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The method of evaluating the gluino condensate, proposed in a previous paper,2 is extended to 
supersymmetric Yang-Mills theories (without inatter with gauge groups Sp( N )  and exceptional 
groups, but excluding E,. In all cases, the condensate (Trilil ) is nonzero and assumes T(G) 
values, where T(G) is one-half the Dynkin index for the adjoint representation of the group G. 

1. INTRODUCTION 

The question as to whether gluino condensation occurs 
in supersymmetric Yang-Mills theories without matter, i.e., 
whether 

has assumed particular importance since the suggestion' 
that the condensate ( 1 ) could be used in the shadow sector 
for supersymmetry (SUSY) breaking within the framework 
of the superstring approach. This question has attracted a 
relatively extensive literature, analyzed, for example, in Ref. 
2. Summarizing briefly the overall situation, we may say that 
there is a variety of arguments in favor of gluino condensa- 
tion but, unfortunately, they are not entirely rigorous and, 
more importantly, they do not assure a reliable evaluation of 
the condensate ( 1 ). The basic difficulty is that the conden- 
sate ( 1 ) is a dynamic parameter that arises in the theory with 
strong coupling. 

In this paper, we continue to develop the construction 
proposed in Ref. 2, whereby the condensate ( 1 ) can be found 
by an indirect method. The main advantage of the construc- 
tion is that all the calculations are performed in the weak- 
coupling regime and can be fully monitored theoretically. 
Then, using certain general properties of supersymmetric 
theories, we are able to extend the result to the strong-cou- 
pling regime. 

The method used in Ref. 2 is inductive in character: we 
first evaluate (Trilil ) for SU(2) and then, assuming that 
(Trilil ) #O forSU(N - 1 ), we find (Trilil ) for SU(N) . The 
analogous chain 0(6)=SU(4) + 0 ( 7 )  +... -.O(N) was 
constructed in Ref. 2 for orthogonal groups, as well. The 
logic of the method employed in Ref. 2, the basic elements of 
which are taken from the remarkable papers of Affleck et ~ l . ~  
and Amati et aL4 is as follows. 

(a)  For a given group G, we introduce auxiliary super- 
fields of matter in a specially selected representation of G 
(we shall refer to this model with auxiliary field as the inter- 
mediate model); (b)  if the mass term in the matter fields is 
small, the group G is spontaneously broken down to a 
smaller group G ' by the large vacuum expectation value of 
the scalar field, subject to the condition that the condensate 
(Trilil ) is nonzero in the case of G '; (c) (TrilA ) is evaluated 
in the intermediate model in terms of (Trilil ) ,, and the re- 
sult depends on (TMR ) ,, and the mass parameter m; (d)  
we next let m - co , so that the auxiliary matter vanishes from 
the spectrum, and then use the exact results for (TrilA ) as a 
function of m in the intermediate model to determine 
(TrAil ), in the limit as m - a. 

The aim of this paper is to generalize the method adopt- 

ed in Ref. 2 to symplectic and exceptional groups. The con- 
densate ( 1 ) can be evaluated in all cases with the exception 
of the group E,, for which the program outlined above is 
unsuitable for technical reasons. 

We note that the above approach is similar in spirit to 
that proposed earlier in Ref. 5, in which it was used to prove 
the spontaneous breaking of discrete chiral symmetry 
Z,, ( T) +Z,, which is the remainder of the anomalous U( 1 ) 
invariance of supersymmetric gluodynamics [T(G) is half 
the Dynkin index for the adjoint representation of the gauge 
group]. The authors of Ref. 5 were able to introduce auxil- 
iary fields in theories with the gauge group O ( N )  in such a 
way as to completely break the gauge group and reduce the 
situation to a model with a weak coupling regime. The index 
T(G) was then found for the degenerate vacuum states in 
this regime. According to Witten,6 the number of vacuum 
states in supersymmetric theories is an invariant that does 
not change when matter is made more massive (in the course 
of its removal from the spectrum as m - co ) . 
2. GENERAL ANALYSIS 

It will be convenient to introduce the following nota- 
tion. The auxiliary matter superfields will be referred to as S 
and T. We shall not need more than two auxiliary fields; T 
may be identical with S in the case of real representations. 
We shall use T and T '  to denote one-half of each Dyokin 
index for the adjoint representations of the group G and its 
subgroup G ': 

(We must watch the consistency of the normalizations of the 
generators when G ' is embedded in G) . The Dynkin index of 
the matter fields will be denoted by TM, where TM 
= 8, T(R, ) and the sum is evaluated over all the supermul- 

tiplets of matter (S and T) . 
The following line of argument is used to evaluate the 

gluino ~ondensate .~ 
( 1) The theory without the mass term mST 1, has a 

nonanomalous R-symmetry, for which both superfields S 
and T transform in the same way. The absence of anomaly 
means that there must be a statistical relationship between 
the chiral R-charges of the gluino, A, and the matter fer- 

- iaT/TM mions $, and $,: ifil +eiail, then $,, -,e $s,T. (For 
example, in the instanton field, there are 2T gluino zero 
modes and 2TM zero modes of $, and $,.) Invariance of the 
Yukawa vertex gp  ,*($,A) demands that, at the same time, 
psST+exp[ - i a (T -  TM)/TM]p, , .  

(2)  The dependence of the gluino condensate on the 
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mass parameter m can be determined exactly throughout the 
range of variation of m. Let the mass term be of the form 
mST I F  + E STIF. We note, first, that the condensate is an 
analytic function of m: (3 (TrAA ) / d m  = 0. In point of fact, 
this derivative is equal to the connected part of the vacuum 
correlator of AA and the F-component of the superfield ST, 
D 2 S ~ .  However, the correlator of the two lower components 
of superfields of the same chirality must be zero: 

The dependence on the phase m can be found by using 
the R-transformations. For this, we note that the Lagran- 
gian with the mass term mST 1, + E -1. does not change 
when the R-transformations of the field are accompanied by 
the additional phase rotation 

m+m e x p  ( 2 i a T / T M ) ,  iii4ifi e x p ( - 2 i a T / T M )  

Since, under this transformation, (TrAA ) - eZia (TrAA ) , it 
is clear that 

where the numerical constant C no longer depends on m. 
The next stage is necessary to prove that this constant is not 
zero, and to calculate it. 

( 3 )  The identity7 

enables us to relate the gluino condensate to the expectation 
value u = (p,) = (p,) throughout the range of variation of 
m: 

The value of u2 as m -0 is determined by the form of the 
superpotential for the matter fields Sand T. The superpoten- 
tial contains two contributions: the bare contribution mST 
and AAY(ST) -", which is of nonperturbative origin. The 
functional form of the second term is uniquely determined 
by dimensional considerations ( - 2x + y = 3) and by the 
R-invariance ( x  = TM/( T - TM ). The result is 

and 

The fact that the mass dependence is the same as (3)  shows 
that there can be no other contributions to the superpoten- 
tial. The required coefficient C in (3)  is therefore expressed 
in terms of the coefficient A in front of the correction to the 
superpotential. 

(4) The behavior of the theory in the limit as m -0 was 
suggested in Ref. 2 as a means of determining the mass-inde- 
pendent parameter A. In this limit, the initial gauge group G 
is broken by the vacuum expectation value u down to the 
subgroup G'. The result is a supersymmetric Yang-Mills 
theory with additional light chiral superfields: when Sand T 
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are suitably chosen, the additional light superfields are sing- 
lets in G '. This demands that all the components of S and T 
that are nonsinglets in G ' should be expended in giving mass 
to the gauge bosons from G /G '. In that case, T = T '  + T,. 
The dynamics of the light fields is described by the superpo- 
tential AAy(ST) -". The coefficient A can be expressed in 
terms of the gluino condensate in the theory with the group 
G '. Proceeding by induction, we can now reduce the question 
of the gluino condensate for all theories (except for E,; see 
below) to the SU(2) case examined in Ref. 2, and hence 
evaluate the condensates. 

(5) To establish the relationship between A and 
(TrAA ) ,. , let us examine the evolution of the effective La- 
grangian for a varying normalization point p .  When p s ~ ,  
the gauge symmetry of G is not broken and the Lagrangian 
for the Yang-Mills superfields is g, '(p ) Tr, W 2. When 
p (u, only the gauge group G ' survives. The coupling con- 
stant gL., in the corresponding Lagrangian g,'(p ) Tr,. W 2  
is different from g;. These two constants are equal when 
p = u. Hence, 

Thus, when p (u, the Lagrangian acquires a contribution 
which we shall write in terms of the superfields S and T  as 
follows: 

1 3T-3T'-TM - In (ST) Tr,. W". 
2 8n2 

If the theory contains a nonzero condensate (TrAA ) ,. , 
then, for scales p 9 A,. , this contribution may be looked 
upon as a superpotential for the light chiral superfields form- 
ing the condensate u. 

All that remains is to express the condensate ( 1/ 16n 2, 

x (TrAA ) ,, = k,. A;, in terms of the original parameter 
A = A, and u. To do this, we use the renormalization-group 
formula ( 5 ) ,  in which we substitute 

The result is 
I I T - T U J  T  

The superpotential for the light components of the 
fields S and T is 

kc ,  ( S T - S T ' - T M ) ; 1 ( 3 T - T . w ) / T T  (ST) - ( S T - 3 T ' - T a ) / T '  ( 7 )  

The required coefficient A has thus been expressed in terms 
of the gluino condensate in the theory with the gauge group 
G '. Returning now to (4 )  with m - m, we see that 

1 - (Trhh>o - m T " l T  ( k C . A ( 3 T - T y J : ( T - T d a )  I T  T l r ) / T  
1 6n2 

1 -- 

= A C 3 k ; - T " ) / T  
v 
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This relationship clearly shows the T-fold degeneracy of the 
vacuum in the supersymmetric Yang-Mills theory with the 
gauge group G. 

Just in case the long derivation obscures the simple es- 
sence of the construction, let us formulate the result in a 
somewhat different form. As noted in Ref. 2, the expression 
for (TrAA ) in terms of the bare quantities m,, go, and M,, 
namely 

1 
- (Tr Ah) = const m y T  M30-T~iT 
16n2 , 

(9)  
is generally exact for an arbitrary relationship between m,, 
and M,. Next, by varying m,, we can continously pass from 
the G-gluodynamic limit (ma = M,) to G '-gluodynamics 
m, < Moexp{ - 877- 2/(3 T - TM )gi}). For small m,, only 
those terms survive in TrAA that correspond to the unbro- 
ken group G ', and the expression on the right-hand side of 
(9) reduces to kc .  A;. . If we know the constant kc ,  in the 
expression 

1 
---- (Trk?.)G = ~c,,.\c,,~ 
16n2 

(and, by hypothesis, this constant is known), the relation- 
ship between the grouping 

and A:, for ma -0 determines the constant in (9) .  Passing 
to the limit as m,-M,, and using the relations 

we obtain from (9) the expression for ( 1/1677- ') (TrAil ) in 
terms of A;. 

This method was used in Ref. 2 to reduce the question of 
gluino condensates to the determination, for each group G, 
of the chain G-. G '+ ... -+SU(2) and of the matter super- 
fields Sand T necessary at each stage. The superfields S and 
Tmust have the property that their vacuum expectation val- 
ues in the general case break G down to G ' and, at the same 
time, their components that are nonsinglets in G ' are expend- 
ed in giving mass to the gauge bosons from G /G '. The refer- 
ence to the general position is significant. If the vacuum ex- 
pectation value ofsand Tin the general case were to break G 
down to some G " # G '  and, only under certain particular 
expectation values, down to G ', we would have to prove the 
stability of these vacuum expectation values with respect to 
perturbative and nonperturbative corrections. A further 
condition on the fields S a n d  Tis  that there must be a mass 
term mST, i.e., the product of representations S X T must 
contain a singlet in G. 

The general scheme for breaking G down to G ' can be 
described as follows. The general position vector from the 
matter multiplet M = BiRi is reduced by a transformation 
from the group G to some standard form. By definition, the 
group G ' conserves this reduced vector. The set of G '-singlet 
vectors V forms a subspace H in M: 

H={V~fillgV=V for all g=G'). (10) 

For example, if M is the adjoint representation of the group 
SU(N), we have G' = {U( l ) )N and  is the space of the 
diagonal matrices. There is an extension ,V(H) of the sub- 
group G ' that consists of transformations that conserve the 
subspace H as a whole: 

In the above example, N ( H )  is the extension of the sub- 
group G ' by transformations consisting of N! permutations 
of the diagonal elements. The factor group Ar(H) /G ' often 
contains continuous components and its Lie algebra is non- 
trivial. For example, in the case of the N-plet of the group 
SU(n) ,  the space H is homogeneous H = (u,O, ..., O), 
G ' = S U ( N  - I ) ,  N ( H ) / G '  = U(1).  Suppose the vectors 
of the representation M can be used to construct a number of 
independent polylinear invariants I ,  . . . I,. We are interest- 
ed only in invariants that are singlets of G and consist of 
chiral superfields (without the participation of antichiral su- 
perfields) or, conversely, consist of antichiral superfields 
alone. After the breaking of the gauge group, the corre- 
sponding fields become light. It is clear that the invariants do 
not actually depend on all the coordinates in the multiplet 
M, but only on the coordinates on the subspace H ( 10). 
However, this requires a mathematical refinement, referred 
to as the Luna-Richardson theorem in mathematical litera- 
ture.' The significance of this is that, after contraction on H, 
the polynomials I ,  . . . I,  become identical with the polyno- 
mials that are invariant under transformations from the fac- 
tor group N ( H ) / G  '. It is precisely these combinations of 
coordinates in the space H that are the true variables in the 
broken theory. In the first of the above examples, the invar- 
iants constructed from the matrix A in the adjoint represen- 
tation have the form I ,  = TrA 2; . . . ; IN_  , = TrAN and de- 
pend on the eigenvalues of the matrix A. It is clear that 
symmetric polynomials of the eigenvalues of A generate all 
the invariants of the adjoint representation ofSU(N) . A less 
trivial situation arises when we examine theories with gauge 
groups Sp(2N), E, and E,, which we shall examine later. 

The G-singlet mass term of matter is constructed with 
the aid of the invariant I, that is quadratic in the vectors of 
the multiplet M. In the intermediate model, valleys arise in 
the limit as m-0, i.e., flat directions along which the D- 
terms of the Lagrangians are found to vanish. It follows from 
general theory9 that, when the set of matter fields is not too 
extensive, the number of independent "valley parameters" is 
equal to the number of independent chiral invariants 
I ,  . . . I,. By selecting a certain vector from the multiplet M, 
we fix the gauge condition that the matter fields must satisfy 
(the analog of the unitary gauge). "Angle3'-type variables 
have been removed. "Modulusw-type variables remain and 
correspond to invariant combinations of coordinates in the 
subspace H. 

We emphasize that a precise relationship between the 
condensates (Trilil ) and (Trilil ) ,. (with all the coeffi- 
cients) can be found only when the G-singlet chiral super- 
field is the only one, i.e., there is only one invariant I , .  If 
there are several invariants, each appears in ( 7 )  with its own 
coefficient. It is natural to suppose that all these coefficients 
are of the same order of magnitude, but the precise relation- 
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ship between them can be established only by specific calcu- 
lation. 

The chains leading to SU(2) from all the groups SU(N) 
and SO(N) were constructed in Ref. 2. Below, we shall de- 
scribe the analogous chains for all the remaining simple 
groups with the exception of E,: 
Sp(N) -Sp(N - 1) -Sp(l)  zSU(2 ) ;  G2+SU3- . . . ; 
F, -.SO, - . . . ; E, - SO, - . . . . ) Several invariants occur 
in the case of F,, E6, and E,, and the precise value of the 
condensate cannot be determined. For the group E, (the 
most interesting from the point of view of applications), the 
adjoint representation is the smallest, so that we cannot find 
G ', S, and T, for which the condition T = T' + T, would be 
satisfied, and, in that case, the method of Ref. 2 is invalid. 

In fact, to construct all the chains, it is sufficient to use 
the tables listing the possible ways of breaking the groups G 
by vacuum expectation values of matter fields in different 
representations, and then chose all the variants satisfying the 
above requirements. Such tables have been compiled by 
Elashvili.'O Excerpts from them are reproduced in the Ap- 
pendix. The G- G ' transitions are indicated more explicitly 
below. 

3. THE GROUP Sp(N) 

The group Sp(N) is the most direct generalization of 
SU(N) in which complex numbers are replaced by quater- 
nions. Let q = q0 + qaeo be a quaternion. We recall that the 
imaginary quaternion units e,, a = 1,2,3 can be represented 
by the Pauli matrices: ea = ia, . The Sp(N) Lie algebra con- 
sists of anti-Hermitian quaternion N X N matrices Q: 

where the bar indicates the conjugate quaternion 
ij = q0 - qoea. By rewriting the quaternions in terms of the 
Pauli matrices, we can express matrices Q of the order N in 
terms of complex matrices of order 2N. 

The matrices Q operate on the column vector of N qua- 
ternions x, = xO,e, + ix, u(k = 1 . . . N) by multiplication 
from the left. This application of the group Sp(N) conserves 
the vector length (B:(xi ), + (x, ) 2 )  ' I 2 .  When we pass to 
complex numbers, we have 2N-dimensional representations 
R,  and R,, constructed as follows. The complex 2N-vectors 
SER , and TER, are conveniently given in the form of a set of 
Npairs s = {S 1 . . . S,),T= {T, . . . T,): 

It is readily seen that an invariant can be constructed from 
the two multiplets, i.e., the length of the vector x,. In terms 
of the components ((,",$), a = 1,2, this invariant can be 
represented with the aid of an antisymmetric tensor of rank 
two: 

N 

which indicates that the representation 2N is pseudoreal. 
Hence, a mass term can be formed from the two 2N-plets. 
The theory contains no other invariants. If we apply the 
transformations from the group G = Sp(N) to arbitrary vec- 

tors, we can reduce them to the standard form 

Vectors such as ( 12) form the subspace H in the space of the 
representation M = R, @ R,. Their common stationary sub- 
group is G ' = Sp(N - 1 ). For this subgroup, the generators 
of the group G and two of its fundamental 2N-plet represen- 
tations are found to split as follows: 

[Sp(N)l=[Sp(N-I)]+2.[2(N-I) 1+3[11, (13) 

[2N]=[2(N-I) ]+2. [ I ] ,  [2N] =[2(N-1) ]+2[1]. (14) 

In ( 13), [Sp (N) ] represents the adjoint representation of 
Sp (N) , whose dimension is N(2N + 1 ) . Pairing gives mass 
to the fields that are [2(N - l)]-plets with respect to the 
subgroup G ' = Sp(N - 1 ) . Of the four singlet matter fields 
( 14) that generate the space H, three are paired with singlets 
in ( 13), i.e., the corresponding gauge fields become massive. 
The subgroup G ' = Sp(N - 1 ) remains unbroken, and the 
light singlet corresponding to the mass-invariant 
S T  = survives. We note that transformations from 
G can reduce S and T to the more specialized form 

All that needs to be done is to apply the transformations 
from the factor group SS(H)/G'=SU(2) to the vectors 
( 12). The variable v2 that corresponds to the mass term is 
then the only invariant of the factor group M ( H ) / G 1  

4. THE GROUP G2 

The fundamental 7-plet of the group Va is a real repre- 
sentation, which means that we can write down the mass 
term in terms of this representation alone. By fixing an arbi- 
trary vector out of the 7-plet, we break the group G, down to 
the subgroup SU(3). Before explaining this, let us write out 
the expansions for the adjoint and fundamental representa- 
tions of the G, algebra with respect to SU(3): 

We use the same notation here as in ( 13). 
The singlet in the expansion for the 7-plet in ( 15) corre- 

sponds to a standard vector. In other words, the standard 
representation ofthe 7-plet is constructed so that the compo- 
nents that transform as 3 and 3 under the SU(3 )-subalgebra 
are equal to zero. The only nonzero component is the SU(3) 
singlet. Hence, it is clear that SU(3) is a stationary sub- 
group. The mass term has the usual form: 
m VoVal, + h.c. . . . . We then find that, apart from VoVo, 
no chiral invariants can be formed from the single 7-plet of 
va. 

Operating on the standard vector with representations 
from G,, we obtain the orbit of G,. We know that this is the 
spheres = G,/SU( 3).  Hence, it follows that the vector is in 
the general position, and the group G, is naturally broken 
down to SU(3). This gives mass to the triplets 3 and 3. The 
subgroup SU(3) remains unbroken. Apart from the super- 
symmetric SU(3) gluodynamics, the intermediate model is 
also found to contain the singlet corresponding to the invar- 
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iant [ V 1'. Thus, starting with (TrAA ) ..,,, , we can calculate 
(TrAA ) G2 . 
5. THE GROUP F4 

The F4 algebra has the dimension 52, and that of its 
fundamental representation is 26. It is real, so that the mass 
term can be constructed with the aid of a single 26-plet. The 
vectors of this multiplet can be written in the form of trace- 
less Hermitian octonion matrices of order three1': 

The F4 algebra acts in this representation as follows. 
The 24 generators that do not belong to the SO, subalgebra 
take the form of anti-Hermitian octonion matrices with zero 
diagonal: 

and operate on the matrices J like an ordinary commutator: 
S J  = PJ - JP. The remaining 28 generators of the F4 algebra 
form the SO, subalgebra. The latter annihilates the diagonal 
elements of the matrix J ,  and each matrix element 5, in ( 16) 
transforms in accordance with one of its three eight-dimen- 
sional representations (8,-vector, 8:-left spinor, 8;-right 
spinor). Thus, 

6'J= [ P ,  I ]  +6808J, (18) 

which corresponds to the following expansion of the 26-plet: 

2G=l+1+8,+8sL+8gR=2. [ 1 ] + 3 .  [ 8 ] .  (19) 

For the adjoint representation 

[ F , ]  = [S0,]+8,+8sL+8gn=28+3. [ 8 ] ,  (20) 

where the last three terms are identical with the analogous 
terms in ( 19). Thus, for the adjoint representation, we have 

52=28+3- [ 8 ] .  (21) 

We now note that, apart from the quadratic invariant 
(mass term) 

( I ,  J>=Tr{J,  J ) / 2  (22) 

there is also a cubic F, singlet that is the determinant of the 
matrix J. It can be written in symmetric form with the aid of 
a new operation, referred to as the Freundenthal product": 

where Jl ,J2 represents the anticommutator JIJ, + J2J,. The 
cubic invariant then has the form 

It can be verified that this is symmetric under permutation of 
the indices 1,2,3. 

An arbitrary matrix from the 26-plet (16) can be re- 
duced by transformations from F4 to a diagonal form 

(Freundenthal's theorem) ": 

The presence of the two independent parameters is due to the 
existence of two independent invariants (22) and (24). In 
general, ifa,, a,, and a, in (25) are different, it follows from 
the description of the effect of F4 that this vector breaks F4 
down to SO,. This breaking is therefore general in character. 
The SO, algebra annihilates any vector from the space H. On 
the other hand, F4 contains a subgroup that conserves H as a 
whole. This is an extension of SO, by the group of permuta- 
tions of a,. The invariants (22) and (24) can be expressed in 
terms of the a, in the form of polynomials that are invariant 
under permutations Xa; and a,a,a,, which is obvious in this 
situation. In the special case where two diagonal elements a, 
coincide, the group F4 breaks down to SO,. However, it can 
be verified that this regime is unstable. 

The requirement that the F-terms of the Lagrangian 
vanish at the vacuum point leads to the condition a, -a,. 
The existence of (TrAA ) in F4-gluodynamics follows unam- 
biguously from the fact that (TrAA ) ,,,, #O. The determin- 
ation of the precise value of the constant in the relation 

becomes a much more complicated problem because of the 
presence of the two independent parameters a , ,  a,. The rela- 
tionship between A,,,, and the bare quantities depends on 
the behavior of the theory in the transition region and, in 
particular, on the masses of the "heavy" vector bosons from 
F4/S0,. The masses of all the heavy bosons were previously 
equal, but now depend on the additional dimensionless ratio 
a,/a2. Of course, when a, -a,, the order of magnitude of 
the constant in (26) is immediately established. However, 
when an exact value of the constant is required, we have to 
consider the relationship between a, and a,. This question is 
not, as yet, finally settled. 

6. THE GROUP E6 

E, has 78 generators. In addition to the 52 generators of 
its F4 subalgebra, there are a further 26 generators that can 
be written in the form of traceless Hermitian octonion matri- 
ces, such as (16)": 

Es=FA+ {T) , 

78=52+26. 

The fundamental representation of E, has the dimension 27. 
It is described by the same matrices ( 16), but the matrices 
need not now be traceless. The E, algebra acts on the 27-plet 
as follows: 

It is readily seen from these formulas that the E, algebra is 
broken down to the F, subalgebra on the scalar matrices cI, 
so that 

27=1+26. (29) 

Representation 27 is complex. This means that it is insuffi- 
cient to enable us to form the mass term, and we must there- 
fore examine the adjoint representation 27 as well. To de- 
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scribe this representation, we must suppose that the matrices 
are formed from octonions with complex coefficients. If we 
use a bar to represent complex conjugates of these coeffi- 
cients, we have 

i 
6*,J=tiF4J - -{T, J ) .  

2 (30) 

For each of the 27-plets, there is a cubic invariant that is 
analogous to the invariant (24) in the F4 algebra: 
I3 = [J,J,J], I3 = J ,~ , I ] .  In addition, there is the mass term 
27 x 27, 

Z,=,(J, J>=Tr{J, P)/2. (31) 

Almost every vector from H has SO, as its stationary sub- 
group. When some of the aj coincide, the stationary sub- 
group expands. For example, when two of the aj coincide, 
the stationary group turns out to be SO( lo),  and, when all 
three a, coincide, the stationary is F4, As in the last section, 
'it can be shown that these regimes are unstable. 

The factor group M ( H ) / ( G  ' = SO,) is generated by 
the permutations of a, and the group of diagonal matrices of 
the form 

S 

{erp iT = diag(e"1, eh, e") ; rpi=O). (36) 

An invariant of degree four can be constructed on represen- The polynomials on H (35) that are invariant under the 
tations 27 and 27. Let dl,, ( d  I"") be a symmetric tensor that factor group correspond to the four invariants constructed 
determines the form of the cubic invariant 1, (7,). The invar- above. They can be expressed in terms of chiral superfields: 
iant tensor of rank four then has the form dm,,d~qrSI. The {aj=hjeiVJ) €27, {pj=hje-i*~) (j=i, 2, 3) ,  
invariant can be written in terms of the matrices J a s  follows: 

(27, 27, 27, 25=U1,  I,, Pi, f2)=Tr {(I,XI,), (J,XJ,)). I Z = ~ V .  13=h,h2h3ei*, b=hlhZhle-iY ((=zh), 
(32) 

We shall now show that the E6 algebra is, in general, 
again broken down to SO,. We shall first verify this formally 
by considering the expansions (27) and (29). Using the pre- 
viously derived formulas (19) and (20) for the F, algebra, 
we have 

[E6]=[S0,]+3. [8]+3. [8]+2. [ I ] ,  (33) 

The representations 8 in (33) and (34) are related to the 
matrix elements P in (28) by the off-diagonal matrix ele- 
ments Tin (28) and the off-diagonal elements of the matrix 
J from the 27-plets. The two singlets in (33) are the diagonal 
elements of the matrix T, and the three singlets in (34) are 
the diagonal elements of the matrix J.  As usual, heavy fields 
in representations 8 are paired as well. Moreover, the diag- 
onal elements of the matrix T ( 2  [ 1 ] in (33) ) do not con- 
serve the traces of the matrices ~and ' ; i :  These singlets there- 
fore are also heavy. Only the gauge field from the subgroup 
SO, and two singlets from each of 27 and 27 remain light. 

In the space of representation 27, there is a subspace H 
that consists of the diagonal matrices to which an arbitrary 
matrix from the multiplet can be reduced: 

H={diag(a,, UZ, us)). (35 

They form the four light singlets that remain in the interme- 
diate model. It is clear that the new dynamic variables can be 
A,, A,, and A, and the common phase $. 

7.THE GROUP E, 

The 133 generators of the E, algebra can be split into the 
sum of four terms": 

E ,=E~@u~~BI@%. (37) 

where !Dl are the matrices from the 27-plets of the E, subalge- 
bra. Correspondingly, 

The fundamental representation of E, has the dimension 56. 
It is pseudoreal so that we need two 56-plets to construct the 
mass term. An arbitrary vector from the 56-plet Y can be 
resolved in accordance with the representations of the E6 
algebra: 

where { and 77 are singlets, and Xand y are 27-plets of the E, 
subalgebra. Transformations from E, operate in this basis in 
accordance with the rules 
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As already noted, because of the pseudoreal condition, 
we need two 56-plets. The following mass term can be con- 
structed from them: 

For each of the 56-plets, there is an invariant of degree four: 

The introduction of the two 56-plets into the supersym- 
metric E7-gluodynamics leads to the spontaneous breaking 
of the gauge group: 

According to Ref. 10, this breaking is general in character 
(see Appendix). To verify this, consider the expansions for 
the adjoint and fundamental representations of E7 relative to 
the subgroup SO,: 

[E7]=[SOs]+12. [8]+9.[11, 
(44) 

56=6.[8]+8.[1], 5 6 ~ 6 .  [S]+8. [ I ] .  

All the fields belonging to the 8-plets are paired and heavy. 
Moreover, nine of the SO,-singlet fields become heavy. The 
supersymmetric SO,-gluodynamics with seven light singlet 
superfields that correspond to seven invariants formed from 
the two 56-plets survives in the low-energy limit. In particu- 
lar, these invariants include the three indicated explicitly 
above: (41) and (42). 

It  follows from (44) that dim H = 16. Moreover, the 
continuous part of the factor a lgebraN(H)/G ' is identical 
with SU, @ SU, @ SU,. 

Note that the Lie algebrasM(H)/G ' and G ' are identi- 
cal with the Lie algebras that parametrize magic squared2 
The magic square can be used to obtain a unified description 
of the breaking of gauge symmetries for all the groups that 
enter into it, with the exception of E,. 

APPENDIX 

We shall now reproduce the results taken from the pa- 
per by Elashvili." They contain the answer to the following 
question. Suppose we have a group G and matter fields in the 
representation M. The question is: to which subgroup G ' is 
G broken by vacuum expectation values of these fields in the 
general position? Let us enumerate all the representations M 
of the groups Sp(N), G,, F4, E,, E,, for which G ' is nontri- 
vial, i.e., T ,  < T G .  In the case of unitary and orthogonal 
groups, the number of different possibilities is very large, 
and is reviewed in Ref. 10. Here, we indicate the dimensions 
of the representations M of the above groups and of the 
weights on the Dynkin diagram. We shall write out the ex- 
pansions of M and of the adjoint representation of Gover the 
representations of G '. We shall indicate the form of the in- 
variant subspace H (Ref. 10) (in those cases where it is 
known), together with the values of TG and TM and the Lie 
algebra of the factor group N ( H ) / G  '. 

FIG. 2. ThegroupSp(N). Weightsofthe representations [2NZ - N - l l .  

The group G = Sp(N): TG = N + 1, dim G = N(2N + 1) 

( 1 ) The representation M = [2N]. Its weights in the 
Dynkin scheme are indicated in Fig. 1. The group G breaks 
down to G '  =Sp(N-  l ) ,  and 

(2) The representation M = [2N2 - N - 11 in the 
space of the traceless symmetric quaternion matrices of or- 
der Nis determined by the weights indicated in Fig. 2. In this 
case, 

G'=SU (2) @ . . . @SU(2), 
M=[ (2 )@(2 )@(1 )@ . . . @ (  I ) ]  
+[ (2) @ (i) @ (2) @ . . . @ ( I )  I + .  . . 

...+[ (1) @ . . . @ ( I )  @ (2) @ (2)] + (N-I) [ ( I )  @ . . . @ (1) 1, 
[G]=[G']+[(2)@(2)@(1)@ . . . @  I ]+  ... 

... + [ (  I ) @  . . . @ (  l )@(2)@(2) ]+(N-I ) [ ( ! )@.  . . @ ( I ) ] ,  

where H is the space of the diagonal matrices and 
TM = ( N  - 1)/2, M ( H ) / G f  = 0. 

( 3 )  For the reducible representation M =  m[2N] 
(1 <m<2N+ 1 1 ,  we have G '  = Sp(L), 
L = N - [(m + 1)/2], X ( H ) / G 1  = SU(2).  

The group Sp( 3) 
This group has special representations that are not pres- 

ent in the case of Sp (N)  : 
( 1 ) The representation M = [ 141 (see Fig. 3 ) .  Here 

G1=SU(3 ) ,  M =  [61 + 151 + [ l l  + [ l l ,  [GI = [G'l  
+ [6] + 161 + [ l ] ,  TM = 2 0 , M ( H ) / G 1 =  U(1). 

(2)  For the reducible representation M = [6] + [14] 
we have G '  = SU(2),  N ( H ) / G 1  = SU(2).  

Thegroup G,: dim G, = 14, TG = 4 

(1) The representation M = [7] (see Fig. 4).  
G1=SU(3 ) ,  M =  [31 + [ j l  + i l l ,  [GI = [G' l  + [31 
+ [TI, H =  ({,0 ,..., O) ,  TM = l , M ( H ) / G 1  =O. 

(2)  The reducible representation M = [7] + [7]. 
G '  = S U ( 2 ) , N ( H ) / G 1  = SU(2). 

FIG. 3. The group Sp(3).  Weights of the representation [14]. 

FIG. 4. The group G,. Weights of the representation [7 ]  

FIG. 1. The group Sp(N). Weights of the representations [2N] FIG. 5 .  The group F,. Weights of the representation [26]. 
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FIG. 6. The group E,. Weights of the representation [27]. 

Group F,: dim G  = 52, T ,  = 9 

(1) The representation M  = [ 2 6 ]  [see Fig. 5 and 
(1611, G 1 = S 0 ( 8 ) ,  M =  [ 8 , ]  + [ 8 $ ]  + [8 : ]  + 2 . [ 1 1 ,  
[GI = [ G ' ]  + [ 8 , ]  + [ 8 ; ]  + [ 8 : ] .  The space H i s  given 
by ( 2 5 ) ;  TM = 3, N ( H ) / G 1  = 0.  

( 2 )  The reducible representation M =  [26]  + [ 2 6 ] ,  
G' = S U ( 3 ) ,  N ( H ) / G f  = S U ( 3 ) .  

Group E6: dim G  = 78, T,  = 12. 
(1)  The representation M = [27]  [see Fig. 6  and 

( 2 8 ) I , G t = F 4 , M =  [26]  + [ 1 ] ,  [GI = [ G ' ]  + [26] .The 
space H  is given by ( 3 5 ) ;  TM = 3, N ( H ) / G  ' = 0. 

( 2 )  The reducible representation M = [ 2 7 ]  
+ [ 2 7 ] , G 1  = S 0 ( 8 ) , N ( H ) / G 1 =  U ( 1 )  e U ( 1 ) .  

( 3 )  The reducible representation M = [27]  + [??I, 
G 1 = S 0 ( 8 ) , N ( H ) / G ' =  U ( 1 )  U ( 1 ) .  

( 4 )  The reducible representation M  = m  [27]  + n [ Z ? ]  
( m  + n = 31, G = S U ( 3 ) , N ( H ) / G 1 = S U ( 3 )  e S U ( 3 ) .  

Group E,: dim G  = 133, T ,  = 18 
( 1 )  The representation M  = [56]  [see Fig. 7 and 

(39)  1 ,  G '  = E6, M =  [27]  + [2?]  = 2 . [ 1 ] ,  
[GI = [ G ' l  + 1271 + [ Z ? ]  + [ I ] ,  TM = 6, J""(H)/ 
G' = U ( 1 ) .  

( 2 )  The reducible representation M =  [56]  + [ 5 6 ] ,  
G '  = S 0 ( 8 ) ,  , Y ( H ) / G 1  = S U ( 2 )  e S U ( 2 )  e S U ( 2 ) .  

We note that the Dynkin indices of different nontrivial 
representations can readily be found using the terminology 
of instanton calculus. The Dynkin index T ,  is one-half the 
number of fermionic zero modes in the representation M  if 
the instanton corresponds to the embedding SU,- G  with 
minimum topologic charge. We can readily find the chain 
SU,- ... - G  '- G  and use it to expand M into a sum of irre- 
ducible representations of SU, (they are labeled by the half- 
integer spin j )  : 

The instanton field has 2j( j + 1 ) (2j  + 1 ) / 3  fermionic zero 
modes in the representation [2j + 1 1 .  Hence, 

FIG. 7. The group E,. Weights of the representation [56]. 

For example, for the adjoint representation of G,, 
14 = 8 + 3  + jlSu(,, 
= 3  + 2  + 2  + 1 + 2  + 1 + 2  + 1 I ,,(,, and T, ,  = 4. Simi- 

larly, 7 =  3  + 3 +  l ) s u ( , ,  = 2 +  1 + 2 +  1 + 1(,,,,, and 
T, = 1. Of course, we need not come right down to SU, it- 
self, but can stop with the group with known values of the 
Dynkin indices. For example, 

for F,,52=28+8+ 8'+8"1so,s,+T,2=6+3. 1=9, 

26=8+8'+8"+1+ I ls0,s ,+Tz6=3.  1=3; 

for E,. 78=52+261p,+T,8=9+3=12, 

27=26+1 JF,-+T2,=T2,=3; 

for E,, 133=78+27+ ~ + ~ J E ~ + T ~ ~ ~ = ~ z + ~ . ~ = I ~ ,  

56=27+2%1+1),+~,6=,2.3=6; 

for E,, 248=133+56+56+1+1+1~,,-.T2,,=18+2 .6=30.  
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