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A theory is derived for stimulated Brillouin scattering in a "travelling" regime in a medium with 
prescribed variations in the permittivity. Spontaneous hypersonic vibrations are taken into 
account. The field of the Stokes wave is calculated rigorously, as are the Green's function and gain 
for the Stokes pulse. Modulation of the frequency of the Stokes emission should result from 
periodic steady-state variations in the refractive index in the medium. The amplitude of the pump 
wave along the axis of the waveguide should also be modulated because of periodic variation in the 
cross section of the waveguide. Numerical calculations on travelling stimulated Brillouin 
scattering are reported. 

INTRODUCTION 

Stimulated Brillouin scattering (SBS) is known to in- 
volve the coherent scattering of a pump wave EL into a 
Stokes wave Es by hypersonic vibrations of the medium, q. 
Our purpose in the present paper is to derive a theory for 
SBS' in the so-called travelling regime,' in which the length 
L of the scattering medium is greater than the spatial length 
of the pump pulse, I = TL c/n,: L 2 I, where rL is the dura- 
tion of the pump pulse, cis the velocity of light, and no is the 
refractive index of the medium. In this case the pump inten- 
sity can be assumed to remain constant. In this regime the 
pump pulse in a sense travels through the medium at a veloc- 
ity c/no, and the stimulated scattering of the pump wave into 
the Stokes wave occurs in different layers of the medium. We 
will examine the process of stimulated Brillouin backscatter- 
ing. Noting that the pump wave and the Stokes wave are 
propagating in opposite directions in the case of stimulated 
Brillouin backscattering, we see that the pulse of Stokes radi- 
ation is actually moving opposite the pump pulse at a veloc- 
ity c/2n0 in this process. We assume that there are steady- 
state variations Sn(z) in the refractive index satisfying 
ISn(z) I 4n0  along the direction of propagation of the inter- 
acting waves in the medium. These variations might result 
from, for example, acoustic waves in the medium. 

1. BASIC EQUATIONS DESCRIBING THE TRAVELLING 
REGIME OFSTIMULATED BRlLLOUlN SCATTERING 

We choose the direction of the x axis in such a way that 
the pump wave EL (z,t)exp ( - iw, t - ik, z)  is propagating 
along the -z  direction, and the Stokes wave 
Es (z,t) exp( - iw,t + ik,z) along the + z direction. The 
equations describing this process then take the form1 

ik&n (z) Es=-lk, (q0+8q*) EL, ( 1 ) 

Here EL (z,t) and Es (z,t) are the "slow" complex ampli- 

tudes of the pump and Stokes waves; q and Sq, respectively, 
are the complex amplitudes of the stimulated and spontane- 
ous hypersonic vibrations of the medium; f, is a source of 
spontaneous thermal phonons; r = aov, where a, and v are 
the attenuation factor and velocity of hypersound in the me- 
dium; kl = ks Y/4p2, k, = 2Grpvz/ks Y, where Y = pa&/ 
dp, p is the density, and the coefficient G is a measure of the 
nonlinearity of the active medium; and k, z ks = k is the 
wave number for the pump wave and for the Stokes wave. 
Equations (2)  and (3)  incorporate the spatial derivatives of 
the hypersound, vdq*/dz; i.e., they incorporate the fact that 
the hypersonic vibrations are not spatially localized. It is 
important to recognize that incorporating the spatial deriva- 
tives of the hypersound in these equations brings out several 
interesting effects, namely a change in the frequency spec- 
trum of the field Es at the exit from the medium, as we will 
be discussing below. 

It can be seen from (4)  that we are assuming that the 
inverse effect of the Stokes wave on the pump field is negligi- 
ble, as are the diffraction loss and the absorption of light. 
The pump-wave amplitude EL in Eqs. ( 1 )-(3) is thus a giv- 
en function which satisfies Eq. (4).  We note, however, that 
the amplitude of the pump wave may also vary along the z 
direction because of a change in the cross section of the vol- 
ume of the active medium. For generality we incorporate the 
possibility of such a modulation at the outset by introducing 
an additional factor of 1 + r(z) in the expression for the 
amplitude EL in the solution of Eq. (4).  Correspondingly, 
we introduce a factor of [ 1 + r(z) ] ' in the expression for the 
intensity of the pump wave. The function r(z) characterizes 
the change in the cross section of the waveguide along the z 
axis. 

We consider the propagation through an active medium 
which occupies the spatial volumez<O, lzl ( L ,  of a temporal- 
ly bounded pump pulse. We choose origins for the z and t 
scales in such a way that the front of the pump pulse inter- 
sects the entrance plane of the medium (z = 0)  at the time 
t = 0 (Fig. 1 ). It then follows from Eq. (4)  that the locus of 
points of the front of the pump pulse in the zt plane is the 
straight line z + ct /no = 0 (Fig. 1 ). Each point z,, to on this 
straight line is a source of an induced Stokes wave which is 
propagating along the family of characteristics z - ct / 
no = zo - ct,/n,. The z = 0 plane is the entrance plane for 
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FIG. 1. Characteristic lines for the pump wave and the Stokes wave in the 
zt plane. The z = 0 plane is the entrance plane for the pump wave and the 
exit plane for the Stokes wave. 

the pump wave and the exit surface for the Stokes wave. The 
boundary condition on the Stokes-wave amplitude Es is 
Es = 0 on the line z + ct /no = 0. Taking account of the 
propagation direction and the finite value of the velocities of 
the pump and Stokes waves, and also imposing a temporal 
causality principle, we see that the strength of the Stokes 
wave at an arbitrary point Pis determined by the strengths of 
the pump wave and the hypersonic vibrations of the medium 
in triangle ABP in Fig. 1. 

2. SOLUTION OFTHE EQUATION FOR THE STOKES WAVE; 
DETERMINATION OF THE GREEN'S FUNCTION 

To solve the system ( 1)-(3) we write the amplitudes of 
the pump and Stokes waves in the form 

0 

EL=AL exp ( ik J 6n (z") dz" ) , 
2 

E~=A.  exp( -ik ! bn (z") dz" ) , 
2 

and we write q* and 6q* in the form 

Furthermore, to eliminate spatial derivatives from Eqs. (2) 
and (3) for the hypersonic vibrations, we introduce the co- 
ordinate transformation 

In terms of the variablesz' and t ', the equations for the ampli- 
tudes As,A,,u and Su then take the form 

dAs ( 3% + -) e"'=-ik2(u+~u)a(z', t'), 
c at dz' 

(8 

a u 
- = ikierr'As (z', t')a*(zf, t'), 
at' 

(9)  

where 

a (z', t') = A, (z', t') exp [2ik I 6n (z") dz"] . 
z ( z ' , t ' )  

The solution of the equation for the amplituded, (zl,t ') 
is 

i.e., the pump field is propagating in the z't plane along char- 
acteristics 

The form of the function f is determined by the particular 
shape of the pump pulse. As we mentioned above, we are 
allowing for a variation in the cross section of the waveguide 
by multiplying the expression found for AL from ( 11 ) by a 
factor of 1 + r(z). We thus write 

A corresponding factor of 1 + r(z) should undoubtedly 
be incorporated in the final expression for the Stokes-wave 
amplitude As. However, in the expression for As this factor, 
which directly describes the change in the intensity of the 
Stokes wave due to the change in the cross section of the 
medium, does not play an important role for the effects in 
which we are interested here, while the associated modula- 
tion of the pump wave gives rise (as we will see below) to 
substantial modulation of the frequency spectrum of the 
Stokes radiation because of the nonlinearities and the expo- 
nential gain. 

We turn now to the solution of system (8)-( 11 ). Dif- 
ferentating (8)  with respect to t, using Eqs. (9)  and ( l o ) ,  
and also using the expression for A,, we find the following 
second-order partial differential equation for As (zl,t '): 

no a2A, d2As --+- 
c atf2 azf atf 
=kik,IL (z', t') A, (z', t') - ik2fTa (z', t') , (12) 

r=r - -- 
noAL dz' c 

+ 2iku6n (z (z', t') ) , I,= 1 EL 1 2. (13) 

We assume that the space-time dependence of the pump 
pulsef, of duration rL , is 

FIG. 2. Space-time dependence of the amplitude of a pump pulse of dura- 
tion rL . 
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(Fig. 2). We then write 

and the quantity T takes the form 

The particular case y = 0 corresponds to a square pump 
pulse. 

To put Eq. ( 12) in canonical form, we introduce the 
variables 6 and 7: 

Figure 3 shows a mapping of characteristic points from the 
t 'z' plane into the 677 plane, as specified by Eqs. ( 15). In 
terms of the variables 6, 7 the expression for A, takes the 
form 

We write A, ( 6 , ~ )  in the form 
I 

Making use of the small parameters un,/c < l,ri/k 1, and 
Ir(z) I 4 1, we write the equation for Win the following form, 
where we are using ( 12) and ( 17) : 

5 6n (2") dz". 
uTI,-v ( Z )  

Here, we have introduced the variables 

FIG. 3. Mapping of characteristic points in the it' 
plane into the gv plane. 

In the expression for ij, we ignore the additional small 
parameter - u/c in the argument of the function r(z) in the 
integral, since the function r(z) is itself small. In the expres- 
sion for 7, r(z)  is then a function of ij alone, since we have 
Z ( V  = 0)  = - 7. We will also be using this approximation 
below. 

The solution of Eq. ( 18) is expressed in terms of the 
Riemann function R (g,ij) (Ref. 3), found by solving the 
Goursat problem of the equation 

with the boundary conditions R ( ~ , o )  = R(0,ij) = 1. This 
solution is 

where I, is the modified Bessel function. 
The solution W(P) of inhomogeneous equation ( 18) at 

an arbitrary point P i s  expressed in terms of the solution of 
the corresponding homogeneous equation, R ( t , f ~ ) ,  as fol- 
lows3: 

C 
APAB 

C 

The first term on the right side of expression ( 2  1 ) is an 
integral along the straight line AB in Fig. 3; the second term 
is an integral over the area bounded by triangle PAB. This 
second term describes the contribution of spontaneous ther- 
mal phonons ( - f, ) to the Stokes wave. 

Substituting the expression for r into (17), and inte- 
grating over {, we find 

n v v v ( P )  = A C rg(p) - y L ( P )  
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where, as follows from ( 15 ) , 

The superscript P means that the corresponding coordinate 
refers to the point P: P(ztP) ,t(') ) or ( P l  (P),v(P)). In order 
to determine the Stokes wave in the exit plane of the medi- 
um, Es (z = 0)  we need to determine the amplitude A, (P) 
at points P lying on the characteristic z = - c(t  - r, )no 
which corresponds to the trailing edge of the pump pulse 
(Fig. 3). It is not difficult to see that for such points P we 
have E y ( z  = 0) = As(P) [see (5)].  Using (22) along with 
Eqs. (8)-(10) and the boundary condition As I,, = 0, and 
carrying out several manipulations, we find 

APAB C 

where 
O 

and g({) and f j  (7) are given by ( 19). Under our assump- 
tions, expression (23) is an exact equation for determining 
the complex amplitude of the Stokes wave at an arbitrary 
point in the active medium when we allow for thermal hyper- 
sonic vibrations -Sq*(z,t)f, (z,t) and possible perturba- 
tions of the refractive index Sn(z) in the medium and also a 
modulation of the intensity of the pump wave along thez axis 
due to a variation in the cross section of the waveguide. From 
(23) we easily find that the function 

is a three-dimensional Green's function for the region 
bounded by triangle PAB, while it is a surface Green's func- 
tion for line AB. Working in a similar way, we can calculate 
the amplitude and the Green's function for hypersonic vi- 
brations of the medium from Eqs. (8)-( lo) .  

3. CALCULATION OF THE GREEN'S FUNCTION AND GAIN 
FOR TRAVELLING STIMULATED BRILLWIN SCATTERING 
OF ASQUARE PUMP PULSE IN A HOMOGENEOUS MEDIUM 

Let us examine in more detail the particular case of a 
square pump pulse (i.e., one with y = 0)  of duration T, and 
intensity I, in a homogeneous medium [Sn (z) = 0] whose 

cross section remains constant along z[r(z) = 01. In this 
case, taking the limit y -0 in (23), we find 

r n ,  '" 
AB ( P )  = exp (e ' g ( p ) ) ~ L " a i k 2 { ~  z0 ( [ ~ G I ,  - gq] ) 

A B  
C 

From (25) we find an expression for the function H ,  ({,q) 
for the case of a square pump pulse in a homogeneous medi- 
um: 

The exact expression ( 25 ) for travelling SBS differs from the 
corresponding expressions derived for the cases of time- 
varying SBS4 and time-varying stimulated Raman scatter- 
ings under the assumptions used in those previous studies. 

To determine the Stokes-pulse gain for travelling SBS in 
the case of a square pump pulse (i.e., with y = 0)  in a homo- 
geneous medium [Sn (z) =O] we need to calculate the eigen- 
values for the exponential solution of the homogeneous 
equation for the Stokes-wave amplitude Es [i.e., Es 
(zl,t ' ) = As (z1,t ') with Sn (z) = 01, found from Eq. ( 12) : 

(27) 
Equation (27) incorporates the fact that we have T = r for 
a square pump pulse in a homogeneous medium. Writing Es 
in the form 

E s ( z ' ,  t') =EsOesp[Ju (z'+ ct l lno)  !, 

we find the following quadratic equation for the eigenvalues 
A from (27): 

The solutions of this equation are 

The eigenvalue A,, which corresponds to the minus sign in 
front of the square root, is negative, and it does not contrib- 
ute to the amplification of the Stokes wave. Since the amplifi- 
cation of the Stokes wave in the case of a pump pulse of 
duration rL occurs over a distance rL c/no, we find the fol- 
lowing expression for the overall gain g for the amplitude of 
the Stokes field: 

Here we have used k,k ,  = GT/2. At large values of the non- 
linearity coefficient of the medium, G, or for high pump in- 
tensities I,, such that the relation GILc/rn0> 1, holds, we 
find from ( 30) 

g x  (rGI,c/4no)  "t,. 

For the case of a small amplification (GI, c/Tno < 1 ), on the 
other hand, the gain is 
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FIG. 4. The surface Green's function for a pump pulse of duration T, with 
Tr, = 10. Solid line-GZLrLc/n0 = 40; dashed line-GZ, T, c/no = 20. 

This expression is equal to the steady-state gain over a dis- 
tance C T ~  /2n,, which is equal to half the spatial length of the 
pump pulse (half because of the opposite propagation direc- 
tions of the pump and Stokes waves). 

Figure 4 shows plots of the surface Green's function 
H, ( 6 , ~ )  for a square pump pulse of duration TL for various 
pump-wave intensities I, in a homogeneous medium 
[Sn (z) =O]. The maximum of this function lies within the 
segment AB. 

4. MODULATION OF THE FREQUENCY SPECTRUM OF THE 
STOKES WAVE DUET0 VARIATIONS IN THE REFRACTIVE 
INDEX OFTHE MEDIUM 

We return to the most general case, of a medium with 
variations in its refractive index, Sn (z),  and with a possible 
modulation of the cross section of the waveguide, described 
by the function r(z). A detailed analysis shows that each of 
these factors leads to modulation of the frequency spectrum 
of the Stokes wave at the exit from the medium, as can be 
seen with the help of (23) for the amplitude of the Stokes 
wave. 

We begin by considering the effect of variations Sn(z) 
in the medium [i.e., we set r(z) =O] on the frequency spec- 
trum of the Stokes radiation for the case of travelling stimu- 
lated Brillouin backscattering. The exponential phase fac- 
tors 

0 

e x p  &=exp [ f i k  j 6 n  ( i x )  dzu ] 
in the integrands do not affect the spectrum Es (P) .  The 
reason is that since the functions Sq* ( 6 , ~ )  and fr ( 5 , ~ )  are 
of a random nature these exponential factors are equivalent 
even without them to a change in the random phase of the 
quantities Sq* and f,. Consequently, the frequency modula- 
tion of the Stokes wave by the variations Sn (z) is described 
by the exponential factor 

e x p  [- 2ik '(7 6 n  (z") dz"]  , 
ur~-u(')  

which appears in front of the expression in braces in (23) 
[see expression 22(a) for v(P) 1. Significantly, only by tak- 

ing account of the finite magnitude of the sound velocity 
( v # O )  or, in other words, the fact that the hypersonic vibra- 
tions are not spatially localized [the term - /dz in Eqs. 
(9) and ( 10) ] are we able to bring out the effect of a change 
in the frequency spectrum of the Stokes wave due to Sn (z). 
In the opposite case, i.e., in the approximation v = 0, we 
have z"' = - 7,~(') , and the exponential coefficient in front 
of the expression in braces in (23) and thus the modulation 
of the frequency spectrum of the Stokes wave due to Sn (z) 
disappear. 

Let us assume for definiteness that the modulation of 
the refractive index in the medium is sinusoidal: 

6 n ( z )  =6no sin Qz. 

Under this assumption, calculations carried out with to first 
order in the small quantity v/c lead to the following time 
dependence of the coefficient 

at points P lying the characteristic of the trailing edge of the 
pump pulse z"' = - ~( t " '  - T, )/no: 

P X P  (- 2ik '(7 6 n  (3") d i " )  
vTL:u(p) 

Here Q is the wave number of the sinusoidal modulation of 
the refractive index, Sn(z); v is the sound velocity; k is the 
magnitude of the wave vector of the Stokes wave; J,,, is the 
Bessel function; and t is the value of the time at point P, in 
the exit plane of the medium (z = 0)  which corresponds to 
the point P on the characteristic of the trailing edge of the 
pump pulse. 

A new result follows from expression (3  1 ) : The Stokes 
radiation leaving a medium with sinusoidal variations in the 
permittivity in the case of travelling stimulated Brillouin 
backscattering is the sum of sinusoidal oscillations 

e x p { i ( t - t L )  Q [  (m+n)c/2no+nu j ) ,  

and the factor exp[i(t - T, )Qnv] describes broadening of 
the spectrum of each harmonic with frequency NQc/2n0 
(m + n = N = const). Under the conditions L Q / 2 r S  lo3 
and Sn, 5 0.03 cm/L (cm), which would ordinarily hold in 
practice, we find the following approximate expression for 
the Fourier time transform of the Stokes wave from (23) and 
( 3  1 ) : 
F s ( o )  =F,(") (o) + ' / , ~ V T G ~ ~ ~ ' ~ F , ( ~ ~  ( o - c Q / 2 n o ) .  T=2Lno/c.  

(32) 

Here 17;'' is the amplitude of the Fourier transform of the 
Stokes wave in a homogeneous medium [i.e., for the case 
Sn (z) SO], and e, = const. We thus see that an additional 
term at the frequency wo = Qc/2n0, with the spectral width 
of the Stokes signal in a homogeneous medium and with an 
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amplitude proportional to ( 1 / 2 )  k v T d n o ,  appears in a me- 
dium with periodic variations Sn of spatial frequency Q in 
the temporal spectrum of the Stokes wave. This change in 
the frequency of the optical signal does not occur in linear 
optics as light propagates through media with periodic var- 
iations in the refractive index. 

If the length of the active medium is L - lo4  cm (optical 
fibers), we would have threshold values ano- l o p 6 ,  and 
these values could be reduced to lo-' through appropriate 
processing of a packet of signals. The results of Fourier anal- 
ysis of a Stokes wave found through numerical simulation of 
travelling SBS confirm the conclusions of this theory. 

5. EFFECT OF MODULATION OF THE CROSS SECTION OF 
THE ACTIVE MEDIUM ON THE FREQUENCY SPECTRUM OF 
THE STOKES WAVE 

How is the frequency spectrum of the Stokes radiation 
affected by modulation of the intensity of the pump field 
along the z  axis caused by variation of the cross-sectional 
area of the waveguide [i.e., r ( z )  #O]? We see from ( 2 3 )  that 
a modulation of this sort gives rise to exponential factors in 
As (P) which in this case have a purely real argument in- 
stead of an imaginary argument [as results from Sn ( z )  ]. 
These factors in the integral in ( 2 3 )  are no longer canceled 
out by the random nature of the phases of 6q* and f,; they 
lead to an amplitude modulation of the Stokes wave, which 
converts into a phase modulation. A detailed analysis shows 
that the modulation of the frequency of the Stokes wave in 
this case results from specifically the factors 

exp A,=exp [gr , ' l ( l+r)  1 

I 
b 

I 
- 

if 

0 
I I 1 I I I 

0. Y 0.8 1.-2 
w/Zz, GHz 

FIG. 5. Stokes-wave spectrum IF, (o) 1 found by numerical calculations 
for the following values of the parameters of the pump and the variations 
of the properties of the medium: 1, = 3 MW/cmZ, rL = 100 ns, 
6n,=. lop5.  a-The spatial frequency of the periodic variations in the me- 
dium is Q = 0.144 cm-'; b--Q = 0.072 cm-'. 

in the integrand. This modulation can be determined in the 
following way. If the cross section is modulated in accor- 
dance with r ( z )  = r, sin Oz (ro( I ) ,  the amplitude F I" (w) 
of the Fourier transform of the Stokes wave Es with frequen- 
cy us +a,, which deviates from the fundamental Stokes 
frequency w, by w, = 10c/no ( I  = 0,1,2,3 ...) , is given by the 
function 

where I, is the modified Bessel function. 
An important point is that the modulation of the fre- 

quency spectrum of the Stokes wave due to the modulation 
of the pump intensity which results from a periodic variation 
in the cross section of the waveguide also occurs if we assume 
that hypersonic vibrations of the medium are spatially local- 
ized, i.e., when we ignore the sound velocity, v  = 0 .  In con- 
trast with this situation, as we mentioned earlier, the change 
in the frequency of the Stokes signal due to variations Sn ( z )  
in the course of travelling stimulated Brillouin backscatter- 
ing can be manifested only when we allow the circumstance 
that the hypersound is not spatially localized ( v # O ) .  

The modulation of the frequency spectrum of the 
Stokes wave due to variations 6 n ( z )  and r ( z )  predicted in 
this paper might be utilized in practice in problems requiring 
the remote detection of corresponding variations in the me- 
dium through frequency analysis of the Stokes radiation in 
the case of travelling stimulated Brillouin backscattering. 

6. NUMERICAL SIMULATION OFTRAVELLING SBS 

The results of this theoretical analysis of stimulated 
Brillouin backscattering in the travelling regime have been 
confirmed by numerical simulation.' Specifically, an algo- 
rithm was developed for constructing a mathematical model 
of the process of travelling stimulated Brillouin backscatter- 
ing, and a corresponding computer program was written. 
The numerical simulation was carried out for sinusoidal var- 
iations: 

n ( z )  =;zo+6nQ sin Qz. 

Figure 5 shows the data of a Fourier analysis of the Stokes 
wave calculated by this program. We see that the results of 
the numerical simulation of travelling stimulated Brillouin 
scattering and also the results of actual experiments and nu- 
merical simulations reported in Ref. 2 confirm the theoreti- 
cal prediction of a change in the spectrum of the Stokes sig- 
nal in a medium with variations in its refractive index. On 
this basis it can be concluded that travelling SBS could be 
utilized for remote sounding of variations in a medium and 
in several other promising applications. 

CONCLUSION 

In summay, this theoretical study of travelling stimu- 
lated Brillouin backscattering has resulted in a rigorous cal- 
culation of the field of the Stokes wave in the volume of, and 
at the exit from, the active medium. The analysis has incor- 
porated the effect on the stimulated Brillouin scattering of 
hypersonic thermal vibrations of the medium and possible 
perturbations of the refractive index of the medium, 6 n  ( z )  . 
Exact expressions have been derived for the amplitude of the 
Stokes wave, the volume and surface Green's functions, and 
the gain for travelling stimulated Brillouin scattering. 
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