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The spectrum of electron cyclotron waves of a homogeneous magnetized plasma with a 
Maxwellian electron velocity distribution is stu'died analytically and numerically in the long- 
wavelength region, i.e., at values ofthe transverse (with respect to the magnetic field) wavelength 
considerably greater than the electron Larmor radius. In addition to the solutions near the 
fundamental electron cyclotron frequency and its harmonics which correspond to ordinary, 
extraordinary, and plasma waves, there are two families of strongly damped waves on both sides 
of these other solutions. One of these families is similar to electrostatic waves. It has been found in 
previous numerical calculations for certain particular cases. The waves of the other family are 
definitely nonelectrostatic and are similar to magnetostatic waves. Analytic expressions are 
derived for the frequencies and damping rates of these two wave families. 

1. INTRODUCTION 

Numerical solutions'-5 of the dispersion relation for 
electromagnetic waves in plasmas have revealed, in addition 
to known ~olut ions,~ several solutions near the fundamental 
electron cyclotron frequency and its harmonics, in the cases 
of both electrostatic  wave^',^,^ and nonelectrostatic  wave^.^.^ 
In Ref. 7 both numerical calculations and analytic calcula- 
tions in the long-wave limit showed that there are also nu- 
merous wave branches near the ion cyclotron frequency and 
its harmonics. The appearance of these additional wave 
branches, like Landau damping, has been linked with singu- 
larities (poles) of the perturbed distribution function of par- 
ticles which are moving along the magnetic field at a velocity 
vll = (w - nw, )/k (n = 0; + 1; + 2, ...; w, is the electron 
cyclotron frequency) or, in the absence of a magnetic field, 
at a velocity u = o/k  along the wave propagation direction. 
These waves are thus naturally called "kinetic" (K) modes. 
The existence of K modes in the short-wave region, with 
kr, % 1 ( rD is the electron Debye length), was pointed out in 
the classic study by L a n d a ~ . ~  A numerical solution of the 
dispersion relation for these modes was given in Ref. 9 (see 
also Ref. 10). 

A complete picture of the electron cyclotron K modes 
could not be drawn in Refs. 1-5 because of difficulties en- 
countered in the numerical solution of the dispersion rela- 
tion. In the present study we use the analytic and numerical 
methods of Ref. 7 to analyze the dispersion relation for elec- 
tromagnetic waves in a plasma in a magnetic field in the 
long-wave limit, k,pL < 1, wherep, is the Larmor radius of 
electrons having the thermal velocity. In addition to the usu- 
a16 wave branches near the electron cyclotron frequency and 
its harmonics, there are two families of K modes on the two 
sides of the cyclotron frequencies. One family is similar to 
electrostatic waves for k c s o  (the numerical solutions 
found in Refs. 1-5 for certain particular cases are part of this 
family). The other family is definitely nonelectrostatic, and 
for kc<@ it is similar to magnetostatic waves. We derive 
analytic expressions for the frequencies and damping rates of 
both of these families of electromagnetic K modes. For the - 
first K modes, the frequency and damping rate are 

o = n O , f T l , k , l ~ ~ ,  y=qzk,,ZJ~. (1)  

where v1,2 - 1 or v,,, - [ln(l/k,p, ) ]  ' I 2 .  With increasing 

mode index, the coefficients 771,2 increase. At k,pL - 1 these 
waves are strongly damped: y -w - w, . For a plasma with a 
Maxwellian velocity distribution, the number of solutions in 
the limit k + O  is infinite. The point kil = 0 is an essential 
singularity (because the point ull = oo is an essentially sin- 
gular point for a Maxwellian distribution in the longitudinal 
velocity). For a nonequilibrium plasma with a power-law 
particle velocity distribution f,(uil ) m (ufi + ui) -(If" 
( I >  1 ), the components of the tensor E~ have simple poles at 
the points (o - no, ) /kII  = - iu,. In this case the disper- 
sion relation has a limited number of additional solutions 
with w -nw, as k -0. With I = 0, in a plasma without a 
magnetic field, & ( a ,  k) has a second-order pole at 
w/k = - iu,, and there are no additional solutions corre- 
sponding to K modes." Similar K modes would evidently 
also exist in semiconductor and metal plasmas. 

2. WAVES NEAR THE FUNDAMENTAL ELECTRON 
CYCLOTRONFREQUENCY 

Let us consider electromagnetic waves near the electron 
cyclotron resonance in a plasma with a Maxwellian electron 
velocity distribution. We assume that the ions are at rest. It is 
then easy to derive expressions for the components of the 
dielectric tensor, working from Ref. 6 (for example) : 

4 X e-@Il & , , = I - - -  + q -  in'z, w ( z )  , 
2 x f l  P 

I 
eZ2= I - - ---- + qe--' [' + 2p (I,-I.')  ] in"zow ( z )  , 

2 x+1 P 

. 4  x E , ~ = - Z - -  - + iqe-"(I,-I,') in'"z,w ( z )  , 
2 x f l  

k ,  ~ ~ ~ = - i q x -  e-"1,-I,') [ I f  in'"zw ( z )  1, (2)  

kll 
kL2 e-PI, 

e s s = l - q f q  -- ( x - I ) x [ 1 f i r c ~ z w ( z )  1, 
kl12 P 
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where 9 is the angle between the wave vector of k and the 
magnetic field B,. In deriving ( 2 )  we assumed p< 1 and 
( w - n w , ( $ 2 1 ' 2 k l l ~ T ( n =  - 1 ; + 2 ) ;  however, the Bessel 
function I ,  and its derivative I  ; have not been expanded inp  
because of possible cancellations in the dispersion relation, 

t 

For definiteness we assume k  I I  > 0.  Substituting expressions 
( 2 )  into the dispersion relation for electromagnetic waves, 
we find 

Q - in'"z,w ( z )  Ao+A,+in"zw ( z )  A, 
2 

f q2[in'"z0w ( z )  I2 (y2 /8 )  (1-9 - sin2 6N2)  -0. ( 3 )  

Here 

N = k c l o .  

a )  Longitudinal propagation (k, = 0). In this case Eq. 

The first of them, which determines the refractive index for 
the ordinary wave, has no solutions corresponding to K 
modes. Let us examine solutions of Eq. ( 4 ) ,  which deter- 
mines the refractive index of the slow extraordinary wave, in 
the case of a dense plasma in the region of the anomalous 
skin effect, with q) v,/c. In this case we can write 

In the region ( z l<  1 this equation has the solution 6 

which corresponds to a large value of the modulus of the 
refractive index ( IN 1 9 1 ), strong damping ( 1 ReN I - 1 ImN ( ), and a penetration depth 8, - 1/Imk - (c2u, / 
o ~ w , ) 1 ' 2 .  It is not difficult to see that under the condition 

I z ~  2 1 Eq. ( 5 )  has an infinite set of other solutions with 
lReN ( - (ImN 1 - 1 ,  corresponding to deeper penetration of 
the field into the plasma. Assuming ( N  1 -  1, we find from 
( 5 ) ,  in the zeroth approximation, 

We will first give an analytic solution of Eq. ( 7 )  for 
high-index modes ( m  $ 1  ). For this purpose we make use of 
the asymptotic form of the probability integral of complex 
argument: 

This expression is valid for 121 $ 1 and (Imz( $ 1 .  For the so- 
1utionsofEq. ( 7 ) , z = z ,  = x ,  -iy, ( m =  1,2 ,3  . . .) ,  we 
then find 

exp (2mn-n/4) 
= {+ 1n 2 [n ln (2-"n-'" exp (2mn-nI4) ) } I ' 1 ,  ,101 

A,= (2mn-2ym2-n/4) ( 2 ~ ~ ) - ' .  (1  1)  

Table I compares the first six pairs of analytic and numerical 
solutions of Eq. ( 7 ) .  We see from this table that although 
Eqs. ( 9 ) - (  1 1  ) are strictly applicable only at large values of 
m  they can be used within an error <4% even at m  = 1 .  The 
error decreases with increasing mode index. [The data in 
this table show that the roots z? , z;*, and z z ,  of Eq. ( 7 )  
were found in Refs. 1 and 2, while the solutions given in Ref. 
3 for 9 = 0  correspond to z; , z ,  , and z ,  . The parameter 
values which were were chosen in Ref. 3  were such that solu- 
tions of Eq. ( 4 )  can be found from ( 7 )  within 0.01.1 Using 
the zeroth-approximation solutions (9)-('l l ), we find the 
following expressions for the refractive indices of the K 
modes in the case q) u,/c: 

( 3 )  splits into two familiar equations: N ~ = N ~ ( ~ ) [ ~ - ( N , ( ~ ) ' - ~ )  /2qzozn,I 

N2=l-qx/ ( x + 1 ) ,  N2=l+in'"qzozu(z). (4) where 

TABLE I. 

Root 1 Eqs. (9)-(11) 
Numerical cal- 

culation I Root 1 Eqs. (9 ) - (  11) 

z,* k2.07-i1.33 k1.99-i1.35 *3.71-i3.28 13.69-i3.29 
zz* 1 k2.73i2.16 1 *2.69-i2.18 1 2 1 ;.12-t3.72 I *4.11-i3.73 
z3* k3.26-i2.77 *3.24-i2.78 4 - 4 2  54.48-i4.12 
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From ( 12) we find the following order-of-magnitude 
expression for the penetration depths: 

C UT 
6,,,--- 

o Im N (u-oc) Im (I/z,,,) ( 1 3 )  

The condition 1 N J - 1 at J z J  - 1 is reached under the condi- 
tion ( w  - o, ) /w  - vT/c .  We accordingly have the following 
expression for the ratio S, /S ,  : 

In other words, the K modes penetrate a distance into the 
plasma considerably greater than the depth of the anoma- 
lous skin effect. The penetration depth of the K modes at a 
given frequency increases with increasing mode index. The 
solutions which have been found for K modes, ( 12),  should 
accordingly be taken into account in the problem of the field 
distribution in a plasma under conditions of the anomalous 
skin effect. 

We turn now to the case of a low-density plasma: 
q<uT/c. If qlz,l< 1, then it follows from ( 4 )  that in the 
zeroth approximation we have N  = 1, and in the next ap- 
proximation, N = 1 + AN(AN< 1), we find the known 
expression6 for the complex increment in the refractive in- 
dex for the extraordinary wave: 

AN= ( in1"/2)  qzow ( z ) .  ( 1 5 )  

If the wave frequency is given, expression ( 15) determines 
the damping rate x = ImAN and the increment caused in the 
real part of N  by the presence of the plasma. If, on the other 
hand, the wave number k  is given, then we have o ( k )  = kc 
in the zeroth approximation, and in the next approximation 
we have w  = kc + Am, AN= Aw/w, and 
z = ( k c  - w, + Aw)/21"kuT. Equation ( 1 5 )  is a transcen- 
dental equation for Aw in this case. If q< ( U , / C ) ~ ,  then we 
can ignore Aw/kv, < l  in ( 1 5 )  and we can set 
z = ( w  - w, )c/2"2wuT. Equation ( 1 5 )  then determines 
Aw explicitly. In particular, the damping rate is y / o  = (T /  
8 )  'I2q X (c/uT )exp( - z 2 ) .  If, on the other hand, we have 
q- (uT /c I2 ,  then wehave y / o -  (ReAw/wJ -qc/uT in order 
of magnitude. In addition to this solution, which corre- 
sponds to the usual mode, Eq. ( 15) has solutions which cor- 
respond to K modes. To find these solutions under the condi- 
tion q<uT/c ,  we use the asymptotic expression (8) .  
Introducing z, = x ,  - iy, ( J x ,  I < y, ), we find 

o,=o, (1+2"~k l luTz l /o , ) ,  xl= (n /2+ln)  (2y l ) - ' ,  
y lz=' /2{In(-1) '+1A+[ (ln(-l)'+'A)2+(n/2+ln)2]'h), ( 1 6 )  

A=N,(NC2-1) [ ( 2 n )  '"q (clu,)] - I ,  N,=kc/o,, 

where for N ,  > 1 we have 1 + 1 = 2m, while for N, < 1 we 
have I = 2m, m  = 0, , 1 ,  . . . . Equations ( 16) become inap- 
plicable at N, - 1, i.e., in the region where the usual mode 
and the K mode "intersect." In this case we have, in place of 
( 4 ) ,  

whose asymptotic analytic solutions are 

a exp (2 ln+n/4)  1 a exp (21n+n/4) " 
Y I  ={tin( (2n) I> [- 2 1. 

( 2 n )  'I2 I) 1 

The difference w  - w, and the value of y found from ( 16) 
and ( 18) are on the order of the values in ( 1 ) . During longi- 
tudinal propagation, in the case of either the anomalous skin 
effect or a low-density plasma, Eq. ( 4 )  thus contains, in ad- 
dition to the known solutions, a family of new solutions 
which lie on side of the electron cyclotron frequency. 

b )  Obliquepropagation ( k ,  # O ) .  Assuming k ,  - k  for 
the estimates below, we find in the case of a dense plasma 
( q $  uT /c )  that the dispersion relation ( 3  contains solu- 
tions of K modes of two types. For one type, IRez) is approxi- 
mately equal to IImz( and depends weakly on k,; in the limit 
9 - 0 ,  this type converts into ( 9 ) - (  1 1  ). The other solution 
depends strongly on k ,  ; for it we have (Rezl < / I m I .  For the 
first solution in ( 3 ) ,  the first term is the largest. Making use 
of this circumstance, we can put ( 3 )  in the form 
w ( z ) A ,  = 0;  i.e., w ( z )  = 0  or A, = 0. For the solutions 
w ( z )  = 0  we find expressions (9 ) - (  1 1 ), in which we need to 
make the substitution k -  k  l l .  [The numerical solutions in 
Ref. 3  for "oblique" propagation are approximately the 
same as the so lu t ionsz~  , z, , and z j  , found from Eqs. ( 9 ) -  
( 1 1 ) and Table I.] At fixed values of w  and 8, the equation 
A, = 0  yields known expressions6 for the refractive indices 
for ordinary and extraordinary waves. If we now seek solu- 
tions of this equation for w  for given k ,  and k  we can set 
w  = w, + Aw ( J Aw 1 < w, ), and we can expand A, in a series 
in Aw: 

The resulting expression for Aw holds only for those values 
of k ,  and k  for which A,(w,, k ,  , k  ,, ) is close to zero. As- 
suming that k ,  is given, we find the following expression for 
the values k  = kilo ( k ,  ) which cause A,(w,, k, ,  k l l  ) to 
vanish: 

Expanding A, (w ,  , k ,  , k  ) around k  ,,, , we find from ( 19) 

For the solutions of the second type, the first and last 
terms on the left side of Eq. ( 3 )  are the largest. Correspond- 
ingly, Eq. ( 3  ) becomes 

The solution of this equation, z, = x ,  - iy, ( [ x i  ( < y, ), takes 
the following form when we use the asymptotic expression 
( 8 ) :  

ol=o, ( l+2'"kl luTzl lo , ) ,  x,= ( n / 2 +  l n )  ( 2 ~ ~ )  -', ( 2 3 )  
yi2=1/z{ln (-1)'B+ [ ( l n  ( - 1 ) 1 B ) 2 +  (n/2+ln) ']  '"1, 

B=Ao [ q  ( 4 8 )  Ihp" (I-q-sin2 6 N 2 )  t g  61 -'. 
For B >  0  we have I = 2m here, while for B <O we have 
I = 2m - 1 ,  m  = 0 ,  4 1 ,  ... . Adopting the parameter val- 
ues3 ,LL"~ = 0.03, k l ,  vT /w ,  = 0.01, uT/c  = 0.0442, and 
q  = 2.25 for definiteness, we find from ( 2 3 )  z, = - 0.26- 
2.99i, z ,  = - 1.22-3.221' and z ,  = 0.77-3.071'. (These solu- 
tions were not given in Ref. 3.)  Comparison of these solu- 
tions with solutions ( 9 ) - (  1 1 )  shows that the frequencies of 
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the solutions of the second type lie considerably closer to a,, 
while their damping is slightly greater than the damping of 
the corresponding solutions of the first type. 

The dispersion relations w (z) A, = 0 and (22) and, cor- 
respondingly, their solutions are not valid at Ak / k  4 v,/c.  
In this case we find from Eq. (3)  

Equation (24) also has solutions of two types, for which 
analytic expressions can be found in the limit Ak I I  / k  II xu, /  
c .  In place of (7)  we then have6 

Solution (25) at 121 $ 1 and (Imz( $ 1 can be put in the fol- 
lowing form with the help of the asymptotic expression (8  ) : 

0 1 = ~ c ( 1 + 2 ' i 2 k l l ~ T ~ ~ / ~ c ) ,  

WithC + l>Owehavel=2m,m= 1,2, ...; withe  + 1<O 
we have I = 2m + 1, m = 0, 1 ,... . As an example we consid- 
er the case q = 1, k,  = k l l  , N = 1. We then have C = 0.5, 
and from (26) we find z, = 1.97 - 1.4i and 
z, = 2.67 - 2.21i. A numerical solution of Eq. (25) yields 
similar values: z, = 1.92 - 1.41i and z, = 2.65 - 2.221'. 
With increasing index m, the deviation of the analytic solu- 
tion from the numerical solution becomes even smaller. 
Equation (25) has yet another solution with lzl < 1. For this 
particular example, an analytic calculation using the expan- 
sion w(z) = 1 + 2 i ~ - ' / ~ z  - z2 leads to z = - 0.23i, while 
the numerical solution of (25) yields z = - 0.22i. This solu- 
tion is the continuation of solution (2  1 ) into the region Ak / 
k 4 v , /c ,  and for the continuation of solution (23) into the 
same region 

w[=w, ( i + 2 i ' ~ k , l ~ T ~ ~ / ~ , ) ,  z[=x[-iy~, 
sl=Ln/ilyl, yl={'12 ln (-l)'a['/z In (-l)'al'")'", (27) 

With a > 0 we have I = 2m, while with a < 0 we have 
1 = 2 m + l , m = O ,  + I ,  f 2 ,.... 

We turn now to the case of a low-density plasma: 
q & u,/c. In this case, Eq. (3)  splits into two equations, the 
first of which, 

becomes the same as (4) if we make the replacement 
q+q(2 - N2sin 9) /2  and if we replace k by k in the argu- 
ment of w. Consequently, the solutions of this equation are 
described by Eqs. ( 15)-( 18), in which we need to make the 
same replacements. The second equation which follows 
from (3) is of the form of (22), where 
A , = ( N 2 - 1 ) ( N 2 s i n 2 9 - 1 ) .  For o = k c + A w  and 
(Imz/ & 1 it describes an ordinary wave. In the case IImzJ - 1 

this equation has solutions in the form of K modes as in (23), 
with 

B=Ao[q(n/8)'"p'h (1-N2 sin2 @)tg 61-'. 

3. WAVES NEAR HARMONICSOFTHE ELECTRON 
CYCLOTRON FREQUENCY (na2) IN A PLASMA OF 
ARBITRARY DENSITY 

We write the dielectric tensor in the form 

where lz, I $1 and I Im z, I $ 1. For the usual ordinary and 
extraordinary waves with frequencies close to nu,, the 
damping is small, I Imz, I 4 1, and the tensor E~ is again given 
by (28) if we make the replacement 4, -+#, /2. 

In this case the dispersion relation for electromagnetic 
cyclotron K waves splits into two equations: 

Here 

The solutions of Eqs. (29) and (30) can be written in the 
form 

For gin <O we have I = 2m, while for gin > 0 we have 
1 = 2 m + l , m = O ,  f 1, f 2 ,.... 

It can be seen from ( 3  1 ) that near each harmonic of the 
electron cyclotron frequency (n>2),  and also near the fun- 
damental electron cyclotron frequency, there are two sets of 
K modes, described by Eqs. (3  1 ) with 1, 2. One of them 
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( i  = 1  ) borders on electrostatic waves at k c )  w; the second 
corresponds to definitely nonelectrostatic waves. Jain and 
Christiansens have numerically found the solution w  =: 313, 
at m  = - 1  in the particular case of electrostatic waves and 
for a set of parameter values under which the condition 
{,, > 0  holds. In the case of nonelectrostatic waves, Mat- 
suda4 has found a solution of the equation near the second 
harmonic for a set of parameter values under which the con- 
dition { ," < 0 holds. That solution leads to numerical results 
which agree with (31  ): o " ' z 2 w ,  for m  = - 3, - 4, - 5. 

The approximate dispersion relation ( 2 9 )  becomes in- 
applicable if the frequency of the K mode, w  =: 2wc, is close to 
the frequency of longitudinal plasma waves, w,, for which 
we have A, = 0, since in this case the condition 1z21 ) 1 is 
violated. Assuming IN I ) 1 ,  we then find from Ref. 6 the 
following equation, in place of ( 2 9 )  : 

V T  sin4 6 
[ ~ , + i ( 2 n ) " - N -  c cos 6 qw ( z ) ]  N'+B,=o, ( 3 2 )  

If A o < u T N / c ,  then Eq. ( 3 2 )  has the known solution6 
N = ( i  + 3'12) 1~1"~ /2  in the region lzl < 1 ,  while in the re- 
gion with 121% 1 and IImzl) 1  an asymptotic solution of 
( 3 2 )  corresponding to a K mode is possible: 

For a > 0  we have 1 = 2m,  while for a <O we have 
1 = 2 m + l , m = O ,  k1, + 2  ,.... 

With 201, =:a+ and AO-uTN/c, Eq. ( 3 2 )  again has so- 
lutions in the form of K modes, but the relation IN I ) l  holds 
for them, so the depth to which they penetrate into the plas- 
ma is smaller than given by ( 2 9 )  and ( 3 0 ) ,  for which we 
have IN 1 - 1. 

4. CONCLUSION 

This study of the general dispersion relation for electro- 
magnetic waves in a plasma in a magnetic field in the long- 
wave limit ( k , p L  ( l ) ,  shows that in addition to the usual 

wave branches corresponding to ordinary, extraordinary, 
and plasma waves there are two other groups of wave 
branches: K modes, with frequencies which lie close to nu,. 
Simple asymptotic expressions have been derived for the fre- 
quencies and damping rates of these waves with high indices. 
Numerical solutions which have been carried out show that 
these asymptotic expressions also apply to low-index K 
modes. Analytic results derived in particular cases corre- 
spond to the results of previous numerical calculations.l-s 
The frequencies and damping rates are given in order of 
magnitude by Eqs. ( 1 ). 

The origin of the electron cyclotron K modes is quite 
different from that for the weakly damped electron cyclo- 
tron modes, which stem from finite-Larmor-radius effects, 
and the damping is exponentially weak. For K modes, the 
governing factor is the interaction of the waves with reso- 
nant particles. Finite-Larmor-radius effects are important 
for K modes with w  z n w ,  ( n > 2 )  and for one type of K 
modes, with w  z a,, which are similar to magnetostatic 
waves. For K modes with w  =:a,, which are approximately 
electrostatic waves, the finite-Larmor-radius effects are in- 
consequential. 

The K modes may prove important in the excitation of 
waves by external sources with frequencies w  =:nu,. For ex- 
ample, the penetration of an electromagnetic wave into a 
dense plasma is determined by a cyclotron K mode. 
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