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We develop for the consideration of bremsstrahlung an approach which takes account of the 
medium and an external field. Kinetic equations are derived which enable one to allow for the 
effects of scattering and the external field. Making use of these, we analyze bremsstrahlung in a 
screened Coulomb potential and from a nucleus. The corresponding cross sections are calculated 
to power-law accuracy. To logarithmic accuracy, we study effects involved in the collision of 
ece- beams in linear colliders. 

1. INTRODUCTION 

At very high energies, the production length involved in 
certain fundamental processes of quantum electrodynamics 
is very large, and the processes come to depend on the medi- 
um in which they are played out, as well as on external fields. 
Landau and ~omeranchuk' were the first to draw attention 
to the fact that if the production length for bremsstrahlung 
becomes comparable to the distance over which multiple 
scattering becomes important, the bremsstrahlung will be 
suppressed. Migda12s3 developed a quantitative theory of this 
phenomenon. Two of the present authors have shown4 that 
external fields can also modify the bremsstrahlung process. 

One of the interesting applications of these effects oc- 
curs with radiation derived from the collision of e+e- beams 
in so-called linear colliders (at particle energies of hundreds 
of GeV or more). In the present paper, we develop a theo- 
retical approach to the consideration of bremsstrahlung, 
taking both the medium and an external field into account. 
Previous (valid) results are derived as simple limiting cases. 

Quantum effects in an external field F',, are character- 
ized by the parameter"X (whereX2 = (e2/m6) 1 (FpY pV )'[, 
andp ' is the particle four-momentum); for the sake of defi- 
niteness, in a transverse electric (magnetic) field, 

where y = ~ / m  is the Lorentz factor, and Eo = m2/e 
= (m2c3/efi) = 1.32.106 V/cm, so that with ~2 1 we are 

already well into the quantum domain. The situation x > 1 
will prevail in linear colliders, where particles move in the 
field of the oncoming beam. In that case, the external field is 
produced by the very medium traversed by the particles, and 
is therefore inseparable from that medium. 

We consider the effect of an external field on the brems- 
strahlung process. This effect is associated with a reduction 
in the production length of a photon (either bremmstrah- 
lung or virtual) due to the relatively large change in particle 
velocity over this length, and the corresponding increase in 
the vertex angle of the radiation cone. If a photon of frequen- 
cy f l  is emitted by an electron (positron) of energy E at an 
angle 8  to its velocity, the production length of such a pho- 
ton will be given by2' 

In-  ( ~ ~ ( 2 )  / ~ < 1 ~ ' = l / e  un6', (1.2) 

where u, = O/(E - f l ) .  The characteristic radiation angles 

in weak fields are 8- l/y, and we can neglect the influence 
of the external field if 

i71,=e1i~,/e~ J /y .  (1.3) 

Substituting ( 1.2) into ( 1.3), we have the criterion for a 
field to be weak, 

eII 7" 
<I. Y - - = -  (1.4) 

E EUo Up 

In strong fields, wherex/u ) 1, with characteristic radi- 
ation angles 8 )  l/y, the effective radiation angle .9,, is de- 
termined by a self-consistency argument: the deviation angle 
of the particle in the field over one photon production length 
must not exceed 9,,, i.e., 

It can be seen from (1.5) that when x / u S  1, neither the 
characteristic radiation angle nor the photon production 
length depends on the mass of the radiating particle. A pa- 
rameter characterizing the effect of an external field on the 
radiation process was derived in Ref. 4. 

It follows from ( 1.5) that, for x/u, $1, the character- 
istic photon production length is reduced by a factor ( X/ 
u, )'I3, and the emission angles are increased by a factor (i/ 
u, )'I3. Since the relevant parameter x/u, depends on the 
frequency u, this effect is manifested earlier for soft photons. 
This is the reason why the field has a significant effect on 
virtual photon production in e+e- collisions ( f l ~ q ; ,  
= wm2/4&(~ - w) ,  where w is the frequency of the real pho- 

ton) even for moderate fields and at relatively low particle 
energies, when the parameter X(E - w )/w =X/U is small, 
a n d x ( ~  - q;, ) z 4 f i / u  is large. In that event, the diagram 
for emission of a bremsstrahlung photon (radiation vertex) 
does not change directly, but a significant change takes place 
in the virtual photon spectrum at momentum transfers 
141 5 qmin (41/2X/u) 'I3, increasing the lower bound on the ef- 
fective momentum transfer and resulting in a corresponding 
decrease in the cross section. The radiation cross section was 
derived to logarithmic accuracy under these conditions in 
Ref. 4 using the equivalent photon method. The relativistic 
problem was solved in Ref. 6. 

It follows from ( 1.4), and was demonstrated in Ref. 4, 
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that even forx/u 2 1 there is a change in the radiation vertex 
corresponding to absorption of a virtual photon and emis- 
sion of a real one. Since for x/u %. 1 the production length I, 
of a real photon falls off as (u/x)'I3 (see ( 1.5) ), the brems- 
strahlung cross section falls off in just the same way. There 
have indeed been previous attempts to calculate this cross 
section. Thus, the bremsstrahlung cross section for a nucleus 
in an external field was calculated to logarithmic accurcy in 
Ref. 7. However, an incorrect application of the standard 
equivalent-photon method in Ref. 7 for this configuration 
resulted in an erroneous dependence of the argument of the 
logarithm on the parameter x / u  The cross section for a 
screened Coulomb potential was recently calculated8 to the 
same accuracy. The logarithmic function obtained there is 
not in agreement with Ref. 7. 

In the present paper, we carry out a relativistic (semi- 
classical) calculation of the bremsstrahlung cross section for 
particle collisions in the presence of a field. Section 2 con- 
tains a derivation and analysis of kinetic equations which are 
much more broadly applicable than necessary for the subse- 
quent calculation. In Sections 3 and 4 we analyze radiation 
in a screened Coulomb potential and a nuclear field, respec- 
tively. Section 5 discusses the features of bremsstrahlung in 
e+e- beam collisions to logarithmic accuracy. In our calcu- 
lations, we neglect polarization of the medium, which is im- 
portant only for the emission of very soft photons, and 
which, moreover, is diminished by a factor (X/u)2'3 when 
x/u% 1. 

2. BASIC EQUATIONS 

We start out with the quasiclassical theory of radiation, 
as developed in Ref. 5. In this theory, the emission probabil- 
ity (Eq. (9.27) of Ref. 5) is 

dw=-- a hk S dt, J dt, I?' (t,)R (t,) 
(2n) h 

where a = e2 = 1/137, k = (w,k) is the four-momentum of 
thephoton,k2 =O,x(t) = (t,r(t)),tisthetime,andr(t) is 
the particle location on a classical trajectory. For relativistic 
spinors, we have 

1 1  E A = -  I+-  evm.--  
2 E - W  :(l+&)e. 

where the angle 6 = v-'(v = n(n*v))zv, ,  and v, is the 
component of particle velocity perpendicular to the vector 
n = k/w. If we are not interested in the initial and final parti- 
cle polarizations, then 

where we have used the notation 6' = 6( t2 ) ,  6 = 6 ( t , ) .  If 
the particle moves along a definite trajectory, then by substi- 

tuting the classical values of r ( t )  and v(t)  into Eqs. (2.1)- 
(2.3), we obtain the desired probability for this process. 
When there is scattering, Eq. (2.1 ) must be averaged over all 
possible particle trajectories. This operation is performed 
with the aid of the distribution function, averaged over 
atomic positions in the scattering medium and satisfying the 
kinetic equation with the external field taken into account 
(particle acceleration). The emission probability per unit 
time is then (see Ref. 5)  

rn 

XJ d3u d3u' d3r d3r1 P (bfl  b)Fi(r, v, t) F,(rt, v', r; r, v) 

The distribution function F in (2.4) satisfies the kinetic 
equation 

where n is the number density of atoms in the medium, and 
a(v,vl) is the scattering cross section. The normalization 
condition 

should also be satisfied, as well as the initial condition for Ff: 
F,(r', v', 0; r, v) =6 (r-r')6(v-v'). 

In Eq. (2.4), we integrate over d 3rd (r' - r), taking advan- 
tage of the fact that Ff (r',vf,.r;r,v) can only depend on the 
coordinate difference r' - r: 

m 

Fi(v, t) = h r  Fl (r, v, t) , 

x F, (rf ,  vr, T; r, v ) .  

(2.8) 

Here 

Fk(vrr T; v)=U(bfr  6; T)G((v'I--IvI), 

U(6'. 6; 0) =6(b'-b), (2.9) 

if it is assumed that in the ultrarelativistic limit w-v-0(1/ 
y-' ), w z wI, and the scattering cross section is 

( J ( V , V ' ) = ~ ( ~ V ' ~ - ( V ~ ) ( J ( ~ , @ ' ) .  (2.10) 
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Making use of Eq. (2.5) for F, we obtain the following equa- 
tion for U(Qf,Q;r) : 

Reference 5 contains a derivation of this equation for w = 0, 
where the use of the quasiclassical method considerably sim- 
plifies the treatment of Ref. 3. A similar equation for the 6- 
dependence of U can be obtained by letting 6'-6 and 
w- - w. If the final state of the charged particle is of no 
interest, the probability (2.7) must be integrated over d 3v'. 
The resulting emission probability per unit time, normalized 
to a single particle moving at a speed v is then 

where a = w ~ ~ / E E ' ,  and V, (6 , r )  satisfies the equation 

Here b = OE/E'; the initial conditions for V, are 

Vo(b, O ) = l ,  ~ ( d ,  0):@. (2.14) 

If the scattering cross section u(6',Q) depends solely 
on the angle difference 6 - Q', then Eq. (2.13) is most con- 
veniently solved by Fourier transforming with respect to the 
variable 6 :  

From Eq. (2.13), with initial conditions (2.14), we have 

= n d2t3 (ei@x - 1) a (13) cp, (x, t) S .  
= ( 2 ~ ) ~  n [X (x) - X (0)l cp, (x, 2) 

If the angular dependence of the radiation distribution is of 
no interest, Eq. (2.12) must be integrated over the photon 
emission angles 9. Bearing in mind that d 3k = w2dwd 29, and 
that 

.I 
- j v. (a, t) d2a=w (0. I), 

( 2 ~ )  
1 - jav(a, t) d26=-ivcp(x, z) lxm0, 

( 2 4  
(2.17) 

we obtain the following expression for the spectral distribu- 
tion of emission probability per unit time: 

We now introduce the function 
w 

which satisfies the equation 

Making use of the solution (2.20), the emission probability 
spectrum may be put in the form 

An equation like (2.20) was examined in Ref. 9 (p. 420) in 
the classical limit and with w = 0. 

3. RADIATION IN A SCREENED COULOMB POTENTIAL 

The scattering cross section in a screened Coulomb po- 
tential takes the form3' 

a (6) = 4 ~ ~ a ~ / e ~ ( 6 ~ + 6 1 ~ ) ~ ,  (3.1) 

where 6, = X/E, x = l/a,, a, is the screening radius, and its 
Fourier transform may be expressed in terms of the Bessel 
function K,: 

Bearing in mind that contributions to the cross section come 
from x - 1/6,, 4 19 i ', and expanding K, (x6,  ) as a power 
series in x8,, we obtain the following equation for p, ( x , T )  

from (2.16), to power-series accuracy: 

where C = 0.577 . . . is Euler's constant. When the charac- 
teristic emission angles 9,, )9,z (Z 'I3ay) - ', no further 
"tuning" of the scattering angle to the emission angle is pos- 
sible, and Eq. ( 3.3 ) simplifies considerably: 

dcp, b -- 2nnZ2u2 
i - Aq,+iwxrp, = - 61 zZ In - rp,. 

dz 2 e2 .6.z (3.4) 

Equation (3.3) can be expressed in this form if we wish to 
obtain the emission probability to logarithmic accuracy. We 
must then take as 9, the characteristic emission angle ae,, 
which in weak fields and with no multiple scattering is - 1/ 
y. In strong fields (x/u % 1 ), Sea - y-I (x/u) ' I 3 ,  SO that for 
estimates we can use the approximate formula 

a=t,,-r-' [ l+(xiu)"" ,  (3.5) 

and the equation for p, then takes the form 
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where 

Any subsequent estimate of requires that a wider range 
of radiation angles be taken into account, because of multi- 
ple scattering. This effect (the Landau-Pomeranchuk ef- 
fect) can become the dominating influence in a weak field, 
where x/u 4 1. Let us introduce the variable 6 = 1 + $9 
and estimate the change in the square of the particle devi- 
ation angle over the photon production length l 
-E(E - m)/m2m6 = "//mu6 due to the external field and 
multiple scattering. We obtain as a result the following esti- 
mate for : 

where m: = 4mZa/m. 
Equation (3.6) is of the same form as the Schrodinger 

equation for an oscillator in an external field, and with initial 
conditions (2.16) its solution takes the form of a Gaussian 
distribution. We therefore seek a solution of (3.6) in the 
form (compare Ref. 10) 

Substituting this expression into Eq. (3.6) and solving the 
system of equations thus obtained with initial conditions 
(2.161, we have 

qxZ wZz w2 Y Z  iwx vz f(~)=--cthv~--+-th--- th - 
v 49 2 ~ q  2 ' (3.10) 

The solution (3.10) and Eq. (2.18) give the following 
expression for the emission probability spectrum per unit 
time: 

w 

iaz wYr + - t h q .  w2 

Integrating the term containing sinh-'vr by parts, we have, 
to logarithmic accuracy, 

X ( -+- :2 2 2  ) th- iZ ] 
iaz wZz wZ 

xexp(-7-- 4q + - t h z ) .  2vq 2 

with w = 0, Eq. (3.12) becomes the probability derived by 
Migdal.3 The probability (3.12) is also identical with the 
basic result of Ref. 8, wherein the calculation was performed 
by functional integration. For weak multiple scattering, 
where the second term in Eq. (3.8) can be neglected, we can 
expand (3.12) in powers of vr. The principal term in this 
expansion gives the emission probability in a constant field 
in the absence of scattering, and a correction cc q gives, to 
logarithmic accuracy, the emission cross section for scatter- 
ing by a screened Coulomb potential in the presence of an 
external field: 

where - 

The cross section (3.13) differs from the result obtained in 
Ref. 8 under the same assumptions. It must be noted that 
since the lower bound on the effective momentum transfer 
increases as (X/u)2'3 in strong fields, as will be shown in the 
next section, a situation in which there is total screening in 
the absence of an external field may not be so when the fields 
are sufficiently strong. 

We now return to Eq. (2.16) and introduce the notation 

We will solve this equation in the Born approximation for 
scattering by V(x), with no restrictions on the magnitude of 
the external field. Assuming V = 0, we obtain in the zeroth 
approximation 

We can obtain the solution of this equation from (3.10), 
letting q - 0: 

( 0 )  1 x2 i w x ~  ibw2? ) yo (xlr)=-exp(------ 2zbnt 2ibz 2 24 1 

Y ( 0 )  x bwz *[O) = - * (Fo 1 y=-+-.  
z 2 (3.17) 

Substituting the solution (3.17) into Eq. (2.18), we obtain 
the well known emission probability in a constant external 
field. In the first Born approximation, we have 

(1) - (0) (0)  
(Pr -(Pv +%% . (3.18) 

Transforming then to variables y, s = 1/r, we find that the 
function $p (y,s) satisfies the equation 

where we have put yo = 6. We seek a solution of (3.19) using 
the Green's function G(  y,s) which satisfies the equation 
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which we can solve, for example, via a Fourier transforma- 
tion: 

Making use of (3.21), we obtain a solution of the equation 
for +;, ( y,s) in the form 

Transforming variables to st  = ( E  + 1)s and y' 7 q + x/ 
( 1 + {) + bw$/2( 1 + {), and reverting to T = s- , x = y r  
- bw?/2, we gave 

Substituting the solution (3.23) into (3.18) and then into 
(2.18), we obtain in the first Born approximation 

It is convenient to transform variables in (3.24), letting 
r- 2r, 6 = e2', whereupon the emission probability spec- 
trum takes the form 

This can be expressed directly in terms of the scattering cross 
section. In order to do so, we must use the definition (3.15) 
and carry out the appropriate Gaussian integrals over 7 in 
(3.25). We then obtain 

where 

Equations ( 3.25 )-(3.27) describe the emission, to quasi- 
classical (relativistic) accuracy, upon particle scattering in 
an external field when the scattering cross section is of the 
form u(9 ,6 ' )  = a(9 - 9 ' ) .  This subsumes scattering from 
a screened Coulomb potential (see Eq. (3.1 ) ) . 

In weak fields, we can expand the functions which enter 
into (3.25 b(3.27)  in powers of wr. Keeping the most signif- 
icant terms of this expansion and terms -a2?, we obtain 
the following expression for the emission cross section in a 
weak field ( x / u  -4 1 ) for a screened Coulomb potential: 

In the absence of a field, the cross section (3.28) is the same 
as the standard cross section in a screened potential (see Ref. 
5, for example). This is the first calculation of the correc- 
tions to power-law accuracy. 

In strong fields (x/u ) 1 ), contributions to the integrals 
(3.25), (3.26) come from 

Therefore, up to terms - ( u / ~ ) ~ ' ~ ,  we can neglect the term 
linear in r which appears in the argument of the exponential 
( p ( r )  zibw2?/3), and we can omit the term m 2 / y 2 ~ ' *  in 
square brackets in (3.25) and (3.27). We can then rotate the 
integration contour in r by an angle - rr/6, so that r 
-+e - i*'6r(i$ -+ $), and transform to the variable p. The 
integrals over 7 and 9 in (3.25) and (3.26) are conveniently 
calculated via an exponential parametrization. With X/ 
u) 1, we find after some fairly tedious calculations that 

(3.29) 

where D,, = 2.3008. The emission inhibition factor (u/ 
X)213 in (3.29) occurs, as was shown in the Introduction, 
because of a decrease in the photon production length. The 
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factor (x/u) ' I 3  in the argument of the logarithm is associat- 
ed with the increase in effective emission angles I9=, - y-' (x/u) Note that since the quantum parameter 
x a l/m3, the cross section (3.29) is independent of the mass 
of the radiating particle. 

4. RADIATION NEAR A NUCLEUS 

In a purely Coulomb radiation problem, the scattering 
cross section for momentum transfer close to the minimum 
depends not only on the angular difference 6' - 6 = 0 (on 
the transverse momentum transfer q, Z E ~ ) ,  but on the radi- 
ation angle itself as well (on the longitudinal momentum 
transfer4' qli z ( u E / ~ )  ( l/f + I9 ') ). This is connected with 
the fact that for such values of momentum transfer, the emis- 
sion of a photon influences the particle scattering.'' In that 
event, the scattering cross section is conveniently given in 
the form 

where 

a=o (9 ,6+0/2)  -0 (0, 6,). (4.2) 

Here u(0,I9,) is the scattering cross section in the screened 
potential (3.1). We assume that 9, is small enough that 
8, <a,, (3.5), and large enough that when 6 2  a , ,  we can 
neglect the longitudinal momentum transfer q, = : ~ 8 ) q , ~  : 

The right-hand (collision) side of Eq. (2.13) may be repre- 
sented by a sum of a screened cross section and 5. In the first 
Born approximation, these terms contribute linearly and in- 
dependently to the radiation cross section. We calculated the 
corresponding radiation cross section in a screened potential 
above. On the other side with 5, we make use of the fact that 
when 8 > if,, 6 falls off as if : /6 2, and we may expand the 
contributing terms in powers of 6 /if- 8 /a,,: 

Substituting this expansion into (2.13), we obtain a Fokker- 
Planck type of equation: 

where 

~ ' ( 6 )  =n 5 0 (e2, 6) e2 s e .  (4.5) 
For a nuclear potential, 8 2(9.) is of the form ( (q2 ( = ~ ' 8  ' 
+ 4 i )  

Let v = 6 + WT, and 

Then Eq. (4.5) takes the form 

We next find the zeroth approximation to the solution of 
(4.8): 

av,'O)(v, T) b + i - 62 (T) (v, r )  =O, d T 2 
1 

ib v:" (v, T)=@ (v, T) =exp{- Z- I d r ' ~  (r')) 

Substitution of this solution into Eq. (2.12) gives the spec- 
tral and angular distribution of emission probability in a 
constant field. In the first Born approximation, we seek a 
solution of Eq. (4.8) in the form 

The equation for v, then takes the form 

and, with the initial data v, (6,O) = 0, we obtain its solution 
simply by integrating the right-hand side of this equation: 

r 

d  d ~ r '  (v, 7') 
v.(v, T) =q J~T/Q-~(V,  dv L(v-wTf) 1. 

0 

Substituting the solution (4.12) first into (4.10) and then 
into (2.12), we obtain the following expression: 

-=- dlT Re drr-"'" d2v@ (v, r)  
do  (231)' 

(4.13) 

Note that 

0 (v, T) (v, T') (v-WT', T-'T') . (4.14) 

Integrating (4.13) by parts and making use of (4.141, we 
may write (4.13) in the symmetric form 
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x @ (dfwr', r') I}. (4.15) 

Making the change of variables r - r' = ( 1 - y ) r/2, T' 

= (1 + ,u)r/2, and letting r -+2 r ,  and 9 = 8 - p w ~ ,  we ob- 
tain a correction to the emission probability spectrum of the 
form 

(4.16) 
where 
p( r )  =i(ar+bo2r3/3), R,=o2/&' 'yZ, R2=l+e2/e' 2. 

Expanding the expressions in (4.16) in powers of wr as 
w +O, and performing some straightforward but tedious cal- 
culations, we obtain the following correction to the emission 
cross section for the weak-field case (x/u 4 1 ) : 

Combining this result with the cross section (3.28) for the 
screened potential, we obtain the emission cross section at a 
nucleus, withx/u 4 1, and taking corrections - ( ~ / u ) ~  into 
account: 

To logarithmic accuracy, (4.18) is the same as the cross 
section calculated in Ref. 7. This is the first time corrections 
have been obtained to power-law accuracy. 

In a strong external field, the calculation is the same as 
in the screened case (see the discussion preceding Eq. 

(3.29) ) . For x/u 9 1, the correction dCi/dw to the emission 
section takes the form 

where b = - 3.0131. The argument of the logarithm in 
(4.19) determines the limit of total screening of the potential 
during emission. When there is total screening, we must 
have 

where q,,, = ES = urn2/2&(& - w),  and a is the character- 
istic radius of influence of the potential. For example, in an 
amorphous substance under standard conditions, a 
- Z  -'I3a, (where a, is the Born radius), and in oriented 
single crystals, this length is determined by the amplitude of 
thermal vibrations. Equation (4.20) implies that in the ab- 
sence of an external field, a totally screened field (q,,, a g 1) 
can become unscreened. Note that (4.20) depends little on 
the photon frequency (w'I3), and is independent of the par- 
ticle mass. Combining (4.19) with the asymptotic expres- 
sion (3.29) for the emission cross section in a screened po- 
tential, we obtain for the emission cross section at a nucleus 
in an external field, when x/u, 1, 

where D,,,, = - 0.7123. The cross section (4.21), like 
(3.29), is independent of the mass of the radiating particle. 
The argument of the logarithm obtained in Ref. 7 differs 
from the one in Eq. (4.21 ) by an additional factor (u/x) ' I 3 ,  

which is easily seen to be proportional to the particle mass. 

5. BREMSSTRAHLUNG FROM COLLIDING ete- BEAMS 

As particle energies increase in colliding-beam accel- 
erators, the intrinsic fields due to the beams themselves be- 
come all the stronger, and this reduces the beam dimensions 
significantly, as dictated by collision efficiency (luminosi- 
ty). Thus, the increase in the parameter x in this situation is 
due both to an increase in actual particle energy and to a 
considerable increase in the beam field strength (the self- 
action ofeach beam is - l/y?) in the collision region. As was 
already pointed out in the Introduction, the effect of an ex- 
ternal field on bremsstrahlung can manifest itself fairly ear- 
ly, when &x/q0-41/2X/u% l. In that event, the spectrum of 
equivalent photons changes in the vicinity of minimum mo- 
mentum transfer, so that the lower bound on effective mo- 
mentum transfer increases as 

Then so long as the radiation vertex doesn't change, the vir- 
tual-photon characteristic frequencies are unaffected; for 
small momentum transfers, these are determined by the 
kinematic relation qp 'z  kp, so that 
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o e  (-+.) I - s't 
q 0 " 4 ( a - o )  y2 

qo'=om2/4e ( e - o )  =-ue/4y2, 6 - I - f - y ' F .  (5.2) 

For this case (x/u 4 1, q0 - q; ) , the process has been studied 
in Refs. 4 and 6. The following results was obtained, with 
4?x/u) 1, to logarithmic accuracy in Ref. 4 and to power- 
law accuracy in Ref. 6: 

When the parameter x/u is not small, the radiation vertex 
does change, and as indicated by the foregoing analysis, the 
characteristic radiation angles increase as ae, - y- ' (x/ 
U )  ' I 3 ,  resulting in an increase in the characteristic frequen- 
cies of virtual photons at small momentum transfers: 

qo-9,' (I+~" 9f )  -9,' (xIu)"~. (5.4) 

The upper bound on effective momentum transfer increases 
for the same reason: q,,, - &aef - m (X/U ) ' I 3 .  

As a result, for y / u )  1, the argument of the logarithm . - 
takes the form 

1 , % y41, 
4- -- m ( x / u )  "' 
p (qo/y) (x~IQO)"' u/,xl, ' (5.5) - -- 

~ a k i n ~  use of the foregoing analysis, we can estimate the 
characteristic impact parametersp responsible for the lower 
bound on effective momentum transfer: 

The cutoff at small momentum transfer can be account- 
ed for not only by the external fleld, but by a number of other 
factors as well." In particular, it has been shown that for 
several-OeV electron-positron beams colliding in a storage 
ring, the dominant cutoff is due to the smallness of the trans- 
verse beam dimensions (see Ref. 12 for experimental details, 
and Ref. 13 for a theortical analysis). When the latter effect 
is taken into account, the lower bound on effective momen- 
tum transfer must be taken to be max( l/u, l/p,,). Thus, if 
the transverse beam dimensions u are greater than the char- 
acteristic impact parameters given by Eq. (5.6), the finite- 
ness of these dimensions may be neglected; otherwise 
( p,, > u),  the lower bound on momentum transfer is gov- 
erned by beam size. The coefficient of the logarithm comes 

from Eq. (4.21), assuming there that Z = 1. As a result, for 
x/u)  1, we have the following expression for the colliding- 
beam emission cross section to logarithmic accuracy: 

da 2asI"('l,) 
zP 5 m a o  

(5.7) 
where 

Equation (5.7) in local in character (X = X( p )  ). In order 
to calculate global characteristics of the radiation, it is neces- 
sary to carry out the appropriate averaging, taking account 
of the distribution of particles in the beams. 

"1n this paper, we employ units such that f i  = c = 1. 
 his follows from the quasiclassical theory of radiation (see Ref. 5, for 
example. 

3'Diffraction by the nucleus, which is significant at angles 
a,, 5 a2r: (Z '13ay) -', is not taken into account. 

4'The present treatment is for a nucleus in its ground state. 
5'This question is discussed in detail in Ref. 5. 
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