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We investigate kinetic effects in metallic antiferromagnets with incommensurate spin density 
waves, in particular the conductivities of these systems. We show that the presence of a helicoidal 
spin density wave gives rise to a kinetic magnetoelectric effect. We show that the Froehlich 
conductivity mechanism can operate in these systems; this mechanism should manifest itself by 
"erasure" of the resistance maximum below the NCel point when the resistance is measured in 
sufficiently high fields. We discuss the possibility of observing these effects in a number of rare- 
earth antiferromagnets. 

1. INTRODUCTION 

The magnetoelectric effect, which consists of the ap- 
pearance of a magnetic moment proportional to an applied 
electric field, is well-known in antiferromagnetic insula- 
tors.' Thus, in Ref. 2 it was pointed out that among the full 
crystal symmetry groups there are certain magnetic groups 
which do not possess space and time inversion symmetry 
among their elements. However, the authors of Ref. 3 noted 
that a magnetoelectric effect of kinetic origin could exist in 
nonmagnetic materials; in particular, these authors studied 
the case of conducting media which possess stereoisomer- 
ism. In this paper we will touch on some similar problems. 

To be more specific, in what follows we will discuss a 
number of kinetic phenomena which are characteristic of 
conductors in which an incommensurate antiferromagnetic 
state forms, in particular a state with a helicoidal spin den- 
sity wave (SDW). A fairly large number of systems are 
known, principally rare-earth metals and their compounds, 
in which such states have reliably been identified by neutron 
diffraction (see, e.g., Refs. 4 and 5). The helicoidal structure 
occurs often at fairly low temperatures. Usually the appear- 
ance of an SDW in a metal is accompanied by a number of 
anomalies, particularly in their electronic properties. Thus, 
e.g., the transition to the SDW state in dyspr~sium,~ hol- 
mium,' and europium8 is accompanied by a drop in conduc- 
tivity which usually is connected with the formation of an 
energy gap over part of the Fermi surface when the SDW 
forms. 

As we said, the distinctive feature of rare-earth magnets 
is incommensurateness of the magnetic structure vector Q 
with the period of the paramagnetic phase. In Ref. 9 these 
magnetic structures are referred to as "accidental," so as to 
emphasize that the period of the structure is a consequence 
not of symmetry but of the details of the structure of the 
Fermi surface, and is determined by the characteristics of 
the RKKY interaction. In particular, one widely accepted 
point of view is that the origin of the incommensurate struc- 
ture is connected with flattened portions of the Fermi sur- 
face: just as for a one-dimensional problem, these portions 
lead either to instability of the electronic spectrum through 
their mutual overlap or to Kohn singularity in the RKKY 
interaction (see, e.g., Refs. 4,5 ). The dependence of the vec- 
tor Q on temperature can be qualitatively understood if 
there are relatively close parts of the Fermi surface which 
satisfy overlap conditions ("nesting"). 

In addition to the SDW state which is "classical" for 
rare-earth magnetic systems, SDW states have been ob- 
served in a number of organic conductors and superconduc- 
tors (see, e.g., the reviews Refs. 10, 1 1 ) . In these quasi-one- 
dimensional compounds (the so-called Bechgard salts), the 
SDW state probably corresponds to a sinusoidal structure, 
because the antiferromagnetic vector formally appears com- 
mensurate ( 1:2) in relation to the period of the underlying 
lattice. It is possible, however, that the effects of commen- 
surateness in such compounds might turn out to be rather 
weak. Neutron diffraction studies of the antiferromagnetic 
phase in these materials have not yet been carried out. 

Experiments which study one-dimensional compounds 
suggest, that a number of nontrivial phenomena can be con- 
nected with the appearance of incommensurate superstruc- 
tures, including the magnetic ones, which go unnoticed in 
studies of the magnetism of conduction electrons in more 
classical systems. These phenomena also constitute the ob- 
jects of study of this paper; specifically, we will discuss the 
"Froehlich conductivity" (i.e., a contribution to the con- 
ductivity due to motion of the incommensurate spin wave or 
charge density wavet2), and the magnetoelectric effect al- 
luded to above. 

We yill begin the study of Froehlich conductivity and 
the magnetoelectric effect by using terminology from the 
model usually employed to describe the properties of quasi- 
one-dimensional conductors, since incommensurateness has 
its most striking consequences-especially with regard to 
these effects-in these systems. Afterwards we will discuss 
those changes in the approach to the problem-and in esti- 
mates of various quantities-which must be made in order to 
treat more three-dimensional systems, e.g., SDWs in rare- 
earth antiferromagnets. 

In Sec. 2 we describe an SDW model which in essence 
goes back to the original idea of Overhauser,I3 and we dis- 
cuss the equilibrium properties of this SDW state. In Sec. 3 
we investigate the distinctive features of the conductivity 
which appear when the system enters the SDW state, and 
how this case differs from the analogous problem in the case 
of charge density waves (CDW) . As we will see, it is possible 
for the properties of sinusoidal and helicoidal spin density 
waves to differ qualitatively at low temperatures. In Sec. 4 
we present our results for the kinetic magnetoelectric effect. 
Finally, in Sec. 5 we will discuss estimates of the magnitude 
of these phenomena for three-dimensional conducting mag- 
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netic compounds; in the Conclusion we discuss the possibil- 
ity of studying them experimentally. 

2. MODEL 

As we said above, we begin with a model in which the 
electronic state is characterized by a Fermi surface consist- 
ing of two open portions (see Fig. 1 ); its two sheets possess 
the overlap property ("nesting") : 

(degeneracy of the form ( 1 ) defines the so-called Keldysh- 
Kopaev modelI4). In this model, the generalized susceptibil- 
ity x(Q, w,T) is logrithmically divergent; the usual Stoner 
criterion for a transition to the new phase 

X o  x =  
~ - ~ ( Q ) x o  (2) 

is that the denominator in (2)  vanish. We will not discuss 
the mechanism by which the interaction i ( Q )  in (2) gives 
rise to the antiferromagnetic phase itself, but rather will take 
this as an experimental fact. Thus, in the Bechgaard com- 
pounds we mentioned earlier, the ground state at low tem- 
peratures does in fact correspond to antiferromagnetic or- 
der; this has been proved by a multitude of experiments. We 
will investigate a hypothetical case where the spacing 
between the two parts of the Fermi surface shown in Fig. 1 is 
arbitrary, and consequently the wave turns out to be incom- 
mensurate. 

Even when the wave is incommensurate, determining 
whether it is helicoidal or sinusoidal is a separate problem. 
In rare-earth compounds this problem has an explicit solu- 
tion connected with the form of the RKKY interaction. We 
will investigate both the helicoidal and sinusoidal cases, al- 
though many unusual properties are connected with the he- 
licoidal structure alone. 

The order parameter corresponding to pairing of elec- 
trons and holes belonging to different spin branches on the 
two proportions of the Fermi surface of Fig. 1 has the form 

ARL= (^ad) exp (iQr) , (3) 

the spin-orbit interaction $ assumed to be weak (we will 
neglect the dependence of A on the position of points of the 
Fermi surface for simplicity). The sinusoidal wave corre- 
sponds to a real vector d. For a helicoidal structure, 

I 
FIG. . Schematic form of overlapping portions of the Fermi surface. 

i.e., d is a complex vector dl +id2, with d,ld2 and 
Id11 = ld2l. 

Below TN, the degeneracy of the spectrum is lifted be- 
cause of the order parameter (3). The system of Green's 
functions satisfies the equations 

We ~ecall that (3)  is propoftional to the non$agonal aver- 
age ARL = ($R, $u +); it is easy to verify that A,, + = A,,. 

The determinant of the left side of the system (4) deter- 
mines a new energy excitation spectrum. If the wave is sinu- 
soidal, then the spectrum always has a gap: 

If the structure is helicoidal, then, as was first noted in Ref. 
13, the two-branched spectrum, corresponding to two spin 
directions, has a different form for right- and left-handed 
polarizations: 

Here, the spin directions are relative to the vector 

Taking these definitions into account, the solutions to the 
system (4) corresponding to a helicoidal SDW in a pure 
metal (rimp -, co ) have the form 

where 

The value of the order parameter depends on temperature. 
The most general form of the self-consistancy condition is 

h 

where the kernel K is written so as to emphasize the probable 
dependence of the interaction, corresponding to the appear- 
ance of the SDW, on the restructuring of thz electronic spec- 
trum. We will not use the explicit form of K in what follows 
(the value %f the order parameter will depend on the form of 
the kernel K in the temperature interval below TN ) . 

For a sinusoidal wave, the thermodynamic functions 
behave in the usual way: the electronic specific heat de- 
creases exponentially for T< TN, and the susceptibility is 
anisotropic. In order to determine the susceptibility correct- 
ly, it is appropriate, as usual, to introduce terms involving 
the magnetic anistropy energy, which fix the spin direction. 
Then in weak fields the susceptibility along the spin direc- 
tion falls rapidly below T,, while transverse to the field it 
retains the value of the normal phase. In sufficiently strong 
fields the so-called "spin-flop" transition occurs (see, e.g., 
Ref. 15). 

In the case of helicoidal waves, the specific heat at low 
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temperatures passes over to a linear dependence with Som- 
merfeld constant twice as small as in the normal phase. The 
susceptibility equals that of the normal phase for fields along 
the vector n. For fields perpendicular to n, the susceptibility 
drops by a factor of two. 

In subsequent sections it will be necessary to introduce 
a small quantity of impurities, so as to include a source of 
dissipation in the kinetic effects at low temperatures. The 
role of impurities in the case of a sinusoidal wave is rather 
trivial-at small impurity concentrations, their primary ef- 
fect is to lower the transition temperature. There is a more 
interesting effect connected with impurities in a helicoidal 
wave-even arbitrarily small concentrations of nonmagne- 
tic impurities "smear out" the gap between the branches of 
the spectrum (5'). We note that the predominance of the 
elastic scattering by impurities corresponds to the case 
T(a ,  where is the Debye temperature. 

Let us dwell on this latter phenomenon in more detail. 
For simplicity we consider a model of defects in which no 
forward scattering occurs. This methodological simplifica- 
tion leads to the disappearance of diagrams of the sort shown 
in Fig. 2, corresponding to "dressing" of the order param- 
eter. The results must obviously contain only the transport 
time rimp (in our model it is double the probability for back- 
ward scattering). Including the impurities, we obtain a sys- 
tem of equations for the Green's functions: 

Here, 

For studying kinetic phenomena we require the analytic 
continuation of the solutions of ( 10) to the real frequency 
axis, i.e., iz-z. Throughout the remainder of this section the 
upper sign in the formulas ( + ) corresponds to retarded 
functions ( r ) ,  while the lower sign denotes advanced ( a )  
functions. It is easy to see that the resulting continuations 
will be a 

From the expression for the causal function GR on the real 
axis we obtain for the density of states in the "gap" portion of 
the spectrum 

FIG. 2. Diagram corresponding to the correction to the order parameter 
due to impurities. 

In other words, because of the impurities the density of states 
at the Fermi level becomes finite (not zero!): 

N (0)=No(1+32(ldI~imp)2)-'h. (13') 

For the sinusoidal-phase Green's function we have 

Z satisfies the equation 

which is well-known from the theory of superconductors 
with paramagnetic impurities.16 

The gapless situation corresponds to the values 1/ 
rim, - ( A (  near the critical concentration of defects 1 / ~ , ,  
above which formation of the SDW is suppressed. 

3. CONDUCTIVITY OF THE ANTIFERROMAGNETIC PHASE 

Let us first investigate the behavior of the conductivity 
in the vicinity of the NCel point TN . In rare-earth metals and 
their compounds, T, -- 100-200 K, i.e., it is larger by an 
order of magnitude or comparable to the Debye tempera- 
ture. Here, the basic mechanisms of electron relaxation in 
the paramagnetic phase are phonon and magnetic scatter- 
ing. (The contribution of critical fluctuations near TN, judg- 
ing by the functionp(T) in the experiments of Refs. 6-8, is 
apparently small). Below the transition point, as long as 
(dl 4 TN holds the effective electron relaxation time T differs 
little from its value in the metallic phase. In this region the 
dominant role of collisions involving phonons also ensures 
rapid energy relaxation of electrons. As for the assumptions 
listed above, the conductivity calculations are found to be 
fully analogous to those in Ref. 17, in which the same ques- 
tion was addressed for structural transitions in transition- 
metal trichalcogenides. We first discuss expressions for a 
fixed spin-density wave (the electric field satisfies E < E,, 
where E, is the field above which the wave is disrupted by 
pinning impurities or by commensurateness effects). 

The expressions for the corrections to the conductivity 
in the sinusoidal-wave or helicoidal-wave phase differ only 
by the different number of gaps between the branches of 
their electronic spectra. Thus, for the helicoidal phase we 
have in our model ( 1 ) : 

For the sinusoidal phase we have 

For l d ) ~ ,  1 and Id1 4 TN, the decrease in conductivity corre- 
sponds to a fraction of electrons - Idl/TN which pass "un- 
der the gap". In the region Id17 4 1 expression ( 15) has a 
precise meaning only when the model ( 1 ) is used and where 
the mean-field approximation is valid; for more realistic sys- 
tems it retains only a qualitative character. 

It is also interesting to investigate the conductivity in 
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the region of rather low temperatures, i.e., in the region of 
"residual resistivity," where the scattering processes which 
occur are due to defects. It is in this temperature region that 
the structural difference in the electronic spectrum between 
the sinusoidal and helicoidal phases alluded to in the pre- 
vious section is most evident. In the sinusoidal phase there 
are no gapless branches, and for a model with a Fermi sur- 
face having aligned sheets the conductivity behavior (for 
pinning of the wave) corresponds to that of metal-insulator 
transitions. In the helicoidal phase, it is possible at low tem- 
peratures to have "metallization" of the conductivity, i.e., 
the conductivity goes up as the temperature decreases and 
exceeds the value that it would have in the paramagnetic 
state, in contrast to the fall in conductivity one would expect 
intuitively due to the decrease (by a factor of two) in the 
effective number of carriers. The origin of this behavior is, 
however, quite transparent physically. From the form of the 
spectrum (5') it follows that the "gap" and "gapless" 
branches are found on different regions of the original Fermi 
surface for the same spin. If we neglect scattering mecha- 
nisms which mix different spin channels, as the order param- 
eter for the hexagonal phase forms and proceeds to grow, the 
mean free path of the gapless portion of the excitations in- 
creases because backward scattering for these portions is 
weakened by the small density of states in the gap branch on 
the opposite side of the Ferrni surface. Finally, in this mecha- 
nism the electron energy is essentially conserved in the scat- 
tering event. Therefore, it is possible for the conductivity to 
increase due to this mechanism if inelastic phonon processes 
are infrequent. Near the NCel point this effect would be pos- 
sible only in the case where the NCel temperature itself is 
small, i.e., TN 4 8. Unfortunately, we know of no example of 
a real antiferromagnetic transition to the helicoidal phase at 
low temperatures. The mechanism we have described for 
conductivity increase in the antiferromagnetic phase is not 
unique; for example, as the temperature decreases there is a 
"freezeout" of the scattering by fluctuations in the ion spins. 
Furthermore, in real systems the antiferromagnetic struc- 
ture does not affect the entire Fermi surface; the remaining 
part should give an ordinary metallic contribution to the 
conductivity, which leads to a residual resistivity only at 
very low temperatures. The presence of these portions of the 
Fermi surface also weakens the effect in question itself, since 
it is the total "transport" relaxation time which is reflected 
in the conductivity, which now is not determined by strictly 
backward-scattering processes. We will return to this in 
Sec. 5. 

Turning to the quasi-one-dimensional model, we will 
assume that TN7imp % 1 (i.e., the sample is very pure). The 
details of the calculation for impurity scattering are present- 
ed in the Appendix. We find for the low-temperature con- 
ductivity 

where a,, is the residual resistivity of the normal metal 
while rim, is the transport-impurity-scattering time. 

Thus, in quasi-one-dimensional conductors with heli- 
coidal structure the conductivity behaves as follows as the 
temperature changes: for T, 2 R, then near T, the conduc- 
tivity u ( T )  falls; however, with a further decrease in tem- 
perature it begins to increase again, and near zero it becomes 
larger by a factor - Idl~~,,  than it would be in the absence of 

the magnetic structure. For TN (fl the conductivity 

(for [dl 4 4 TN ) increases directly below T N .  
Up to now we have assumed that the spin density wave 

is immovable ( E  < E, ) . Much remains unclear concerning 
the problem of pinning of SDW by impurities. The interac- 
tion of the SDW with impurities may have a local character 
(spin-orbit interaction), or is perhaps connected with dis- 
tortion in the density of states (an effect which is second- 
order in the SDW amplitude); finally, the SDE may be due 
to fluctuations in the impurity distribution, since the local 
SDW energy and its NCel point TN depend on the impurity 
concentration. In all these cases the pinning is expected to be 
weaker or of the same order of magnitude as for charge den- 
sity waves. Just as for charge density waves (let us say, in the 
transition-metal trichalcogenides), it is also reasonable for 
us to expect effects in the incommensurate SDW phase 
which are analogous to the phenomenon of so-called Froeh- 
lich conductivity-motion of the wave as a whole under the 
action of a strong electric field (E > E, ). Actually, the con- 
tribution to the current from motion of the wave in tke mzd- 
el tndef: investigation contains a combination ( ARL ALR 
+ A, A,, )Q, which is proportional to Sap both for CDWs 

and SDWs. Therefore the motion of an SDW is connected 
with charge transfer12 and not spin, as one might suppose. 
The phenomena ought to be manifest in the I- Vcharacteris- 
tics first of all as a nonlinearity in the region around the 
threshold field E, which separates the conductivity regimes 
corresponding to fixed and moving waves. 

The motion of an SDW as a whole corresponds to vari- 
ation of its phase according to the rule 6 = u*Q, where u is 
the drift velocity of the wave in the presence of electric field. 
From a symmetry point of view there is very little difference 
in the definition of u between sinusoidal and helicoidal 
waves. In the first case, p is simply the phase of the incom- 
mensurate order parameter ( 3 ) ,  while in the second case 
there is an additional symmetry of the order parameter (3) ,  
since multiplication of (3)  by the factor exp(ip) can be com- 
pensated by rotation of the d, and d, in the vector 
d = d,  + id, by an angle f = - p around the axis n (the 
helical rotation is equivalent to its progressive motion). 
Therefore the drift velocity of the helicoidal wave is deter- 
mined by the relation Qu = & + j. 

Omitting the details of the calculation, which again are 
fully analogous to the calculations of Ref. 17, we state the 
basic result: near TN [ARL I 4 TN ) the motion of the SDW in a 
strong electric field exactly balances the growth in resistivity 
( 15) and ( 15') due to the behavior of the gaps in the elec- 
tronic spectrum. After this cancellation, an estimate of the 
conductivity in the neighborhood of T, when the wave 
moves gives in both cases 

Observation of the cancellation ( 18) of the anomalous 
resistivity ( 15), ( 15') in a strong electric field would consti- 
tute a strong argument in favor of the correctness of our 
understanding of the phenomenon (the electric field should 
still be small on the scale of the electronic spectrum. The 
threshold fields in the trichalcogenides (NbSe, and TaSe, lie 
in the interval from 10 to 0.1 mV/cm). 
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4. THE MAGNETOELECTRIC EFFECT 

As we have already mentioned,'* in the helicoidal anti- 
ferromagnetic phase a dissipative current flowing in the con- 
ductor gives rise to magnetization of the spins. For an arbi- 
trary crystal symmetry, the connection between 
magnetization and electric field is given by the relation 

where a, is a magnetoelectric pseudotensor. From the On- 
sager principle (see Ref. 3 ) it follows that a magnetoelectric 
effect of dissipative origin must also be accompanied by the 
conjugate effect 

We repeat that the tensor a, differs from zero only in the 
helicoidal SDW phase, in which inversion is not a symmetry 
element of the system. Then 

where the unit vector n is directed along the helical axis (in 
the exchange approximation this axis is not fixed), while the 
unit vector m is normal to the Fermi surface. 

Within the model we have chosen to describe the heli- 
coidal SDW, the appearance of magnetization when current 
flows along Q has an especially simple physical interpreta- 
tion at low temperatures. Actually, according to (5') the 
branches of the spectrum corresponding to a given direction 
of spin (along n) have a gapless (i.e., normal) character on 
one part of the Fermi surface, whereas on the other part 
excitation of an electron requires at least the gap energy. 
Therefore, at low temperatures the current is due to redis- 
tribution of the normal left-handed and right-handed excita- 
tions at the Fermi surface (relative to the direction of the 
vector Q) which have different directions of spin. As a result 
of this redistribution, magnetization arises which is propor- 
tional to the magnitude of the current. 

It is clear from what we have said so far that calculation 
of the magnetoelectric tensor (21) is from a mathematical 
standpoint completely analogous to calculating the conduc- 
tivity. The magnetic moment in the presence of a current is 
expressed through corrections to the Green's functions 
which are linear in the electric field: 

we will not discuss these computations (see the Appendix), 
but rather will simply state the results immediately. 

For the magnetoelectric constant a near the Niel point 
(in what follows, e denotes the absolute value of the electron 
charge) we obtain 

Here, Sis the area of one of the portions of the Fermi surface 
shown in Fig. 1, and Id/ TN.  It isassumed that TN R a, i.e., 
that phonon processes are significant. 

For a moving wave (i.e., an electric field which exceeds 
threshold), under the same assumptions 

According to (23), as the wave becomes entrained the mag- 
nitude of the magnetoelectric effect falls sharply, as do the 
various anomalies in the conductivity, and may even change 
sign. 

At low temperatures the relaxation time rim, is due to 
impurity collisions. For T ( T ,  (a stationary wave) we ob- 
ta: - for the value of a 

a=-p,eS 
a f Z ( d ( ~ , ! , ,  

3ts (24) 

The study of effects related to SDW motion in this region is 
greatly complicated by variations in the mean free path, 
which will be discussed in Sec. 3. In view of the obviously 
model-dependent nature of the spectrum ( I ) ,  we will not 
discuss this question here. 

TO conclude the section, we present an expression for a 
when TN 40 and elastic scattering plays a dominant role 
even near the NCel point: 

(for a stationary wave). Equation (25) implies that the mag- 
netoelectric effect appears discontinuously; however, this is 
because up to now we have not taken into account scattering 
processes which "entangle" the spin channels. Introducing a 
spin-orbit scattering with characteristic timer, , we obtain in 
place of ( 25 ) 

5. THE EFFECT OF A THREE-DIMENSIONAL FERMl SURFACE 

In our specific calculations so far we have used a model 
in which the Fermi surface has two fully-overlapping sheets. 
This model is doubtless adequate in materials such as the 
quasi-one-dimensional conductors; in fact, an antiferromag- 
netic phase is actually observed at sufficiently low tempera- 
tures in the compounds (TMTSF) ,X, ,which are in fact one- 
dimensional. We have already noted earlier that the 
structural formula ibr these compounds formally corre- 
sponds to the presence of a commensurate SDW, due to the 
alternation of molecules in the TMTSF stack. Although it is 
not yet fully clear what the role of this alternation is-it is 
quite small-it has been established that it is connected with 
pinning of the SDW, and so the threshold fields are likely to 
be rather high, although this question has not been investi- 
gated. 

In the rare-earth types of magnets there is a greater 
-richness of incommensurate structures, in which-accord- 
ing to, e.g., Refs. 6-8-the kinetic properties of conduction 
electrons are notably affected by the antiferromagnetic tran- 
sition. In the physical picture of Refs. 4,5 the magnetic order 
is related to the presence of flattened (i.e., overlapping) por- 
tions on the Fermi surface; with this in mind, we will esti- 
mate how sensitive the effects mentioned above are to the 
fact that these portions make up only a fraction S,/S from 
the area of an otherwise three-dimensional Fermi surface. 
Let us recall that we always have TN 4 EF. 

We begin with the case where there are no such portions 
in general. Then according to Ref. 9, the incommensurate 
structure vectors Q coincide with the extremal diameters of 
the Fermi surface. We assert that for an isotropic Fermi sur- 
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face of the sort shown in Fig. 3, the order parameter with 
vector Q couples parts of the surface near its poles. Let us 
again write this coupling in the form of equations for the 
Green's functions: 

[iz-e(p) I G(z, P)-A-QGQ(~, P) - ~ Q G - Q ( ~ ,  P) =i, 
[~z-E(P-Q) I & Q ( ~ ,  P)-AQG<~, P)=%, 
[iz-E (p+Q)] G-,(Z, p ) - i - Q ~ ( ~ ,  p) =6. 

As before .. .. 
AQ+=A-,. 

I t  is obvious that the solution to (26) for the function & z , ~ )  
near the poles differs from (7) and (8) only by the replace- 
ment 

where 

h 

The "nondiagonal" functionkG, fiecrease rapidly as we 
move away from the poles: G, - A/t ( p, ) . For further 
estimates, let us assume isotropic impurity scattering: 

(The angle brackets denote integration over the entire Fermi 
surface.) Analogously, the conductivity a,, is determined 
by analytic continuation of the quantity 

According to (28), in the isotropic case contributions to 
anomalies in the physical quantities come from electrons 
with p, -pF ( A/EF ) 'Iz. Near TN, the fraction of electrons 
which pass under the gap and do not take part in the conduc- 
tivity is AZ/TNEF. Consequently, for an estimate of the rise 
in resistivity near TN we have in place of ( 15) 

Calculations analogous to those presented in Sec. 3 show 
that as the wave grows the anomalies (31) again are 
smoothed out by the Froehlich mechanism. 

In the SDW model (Sec. 2) A is equal to TN in order of 
magnitude (A/TN - [ (T, - T)/TN] near the Ntel 
point). In the past it was assumed (see, e.g., Ref. 9) that the 
local moments of thef-shells are ordered by the Ruderman- 

FIG. 3. Formation of a gap in an isotropic electronic spectrum when the 
magnetic structure vector equals an extremal diameter of the Fermi sur- 
face. 

Kittel interaction: TN - J2/EF, where J is the exchange in- 
teraction constant between the ion spins and conduction 
electrons: 

Correspondingly, ( 3 1 ) is meaningful only near 
TN(A(T)(TN). For T-TN, wehave A-Jandthemaxi- 
mum conductivity decrease is determined by the fact that a 
small fraction 

of the entire "isotropic" Fermi surface is closed off by the 
energy gap. The estimate we obtain in this way is apparently 
insufficient to explain the considerable rise in resistivity in a 
number of rare-earth metals below TN; this circumstance 
constitutes an important argument in favor of the presence 
of "flattened portions" of the Fermi surface. 

For T 5  TN, the role of such "planar" or overlapping 
portions (whose area we denote by S,) in the kinetic effects 
discussed above is reduced to increasing the fraction of the 
Fermi surface which is closed off by an energy gap. We will 
define a portion as planar if the departure from overlap of the 
Fermi surfaces in (26) and (28) over the area S, is small, 
i.e., t(p, ) 5 A. However, the coupling of A with T, as we said 
earlier, depends on the mechanism of antiferromagnetism. 
In a Weissfield model, the antiferromagnetic order is in- 
duced by the RKKY interaction between localf-shells. The 
planar portions play a role here because a component of the 
RKKY interaction turns out to be large for the structure 
vector Q corresponding to overlap of these portions. Below 
TN, the RKKY interaction naturally depends on the recon- 
struction of the electronic spectrum; however, as we men- 
tioned above, A - J- ( TN EF ) 'I2 holds at sufficiently low 
temperatures. Another possibility worth mentioning which 
involves the planar portions is energetic instability of the 
spectrum ( 1 ), by virtue of which the electronic subsystem 
can itself initiate a transition to the antiferromagnetic phase 
for T, = TsDw > J2/E,. In this case, the portion is 
"planar" wherever t ( p ,  ) 5 TsDw holds while A- TsDw* 

Returning to the results we obtained earlier, we see that 
the increased conductivity effect in a helicoidal wave, which 
was discussed in Sec. 3, will or will not take place depending 
on the specific scattering mechanisms, in particular on how 
large the fraction of backward scattering is in (29), i.e., in 
that part of the Fermi surface where a gap opens up for 
T <  TN. 

Because of this, the magnetoelectric effect becomes 
smaller at low temperatures, and is determined only by the 
fraction of planar portions. In place of (27), we obtain the 
estimate 

Analogously, a factor S,/S appears in ( IS), ( 15') for the 
conductivity correction. 

6. CQNCLUSION 

Independent of our choice of model, the results we have 
presented point to the presence of Froehlich conductivity 
mechanisms in incommensurate spin structures. The most 
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striking manifestation of these mechanisms would consist of 
the predicted leveling of the resistivity maximum below T, 
at fairly low electric field intensities. In the usual descrip- 
tions of SDW pinning, the latter is unimportant either for 
fields above threshold or when the conductivity measure- 
ment is made in a VHF field. (In NbSe, this is the centi- 
meter-to-millimeter band. ) 

Nevertheless, the planar portions apparently do play an 
important role in rare-earth antiferromagnets. The Fermi 
surface in these systems is probably quite complex, consist- 
ing of many sheets. Therefore, the function Q ( 2') does not 
contradict these assumptions (compare Ref. 9); however, 
any quantitative theoretical expressions would contain a 
number of indeterminate characteristics of the spectrum. As 
for the question of whether the mechanism for the transition 
to the antiferromagnetic phase is induced by energetic insta- 
bility of this spectrum or whether it is better understood in 
terms of the usual Ruderman-Kittel interaction, this ques- 
tion is still 

For the majority of such effects, only the reconstruction 
of the electronic spectrum itself due to the order parameter 
(27) is significant, independent of the mechanism of the 
magnetism. Observation of the magnetoelectric effect in a 
helicoidal antiferromagnetic structure would give direct in- 
formation about this reconstruction. In all likelihood, the 
phenomenon is most convenient to observe in the form rep- 
resented by (20), i.e., in measuring the potential difference 
induced in a single-domain sample by a variable magnetic 
field applied along the helical axis: 

Estimates for H- 100 e, w -  1 GHz would give E- to 
lo-' V/cm. 

The authors are deeply grateful to I. E. Dzyaloshinski, 
R. Z. Levitin, V. V. Tugushev, and G. M. Eliashberg for 
useful discussions and comments. 

APPENDIX 

Using the assumptions of Secs. 2, 3 concerning impuri- 
ties, we have the following equation for the correction to the 
Green's function in the field on the Matsubara frequency 
axis (below we will write r for rimp for brevity; e = lei ): 

Decomposing the function $"'for helicoidal waves into spin 
projections 

we see that 

The current contains the combination of occupation 
numbers ZiviSp6Ai : 

FIG. 4. Choice of analytic branches in the conductivity expressions (see 
Appendix). 

however, this must be computed on the real frequency axis. 
Analytic continuation of (A l ) ,  (A4) gives the equationI9 

The indices r and a denote retarded and advanced Green's 
functions, respectively. The contribution to the current is 
determined by the nonregular terms of the form 

0 
Gr (z) G" (z-o) 

2T chZ(z/2T) ' 

Calculating these latter, let us say, for the right-hand part of 
the Fermi surface gives 

Here, in turn, we introduce the notation 

(A71 

Expression (A7 ) gives 
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The square root in these expressions is chosen so that 
Im(z2 - 2(dI2) ' I 2  > 0 (the cut in thecomplex plane is shown 
in Fig. 4) .  

The integrals in (AS) and (A6)-(A8) are easily evalu- 
ated for T( \dl. In particular, for T, r )  1 the variations in 
the occupation numbers in (A4) are 

from which follow ( 16) and (24). Near TN (if TN 4 a) we 
have 

8nRt=-6nL+, 6nR+=-6nLtr 

'L. D. Landau and E. M. Lifshits, Electtodynamicsof Continuous Media, 
Pergamon, Oxford ( 1960). 

'1. E. Dzyaloshinski, Zh. Eksp. Teor. Fiz. 37, 881 (1959) [Sov. Phys. 
JETP 10,628 ( 1960) 1. 

'L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, Zh. Eksp. Teor. 
Fiz. 88,229 (1985) [Sov. Phys. JETP 61,133 (1985)l. 
4B. Coqblii, The Electronic Structure of Rare-Earth Metals and Alloys: 
The Magnetic Rare-Earths (Acadmic Press: New York, 1977). 

'E. T.Kulatov, N. I. Kulikov, and V. V. Tugushev, Proc. IOFAN, Vol. 3, 
122 (1986). 

6P. H. Hall, S. Levgold, and F. S. Spedding, Phys. Rev. 117,971 (1960). 
7D. L. Strandburg, S. Levgold, and F. S. Spedding, Phys. Rev. 127,2046 
(1962). 
'M. A. Curry, S. Levgold, and F. S. Spedding, Phys. Rev. 117, 953 
(1960). 

91. E. Dzyaloshinski, Zh. Eksp. Teor. Fiz. 47, 336 (1964) [Sov. Phys. 
JETP 20,223 ( 1965 ) 1. 

'OD. Jerome and H. J. Shulz, Adv. Phys. 31,299 (1982). 
"L. P. Gor'kov, Usp. Fiz. Nauk 144,381 ( 1984) [Sov. Phys. Usp. 27,809 
(1984)l. 

12P. A. Lee, T. M. Rice, and P. W. Anderson, Sol. State Commun. 14,703 
(1974). 

I3A. W. Overhauser, Phys. Rev. Lett. 4,462 (1960); Phys. Rev. Lett. 4, 
514 (1960). 

14L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6,2791 ( 1964) [Sov. 
Phys. Sol. State 6,2219 ( 1964) 1. 

15A. V. Sokol, Zh. Eksp. Teor. Fiz. 92,756 (1987) [Sov. Phys. JETP 65, 
426 (1987)l. 

16A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 39, 1781 
(1960) [Sov. Phys. JETP 12,1241 (1961)l. 

I7L. P. Gor'kov and E. N. Dolgov, Zh. Eksp. Teor. Fiz. 77, 396 (1979) 
[Sov. Phys. JETP 50,203 ( 1979) 1. 

"L. P. Gor'kov and A. V. Sokol, Pis'ma Zh. Eksp. Teor. Fiz. 45, 239 
( 1987) [JETP Lett. 45,235 (1987) 1. 

I9L. P. Gor'kov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 54, 612 
(1968) [Sov. Phys. JETP 27,328 (1968)l. 

Translated by Frank J. Crowne 

1274 Sov. Phys. JETP 66 (6), December 1987 L. P. Gor'kov and A. V. Sokol 1274 


