagram technique13 the Green's func- 
tions of an electron and a phonon, and the electron self-ener- 
gy are represented by matrices 
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The Green's function of a phonon is 

In the case of equilibrium phonons, we have 

Without allowance for the interaction with phonons the 
Green's function of an electron averaged over the impurity 
positions is 

where 7, is the relaxation time of the momentum of an elec- 
tron with an energy E scattered by impurities, m is the elec- 
tron mass, and p, is the Fermi momentum. 

Our aim will be to calculate the electron current which 
appears under the influence of a temperature gradient V T. In 
accordance with the Onsager principle, the solution of a 
symmetric problem of finding the heat flux due to an electric 
field is more complex because the heat flux operator differs 
from the electric current operator since the former contains 
corrections due to the in te ra~t ion .~ .~  An allowance for den- 
sity gradients in the momentum representation leads natu- 
rally to corrections in the form of Poisson brackets": 

where in the preseice of; temperature gradient we have 
VR = (VR T)d/dT. 
To first order in VT we find that G is described by 

where under equilibrium conditions we have 
S(p,&) = So(&) = - tanh(d2T).  Then, the linearized 
transport equation for the electron distribution function is 

where the collision integrals on the right-hand side represent 
respectively the electron-impurity and the electron-phonon 
interactions, and the interference between these interac- 
tions. The collision integrals are expressed in terms of the 
corresponding self-energy part using the formulas 

I ( S )  =1°(S)+61(S), 1 ° = - i [ Z C - S i x A -  Z R ) ] ,  (8) 

where 6B are corrections in the form of Poisson brackets. 
Assuming, as in Ref. 10, that the main momentum relaxa- 
tion mechanism is the scattering by impurities, we shall solve 
the transport equation by iteration. Without allowance for 
phonons the nonequilibrium correction to the distribution 
function is 

e a s o ( & )  
cpo(p, E)=T,vVT--. 

T de (10) 

In the first order of perturbation theory for phonons, we find 
that 

q l ( p ,  E )  = ~ s [ I e - p h  (SO+(PO) + I e - p h - i r n p ( S O + ~ ~ O )  

where 6,,1,,, is the correction to the impurity col'lision 
integral due to the phonon renormalization of the density of 
states of electrons: 

A A GphGA= (GOA) ' ( L p h f  x e - p h - i m p )  t (13) 

and the renormalized density of states v, is 

The electric current is given by the expression 

from which we find that the correction to the thermoelectric 
force is related both to the correction to the distribution 
function p , (p ,~ )  of Eq. ( 10) and to various corrections to 
the electron density of states: 

where n is a unit vector directed along VT and 6GA is the 
correction in the form of Poisson brackets: 

3. EFFECTIVE VERTICES 

We shall follow Refs. 12 and 13 in the determination of 
the interaction vertices. The potential of the interaction of an 
electron with an impurity under screening conditions is 

where Zi,, and Zion are the valences of the impurity atoms 
and of the ions in the host lattice. We shall ignore the weak 
momentum dependence of the potential and assume that the 
scattering is isotropic. The vertex of the elastic scattering of 
an electron by an impurity considered in the representation 
of Eq. ( 1 ) corresponds to a matrix U ( u ,  ), , where a, is the 
familiar Pauli matrix. Without restricting our treatment to 
the Born approximation, we shall find the total amplitude of 
the scattering of an electron by an impurity from the equa- 
tion shown graphically in Fig. l .  In the Keldysh technique 
the scattering amplitude f, has an analytic structure similar 
to that of the self-energy of Eq. ( 1 ), where 
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FIG. 1. Equation for the amplitude of the scattering of an electron by an 
impurity. A 

It should be pointed out that in the case of an isotropic impu- 
rity potential the expression for f should contain only the 
equilibrium distribution function So(&). The relaxation time 
of the electron momentum is related to the scattering ampli- 
tude by FIG. 3. Effective vertices A, T, and L. 

~,- ' -nv,n, l  f e A  12=2Un,ae ( I+as2) - I ,  (19) 

where n, is the impurity concentration. 
The vertex for the inelastic scattering of an electron by a 

longitudinal phonon, shown in Fig. 2, is A l l i = 2 -  [ I - - S , ( E ) S , ( E + ~ )  ( f ,A+f ,R)21 j  f L A j 2  J A Z ,  A221=2-1'11, 

g,,k=ig,K,,R, g q = 2 / 3 ~ r  ( 2MNuph) -li2qeh, .\1LL=2-' ( I f f , R / f e A ) S U ( ~ ) A i ,  . ~ 1 2 2 = 2 - ' . l f , R / f e A ,  

where e, is the phonon polarization vector; M is the mass of 
an ion; Nis the number of unit cells; E~ is the Fermi energy; P 
is the dimensionless electron-phonon interaction constant. 
The system (20) is generally valid only at low values ofq; for 
values q - q, typical of the present problem (where q, is 
the limiting wave vector of the phonon spectrum) the 
expression for gq contains an additional factor 
x2(x2 + q2) - I .  AS in the case of the electron-impurity scat- 
tering, we shall ignore the weak dependence on q associated 
with this factor. As shown in Ref. 12, because of the weak 
screening of transverse electromagnetic fields the corre- 
sponding vertex for transverse phonons is somewhat smaller 
than gq (with the exception of an unimportant range of very 
low values of q) . 

The interaction with transverse phonons appears only 
because of the inelastic scattering of electrons by impurities, 
which is described by a vertex yfj. (Fig. 2): 

It is convenient to carry out partial summation of the 
diagrams by introducing effective vertices which allow for 
the electron-phonon-impurity interference. Graphical so- 
lutions for the effective vertices are shown in Fig. 3. Assum- 
ing that the electrons satisfy an equilibrium distribution, we 
find that the vertices A: are described by the following ex- 
pressions: 

where the following notation is used: 

The calculation off, is worth a comment. We can represent 
6, in the form 

m + I  

We shall show later that we are interested in the values such 
that q-q, and E- w - T. However, since f, <qu, integra- 
tion of each factor in Eq. (24) can be carried out indepen- 
dently (the first factor with respect to f, and the second with 
respect to x). Assuming q, < 2pF, we obtain 

Similarly, we find that 

Inclusion of a nonequilibrium correction to the distri- 
bution function p, (p, E )  of Eq. ( l o ) ,  proportional to the 

FIG. 2. Electron-phonon interaction vertex g and inelastic electron-im- temperature gradient, yields the corresponding corrections 
purity scattering vertex y. to the effective vertex A; 
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The components of the effective equilibrium vertex r; are 

Nonequilibrium corrections to the vertex r; are 

E aSo(E) (j,r121'-2-'"f8R-- 
T de  

r,, ~,r112=~~ri2 i+~,r212,  

(E+u) aso (E+u) 
6,1-~~'=2-'''f.~ - r,, r,=t.g,q-Ire, V T .  

T  a E 

(28) 

Calculations indicate that the equilibrium vertex is L ; = 0 
and the nonequilibrium corrections are 

These vertices represent phonon absorption. In the case 
of those associated with phonon emission we have the fol- 
lowing relationships which are given below for the specific 
case of a vertex A;: 

The components of the vertices not included in Eqs. (26)- 
(29) all vanish. 

The resultant quantities A;, I$, and L ; make it possi- 
ble to present in a compact form a number of self-energy 
diagrams. In some of the diagrams with a complex structure 
the vertices obtained above can be used as composite blocks. 

4. CALCULATION OFTHE THERMOELECTRIC FORCE OF AN 
IMPURE METAL 

Without allowance for the electron-phonon interaction 
the thermoelectric force of a pure metal is given by the 
expression 

Integration with respect to p identifies the terms that are 
linear in the frequency E, so that 

In Eqs. (3 1 ) and (32) an allowance is made for the fact that 
in the non-Born scattering case the quantity T, can depend in 
a complex manner on E via v, [see Eq. ( 19) 1. If a,< 1 ,  then 
q, is described by the familiar expression 7, = ?lo 

We shall show later that the characteristic value of the 
phonon wave vector is q-q ,  -p,. If q l )  1 ( I  = T~V,) the 
diagrams of the electron self-energy allowing for the elec- 
tron-phonon interaction in first order of perturbation theo- 
ry, including fully the electron-impurity interaction, have 
the form shown in Fig. 4. The diagrams 4-5 in Fig. 4 appear 
on allowance for the electron-impurity interaction also in 
the Born approximation (we considered the same diagrams 
earlier in connection with a calculation of the corrections to 
the impurity photoconductivity given in Ref. 12). The other 
diagrams have to be included only in the case of the non- 
Born scattering of electrons by impurities. 

In calculating the contribution of each of the diagrams 
it is important to consider the following combination of the 
electron distribution functions and of the Green's phonon 
function: 

FIG. 4. Diagrams of the self-energy of an electron allowing for the non- 
Born scattering of the electron on an impurity. 
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and also the function which is symmetric relative to the 
above if E is substituted with E + w. Since the characteristic 
values are&- Tand w, -OD (OD is the Debye temperature) 
the condition E 40, corresponds to temperatures T(OD. 

The 2, - ,, diagram (2 in Fig. 4) represents corrections 
to the impurity thermoelectric force due to the usual colli- 
sion integral 1°, proportional to Im DR,  as well as correc- 
tions containing the combination of Eq. (33) with Re DR.  
The former contribution, associated with real thermal phon- 
ons, is small for an impurity crystal (in fact, it is equal to the 
thermoelectric force of a pure semiconductor). The correc- 
tions of interest to us appear when the collision integral in- 
cludes nonlocal terms in the form of Poisson brackets and 
various corrections to the density of states. The nonlocal 
part of the collision integral of Eq. (9)  is 

Substituting Eq. (34) in the expression for the current, we 
shall now represent the contribution made to the thermo- 
electric force by nonlocal corrections 7; in the form 

where the integral with respect to angular variables repre- 
sented by the vectors p and q is separated: 

We finally obtain 

~2'=11:pk'Yi( T) qo, k=qD/2p~, (37) 

At low temperatures such that T<OD, we have Y, = 1. At 
arbitrary temperatures the functions of Y, have been calcu- 
lated before (see, for example, Ref. 5 ) . 

The next correction 7; originates from the phonon cor- 
rection to the density of states of electrons, calculated for the 
equilibrium distribution function SO(&), and it represents 
the second term on the right-hand side of Eq. ( 15): 

--- * l e g o q  
3 6% 

As in the calculation of 7;, we shall separate in Eq. (39) 
the integration with respect to angles and with respect to the 
electron momentum: 

where 

We finally have 7; = 27;. 
One further correction &, associated with the phonon 

correction to the density of states of electrons in allowance 
for the nonequilibrium part of the electron distribution func- 
tion [third term on the right-hand side of Eq. ( 15) 1, is 

2e d p d e  
T,,- = - J- 

IVTI (an)' 
vnS0 (e 

Im{[GUA ( p ,  E)  J~Z.-$IP, E, (PO(P, E)  1). (42) 

We shall represent 7; in the form 

where 

We then have 77; = 7;. 
We can show that the correction to the impurity colli- 

sion integral due to the phonon renormalization of the den- 
sity of states [Eq. ( 12)] does not contribute to the thermo- 
power. 

We shall now give the full contribution of the second 
diagram to the thermoelectric force: 

We now consider calculation of the interference diagrams 
noting that the vertices yf:,  Ti, A;, and L i contain an addi- 
tional small quantity ( E ~ T )  - I ,  compared with the vertex gff . 
Therefore, in these diagrams we have to omit all the correc- 
tionsofthe typedescribed by Eqs. (9),  (13), and (16) which 
contain the square of the electron Green's function. It is 
therefore necessary to consider only those corrections which 
are associated with the collision integral I O of Eq. (8) .  In the 
case of diagram 3 in Fig. 4, when only the equilibrium ver- 
tices T i  of Eq. (27) are included, we find 
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nonequilibrium corrections to the vertices ri of Eq. (28) 
yield 

Substituting the expressions for the collision integrals 
ofEqs. (46) and (47) into Eq. (15) andusing Eq. ( l l ) ,  we 
obtain q3 = - 3v2. It should be pointed out that in this 
result the non-Born nature of the impurity scattering is man- 
ifested only via the contribution of ro to qO. This is also true 
of the fourth diagram 7, = - +v2. The remaining diagrams 
make nonzero contributions to the thermoelectric force only 
if we allow for the non-Born scattering of electrons by im- 
purities. 

In the case of the fifth diagram the collision integrals 
deduced allowing for the equilibrium vertex A; of Eq. (23) 
and for the nonequilibrium correction SPA; of Eq. (26) are, 
respectively, 

Im (l' ) ~ e  D" (q ,  o) Im GoA (p+q,  d o ) .  
1." (49) 

Calculations then yield 

The collision integral for the sixth diagram can be found 
using the nonequilibrium vertex S,L i of Eq. (29): 

The corresponding correction to the thermoelectric 
force is 

The corrections to the impurity thermoelectric force 
corresponding to the tenth and fifteenth diagrams vanish 
when we integrate with respect to angles. In calculation of 
the seventh and ninth diagram it is convenient to use the 
effective vertex A; as the component block and the thir- 
teenth diagram can be calculated using the effective vertex 
L k. The collision integrals I 0  associated with the eleventh 
and sixteenth diagrams contain only Im D and, therefore, 
do not renormalize the impurity thermoelectric force. 

We shall now give the final answers: 

n a," 
~ , = ~ $ k  ( 1 + a 0 2 ) ,  ' Y o  (TI q.9 

Transverse phonons contribute only because of the dia- 
grams 12-14 in Fig. 4 and these contain two vertices of in- 
elastic scattering of electrons by impurities. Calculations are 
made similarly to the case of longitudinal phonons and the 
final result is obtained from the relevant formula for longitu- 
dinal phonons [Eq. ( 53 ) ] simply by replacing the velocity of 
sound u,  with u,. 

For comparison with other investigations, we shall ex- 
press the final result in terms of the renormalization con- 
stant A: 

Thus, in the case of one longitudinal and two transverse 
phonon branches we have the following general formula for 
the thermoelectric force of an impure metal at temperatures 
T<OD: 

We shall consider Eq. (55) for different values of the param- 
eters R and a, in the section headed Conclusions. 

5. IMPURE FERROMAGNETIC METAL 

The thermoelectric force of an impure ferromagnetic 
metal is determined by the electron-phonon interaction ef- 
fects considered above as well as by the electron-magnon 
interaction and electron-magnon-impurity interference. 
When the impurity concentration is sufficiently high, the 
influence of the internal magnetic field can be ignored. 

The interaction of electrons with magnons will be de- 
scribed by the s-d exchange Hamiltonian.15 When only one- 
magnon processes are allowed for, this Hamiltonian is given 
by 2s 'I: 

I f s - d = - J  (-1 x (bqc~+q,cp++bq+cp++cp+q,),  (56) 
Pq 

where c,t is the electron creation operator in which the ar- 
row indicates the spin direction, b ,f is the magnon creation 
operator, J i s  the exchange integral, N is the number of mag- 
netic atoms with a spin S, and the magnon Green's function 
and the magnon spectrum are described by 

where the Curie temperature is given by O, = dJ2/&, 
(d-1). 

The spectrum of electrons in each of the spin subbands 
is given by the expression E ,  = p2/2m + JS. The vertex A,, 
associated with magnon absorption and the vertex A,,  asso- 
ciated with magnon emission are given by 
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A,, =A,, = - J ( z T / N ) ~ I ~ .  
In the case of a ferromagnet we have to allow for the 

second, fifth, and seventh diagrams in Fig. 4, in which the 
phonon Green's function is replaced with the magnon func- 
tion, and the vertices g, are replaced with A,, and A,,  . Cal- 
culations similar to those described in Sec. 4 give 

The relationship ZN = n, =pi/37? is used in the above 
equation; here, n, is the electron density. The threshold val- 
ue of the magnon wave vector is go = WS/vF (one-magnon 
processes are forbidden by the laws of conservation of energy 
and momentum if q <go); q, is the limiting wave vector of 
the magnon spectrum, identical with the corresponding 
limiting vector of phonons. The functions 0, are described 
by the relationships 

where 

The functions @-, and @-, change significantly at 
temperatures T-  To-a,,  (for the usual values J-0.1~,, 
we have To - 10 K). The function @, corresponds to a char- 
acteristic temperature @,. Since the thermoelectric force of 
an impure ferromagnetic metal is subject to the magnon and 
phonon renormalizations, its temperature dependence is 
governed by three characteristic temperatures, To, a,, and 
@,, and can therefore be very complicated. 

6. CONCLUSIONS 

The main result of the present investigation is the 
expression (55) for the thermoelectric force of an impure 
metal, which contains corrections due to the electron- 
phonon interaction and the electron-phonon-impurity in- 
terference effects. The electron-impurity interaction is not 
assumed to be small (non-Born scattering) and the final an- 
swer is expressed in terms of the parameter a, of Eq. ( 18) 
related to the amplitude f, of the scattering of electrons by 
impurities. Figure 5 shows clearly the behavior of the ther- 
moelectric force when the parameters a, and A are varied in 
the range of low temperatures T ( O D .  

We can see that both the magnitude and the sign of the 
thermoelectric effect depend strongly on the amplitude of 
the scattering of electrons by impurities. We shall note in 
this connection that the corrections to the impurity thermo- 
electric force due to the electron-phonon interaction and 
due to the electron-phonon-impurity interference effects 
have the same structure [they depend on the same function 
F(w,/T)  ] and cannot be separated experimentally. In the 
Born approximation corresponding to a, 4 1 the net phonon 
renormalization of the impurity thermoelectric force in Eq. 
(55 ) vanishes. Therefore, inclusion of the non-Born scatter- 
ing is essential in an analysis of the experimental results. 
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FIG. 5. Dependences of the low-temperature thennopower of a normal 
metal on the parameter a, calculated for different values of the parameter 
A: 1 )  0.3; 2) 0.5; 3) 1; k = 0.5. 

~ 1 ~ 0  , J  2. 

In the case of a ferromagnetic metal when the renormal- 
ization of the thermoelectric force is both due to phonons 
Eq. ( 55 1 and due to magnons [Eq. ( 58 ) 1, the results may 
be quite different from those for a normal metal, as demon- 
strated at low temperatures in the range T < To, @, in Fig. 6. 

We shall compare the results obtained with the conclu- 
sions reached in Refs. 4 and 5, where the linear response 
method was used to calculate corrections to the impurity 
thermoelectric force due to the electron-phonon interac- 
tion, corresponding to inclusion of the diagram 2 in Fig. 4 in 
our case. The result obtained in Ref. 5 is in the form 
7 = ( 1 + U), which differs somewhat from Ref. 4, where 
one of the diagrams was omitted. According to the calcula- 
tions in Sec. 4, ifa,( 1, we then obtain 7, + v2 = ( 1 + A)qo. 
In our opinion this difference is associated with an incorrect 
analytic continuation in the calculation of diagrams contain- 
ing the electron-phonon corrections to the heat flux opera- 
tor in Refs. 4 and 5. 

The influence of the electron-phonon interaction on the 
thermoelectric effect was also considered recently in Ref. 16 
using the transport equation method. The integral equations 
for the vertices of the momentum and energy fluxes obtained 
in this investigation were analyzed numerically on the as- 
sumption that the matrixklement of the electron-phonon 
interaction is independent of q. AQhough a comparison with 
the results of Ref. 16 is difficult o v a  the whole temperature 

.....:,: .;; 
L...' .. ,' ...' .' ; ...,,. ,: .' _...' . . : . 

2' . : 
. I .  

-.-a- .-- 

FIG. 6. Dependences of the low-temperature thermopower of a ferromag- 
netic metal on the parameter a, for the following values of the parameter 
A, = 3ZS/2d: 1) 0; 2) 0.3; 3) I; 4) 2. In all cases it is assumed that 
A = 0.3. 
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range, the answer obtained in Ref. 16 for the low-tempera- 
ture limit T 4  OD agrees with our results. 

As far as the electron-phonon-impurity interference 
effects are concerned, a direct comparison of Eq. (55) with 
the results of Ref. 9 shows that the difference is considerable. 
This difference is due to the fact that only a narrow class of 
diagrams was considered in Ref. 9. Moreover, there have 
been several investigations in which incorrect results were 
obtained not only because of allowance for just some of the 
interference diagrams, but also because of a nonrigorous ap- 
proach to the analysis of the electron-phonon-impurity in- 
terference  effect^.'^." For example, the contribution of the 
diagram 5 in Fig. 4 was calculated in Ref. 16 using the Born 
approximation, whereas the diagram 16 in Fig. 4 was includ- 
ed in Ref. 17; according to our calculations the contributions 
of these diagrams are zero. 

In an analysis of the results of a specific experiment the 
proposed calculation can be refined by taking into account 
the exact electron and phonon spectra, and a more realistic 
model of the electron-impurity interaction potential can be 
used. 

The authors are deeply grateful to B. L. Al'tshuler for 
his numerous valuable discussions. 
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