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An analysis is made of the mechanism of selection of the velocity and direction of growth of the 
two-dimensional dendrite when this mechanism is related to the surface energy anisotropy. The 
condition of solvability of the initial nonlinear integrodifferential equation describing the shape of 
the crystallization front is reduced, in the weak anisotropy limit, to the condition that the solution 
of the linear differential equation is finite near a singularity in a complex plane. The spectrum of 
the dendrite growth velocities is found. I t  is shown that a dendrite grows along the direction of the 
surface energy maximum. A calculation is reported of a correction, linear in the isotropic part of 
the surface energy, to the parabolic shape of a dendrite. 

1. INTRODUCTION 

The problem of selection of the growth velocity of a 
needle-shaped dendrite forming from a supercooled melt is 
typical of structure formation in nonlinear systems (for a 
review see, for example, Ref. 1 ) .  The steady-state solutions 
of the Stefan problem for an isolated two-dimensional den- 
drite represent a family ofparabolas y = - x2/2p, where the 
growth velocity is u a l /p  (Ref. 2) .  The experimentally ob- 
served shape of a dendrite is indeed very close to a parabo- 
la,"4 but the parabola parameter p and the velocity u are 
governed uniquely by the growth conditions. In the search 
for a mechanism governing the selection of the growth veloc- 
ity it is found that an important role is played by a finite 
surface tension at  the phase boundary. The following con- 
clusions are drawn in Refs. 5 and 6 from numerical calcula- 
tions: 1 ) there are no steady-state solutions of the type repre- 
senting a needle-shaped dendrite in the case of a finite 
isotropic surface tension; 2)  when allowance is made for the 
anisotropy of the surface tension, a discrete spectrum of the 
growth velocities is obtained (in contrast to a continuous 
spectrum in the absence of surface tension); 3 )  only the solu- 
tion corresponding to the maximum growth velocity exhib- 
its a small-scale stability. In an analytic interpretation of 
these results it is pointed out that the surface tension plays 
the role of a singular perturbation and the selection of the 
growth velocity follows from the condition of solvability of 
the problem in the presence of this singular perturbation. A 
qualitative analysis of the growth conditions shows that in 
the case of low values of the anisotropy a and supercooling A 
parameters the growth velocity obeys u cc A 4 ~ 7 ' 4  (Ref. 7 ) .  
This solution selection mechanism was first demonstrated in 
Refs. 8-10 when solving the Saffman-Taylor problem.x-"' 

We shall develop an analytic theory of the selection of 
the velocity and direction of growth of a needle-shaped den- 
drite in the limit of a weak anisotropy of the surface tension. 
We shall find the regular correction to the parabolic shape of 
a dendrite, calculate the spectrum of growth rates, and find 
the direction of growth of a dendrite. A brief report of some 
of the results was given earlier. I '  

2. GROWTH EQUATIONS FOR A TWO-DIMENSIONAL 
DENDRITE 

The distribution of the temperature T i n  a supercooled 
melt and a growing crystal is given by the heat conduct equa- 
tion 

aT/dt=DAT. ( 1  

The evolution of heat occurs at the crystallization front 
y ( x )  and the boundary condition is 

Here, c, and D are the specific heat and the thermal diffusiv- 
ity, which are identical for both phases; L is the latent heat of 
fusion; u, is the normal growth velocity; n is a unit vector 
normal to the phase boundary; the indices I and c represent 
the molten liquid and the crystal, respectively. If we ignore 
the kinetic effects at  the crystallization front, we find that 
the equilibrium boundary condition becomes 

where T,,, is the melting point; k ( x )  = y"/( 1 + y") "' is the 
curvature of the crystallization front; 
yE (8) = y ( 8 )  + d 'y(8)/dB2; y ( 8 )  is the anisotropic sur- 
face energy: 6 is the angle between the normal to the surface 
and they axis. I t  follows from the thermodynamic stability 
condition that y, > 0. Far from the melt is supercooled and 
its temperature is T' < T,,, . 

In the case of steady-state growth of a dendrite at a 
velocity u along they axis, we find that using the Green func- 
tion of Eqs. ( 1 ) and ( 2 )  and applying the equilibrium condi- 
tion ( 3 ) ,  we obtain the following integrodifferential equa- 
tion describing the shape of the crystallization front y ( x ) :  

565 Sov. Phys. JETP 67 (3), March 1988 0038-5646/88/030565-05$04.00 @ 1988 American Institute of Physics 565 



where K O  is a Macdonald function; all the lengths are mea- 
sured in terms ofp; A = ( Tm - To )cp L - ' is the dimension- 
less supercooling; p = vp/2D is the Peclet number; 
d, , (B)  = y, ( 0 )  Tm cp L -2is the capillary length. Following 
Refs. 5-7. we shall assume that 

d , (B)  = d o ( l - a  cos 4 0 ) ,  t g  0=dy ldx ,  ( 5 )  

and that the anisotropy parameter a is small so that a 4 1. In 
the absence of surface tension ( d o  = 0 )  the solution of Eq. 
( 4 )  is a parabola y = - x 2 / 2  (Ref. 2 )  and the Peclet num- 
ber is given by the equation 

This result is obtained from Eq. ( 4 )  ify = - x2 /2 ,  provided 
we substitute t = ( x '  - ~ ) ~ / 2 w  and integrate initially with 
respect to x' .  This gives an expression independent of x ,  
which reduces to Eq. ( 6 )  after integration with respect tow. 
It should be pointed out that in the absence of surface tension 
this solution is valid also for an arbitrary relationship be- 
tween the thermal diffusivities of the melt and crystal. This is 
due to the fact that the crystallization front is an isotherm 
and the temperature throughout the crystal is constant: 
T = T m .  All heat is therefore lost through the melt and it is 
independent of the thermal characteristics of the crystal, so 
that the Peclet number is governed by the thermal diffusivity 
of the melt. The steady-state solution y = - x2 /2  corre- 
sponding to do = 0  is unstable in the presence of small per- 
turbations of the phase boundary." 

Inclusion of a finite surface tension in Eq. ( 4 )  distorts 
the shape of the crystallization front: y ( x )  = - x 2 /  
2  + f ( x )  A linear equation for ( ( x )  in the limit 

has the form7 

A ( x )  =1+8ax2/  ( I + x 2 )  '. ( 8 )  

The integral in Eq. ( 8 )  is found by the residue method if the 
function f ( x )  is divided into terms 5 ,  ( x )  and 5 - ( x ) ,  
which are analytic in the upper and lower half-planes of 
complex values of x .  We then'obtain 

+ ( x - i )  5 -  ( - x - 2 i )  - ( x + i )  C +  ( - x+2 i )  - (x- i )  C -  ( x )  ] =o . 

A regular correction l ( x )  a a to the shape of the crys- 
tallization front is found by solving Eq. ( 9 )  ignoring the 
derivatives. A singular perturbation associated with the de- 
rivatives has the effect that Eq. ( 9 )  is solvable only for cer- 
tain values of the parameter a. In the final analysis, this 
determines the spectrum of the dendrite growth velocities 

3. REGULAR PARTOF THE PERTURBATION: DEVIATION OF 
THE DENDRITE SHAPE FROM A PARABOLA 

In a calculation of the regular correction <a a we shall 
simplify Eq. ( 9 )  by dropping the terms with the derivatives 
and assume that A ( x )  = 1 and also that the anisotropy is 
weak so that a 4 1. Then, ( ( x )  is described by the following 
equation: 

The first and second sets of square brackets identify the 
expressions which are analytic if Imx > 0  and Imx < 0.  Solv- 
ing this equation by the Wiener-Hopf method, we shall ex- 
pand the right-hand side using the functions @, ( x )  which 
are analytic in the upper and lower half-planes: 

o d z  
0, ( x )  =T - 

2n J ( l+z2 )" (x - z* iO)  

Equation ( 1 0 )  is then equivalent to a system of two equa- 
tions: 

(x+i)t+(x)+(x-i)Z;-(-x-2i)=@+ ( x ) ,  

-(x+i)t+(-x+2i)-(x-i)f-(x)=@-(x). 

Excluding the function f + ( x )  from these equations, we ob- 
tain an equation which contains only 5- ( x ) .  It can be writ- 
ten down conveniently using the substitution 

z - ( x )  = t - ( x ) l ( x + i ) .  ( 1 2 )  

Then, z is described by the equation 

z - ( x )  - z - ( x - 4 i )  = F ( x ) ,  ( 1 3 )  

The solution of the difference equation ( 13) is 

z-  ( x )  = F ( x - 4 i k ) .  

This sum converges because the function F ( x )  decreases 
rapidly in the lower half-plane. Using the explicit form of the 
function 9 ( x )  and the integral representation of Eq. ( 11 ) 
for @. ( x ) ,  we can sum over k. Consequently, we find that 
the function f - ( x )  is described by 
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where 3 ( x )  is a logarithmic derivative of the gamma func- 
tion. In view of the translational invariance of the problem, 
the function {(x) is defined, apart from an arbitrary con- 
stant which we shall select on the basis of the condition 
(( cz ) = 0. Therefore, in the approximation which is linear 
in a, the shape of the crystallization front is described by 

where 

1 1 ( r ) = = ( 2  c i ) I ~ ~ ~ ; - ~ 7 ) ~ ,  , , , ?  , .  

A graph of the function q ( x )  is shown in Fig. 1. We 
shall find the asymptote of q ( x )  in the case when 1x1 >> 1. We 
shall do this by expanding the expression in square brackets 
of Eq. (15)  up to terms -s'/x7, where s < x ,  and we shall 
truncate the resultant logarithmic integral with respect to s 
at s-x. This gives 

This nature of the asymptote of q ( x )  is given in Ref. 9. The 
correction to the dendrite shape is found by a different meth- 
od in Ref. 13. 

4. SINGULAR PERTURBATION IN THE CASE OF ISOTROPIC 
SURFACE TENSION. ABSENCE OF STEADY-STATE 
SOLUTIONS 

In the preceding section we ignored the derivatives in 
Eq. (9 )  and found the regular correction to the shape of the 
crystallization front j ( x )  ar a. Inclusion of the derivatives 
gives rise to corrections in powers of a, which are small al- 
most throughout the complex x plane. However, this is not 
true in small regions around singularitiesx = i. By way of 
example, we shall consider the vicinity of point x = i. We can 
see from Eq. ( 10) that at x=,i all the functions on the left- 
hand side are regular with the exception of { ( x ) ,  so that 

< - ( . r ) m ( . r - i ) - " 2  . 1:r-il<l, 

Therefore, the neglect of the derivatives is unjustified near 
x = i and an analysis of the complete Eq. ( 9 )  is required. 
Since the mean contribution to the terms deduced from the 
integral term is made by <_. ( x ) ,  we have to investigate the 
differential equation containing just this function. 

We shall assume that Ix - i l4  1 and make the substitu- 
tions 

z=i(l-a'lit), $=~- '~ ' t- '"b-(x(t)) .  

Then, is described by the equation 

If 1 < It the general solution of this equation con- 
tains terms of the type 

which rise most rapidly along the rays arg t = 0, + 4n-/7. 
Matching to the solution of the Wiener-Hopf Eq.(15) re- 
quires suppression of the exponentially growing terms along 
these three rays. We have only two integration constants 
which is insufficient to satisfy these requirements. In fact, 
the general solution of Eq. ( 18) is 

t i" ' 2  

Asymptotes of the Bessel functions J,. are known and the 
asymptote of a series can be calculated using the relationship 

xn 1 
- = ,-(a+R)12 ' r ( s + n ) r ( n + g )  Ln 

esp (2x' ) . x=-> 1. 
,i=o 

(19) 

Selecting the constants C ,  and C, in such a way as to sup- 
press the exponential rise along the rays arg t = + 4n-/7, we 
find for real values t > 1 that 

Therefore, direct calculations demonstrate that it is impossi- 
ble to match the solution of the differential Eq. ( 18) with the 
solution of the Wiener-Hopf equation and, consequently, the 
initial Eq. ( 8 )  cannot be solved for an isotropic surface ten- 
sion. This analytic result is in agreement with numerical cal- 
culations reported in Ref. 5 and with the WKB approxirna- 
tion discussed in Refs. 7 and 14. 

5. ANISOTROPIC SURFACE TENSION 

The problem changes qualitatively if we allow for a 
weak anisotropy of the surface tension. For an anisotropy of 
the simplest kind described by Eq. ( 5 )  near a point x = i, we 
have 

A ( x )  - 1  +2n/(x-i)*, 

which shows that the values x - i /  ca"' are important. 
Making the substitutions 

we obtain the following equation for 3 ( t ) :  

FIG. 1. Regular correction i l (x )  to the parabolic shape of a dendrite 
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The  small parameters a and a are excluded by introducing 

The  parameter a depends on the radius of curvature p ,  so 
that determination of the values of A is equivalent to  selec- 
tion of the solution with very specific parametersp and u. 

A s  demonstrated in the preceding section, matching of 
the solution of Eq. ( 2 0 )  to  the solution of the Wiener-Hopf 
equation for 1 < It <a "' requires suppression of the ex- 
ponentially growing solutions of Eq. ( 2 0 )  along the rays 
arg t = 0 ,  + 47-r/7. Introduction of the anisotropy, in addi- 
tion to  the two integration constants, provides us also with 
the parameterd.  For  specific values of this parameter we can 
satisfy the boundary conditions formulated above. T h e  spec- 
t rum of /i found in this way determines the spectrum of the 
growth velocities of the dendrite under investigation. 

We shall now summarize the results obtained. We be- 
gan with the integrodifferential Eq. ( 8 )  containing small pa- 
rameters a and a. We found the regular correction to the 
shape of the crystallization front f  ( x )  ar a independent of 
the weak anisotropy a .  The  terms with the derivatives in Eq. 
( 1 8 )  behave as  a singular perturbation concentrated near 
the points x  = f i. If a = 0 ,  the presence of this perturba- 
tion makes the problem unsolvable. In the case of finite but 
small values of a an investigation of the singular perturba- 
tion reduces to  solution of the differential Eq. ( 2 0 )  describ- 
ing the spectrum of the parameter A .  Near a singularity the 
function f a a  is much greater than the regular correction 
5 cc a because a a a7I4<a. 

Equation ( 2 0 )  is the inhomogeneous Schrodinger equa- 
tion defined in the complex plane t  with a cut  along the se- 
miaxis ( - ~ , ~ q ) .  Its solution and determination of the 
spectrum of /i can be performed either numerically o r  using 
the W K B  approximation in which it is assumed formally 
that A 9 1. Numerical integration gives the following spec- 
t rum of A :  

These results apply t o  a situation when the function 
d,, (6') [see Eq. ( 5 )  ] is minimal along the growth direction. 
If the angle between these directions is p, then 

The  numerical calculations were not carried out for the 
case when 40 # O .  T h e  general structure of the problem does 
not exclude, at least in principle, the existence of a discrete 
spectrum of the angles p. We shall show in the next section 
that in the semiclassical limit A 9 1 within the range O < ~ < T /  
4 the solutions exist only for p = 0.  Therefore, there is a 
unique direction of growth which corresponds t o  the mini- 
mum value of d,, [i.e.. to  the minimum of the function 
y(19) + yr' ( 0 )  ] and to the maximum of the surface tension 
~ ( 6 ' ) .  

We shall conclude this section with the expression for 
the growth velocity of an isolated dendrite. If A < 1, it fol- 
lows from Eq. ( 6 )  that A =  ( . rrp)" ' .  Combining this rela- 
tionship with Eqs. ( 7 )  and ( 2 2 ) ,  we obtain 

7 ) .  A n  analysis of Eq. ( 3 )  shows that, in view of the small 
size of singular regions near x  = i i, the linear Eq. ( 2 0 )  for 
the singular part of the function f ( x )  applies as  long as  
p<a I / ' ,  i.e., also when p -  1. In this case the solution for 
the regular correction to the crystallization front shape can- 
not be obtained, but the dependence of the growth velocity 
on the parameters of the problem can be determined using 
only the exact relationship betweenp and A given by Eq. ( 6 ) .  

6. SEMICLASSICAL SPECTRUM OF VELOCITIES AND 
SELECTION OFTHE GROWTH DIRECTIONS 

Equation ( 2 0 )  can be regarded as  an inhomogeneous 
Schrodinger equation with zero energy and  the potential 
- P 2 ( t ) .  T h e  behavior of this potential a t  t>O is shown 

schematically in Fig. 2. At  t  = 0  there is a second-order pole 
a n d a  branchingpoint.  At  t ,  ~ 2  " " ( 2 1 / A ) ' " '  < 1 the re i sa  
turning point and a pole at  t  = \ 2 .  The  interval t ,  < t  < \'2 is 
the range of allowed motion. We can find the spectrum ofA 
if, firstly, wesolve Eq. ( 2 0 )  in the range I / < 1 including the 
singularity t  = 0  and the turning point r = t ,  and, secondly, 
if we solve Eq. ( 2 0 )  for It - \ 2  < 1 and, finally, match the 
semiclassical asymptotes of these solutions in the range of 
allowed motion. 

We shall consider the region ImtdO and assume that the 
solution of Eq. ( 2 0 )  obtained for real values of 1 is real. Then,  
in view of the symmetry the finite nature of the solution 
along the ray arg t  = - 4 ~ / 7  follows asymptotically from 
the solution that it is finite along the ray arg t  = 4;r/7. 

If t  1 < 1, Eq. ( 2 0 )  becomes 

The  general solution of this equation is 

( 1)'" :!" t " '  I ( ' " ) l . ( " ) l  C - -- - - 
I /  I I  1 1  I . ( / / - '  , , ) I  ( 1 1  , , I  

This expression rises most rapidly for anti-Stokes lines 
arg t  = 277/11, 6 ~ / 1 1 .  When we go over from r < 1 to  
t  1 > 1, the lines follow the rays arg t = 0 ,  4 ~ / 7 .  The  con- 
stants C, and C2 are calculated on the assumption that the 
solution is finite for the anti-Stokes lines. Using Eq. ( 19)  and 
the known asymptotes of the Bessel functions J , ,  we find 
that the function 3 in the region of allowed motion is de- 
scribed by the following quasiclassical asymptote: 

We must point out the following important circumstance. 
Equation ( 8 )  is derived on the assumption thatp,A < 1 (Ref. FIG. 2. Qualitative behavior of the potenti~ll -- P ' ( I )  
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Eq. (20) obtained for p = 0 oscillate in the cut between the ' 

1 p-5 ( t )  { i  [[ P ( L ' )  dtl-5ni44]} , 
1 ,  

where the real factor is omitted. 
We shall now consider Eq. (20) near the point t = 0. 

The substitutions t = V'T + s, Is1 < 1 yield the equation 

whose general solution that decreases in the limits- w is 

In the region of allowed motion we find from Eq. (28) the 
following semiclassical asymptote: 

Matching the solutions (26) and (29) ,  we find the condition 
for the semiclassical spectrum of A: 

3 P( l )d[=n  ( 1 2  t a i l , ) ,  II=O. I.. . . . 
? I  (30) 

where t ,  is the root of the equation P ( t )  = 0. We shall now 
give the first few values of A deduced from Eq. (30):  

If n $1, it follows from Eq. (30) that 

A spectrum of similar type is obtained in the WKB approxi- 
mation if we analyze the Saffman-Taylor problem. I'  

If the direction of growth makes an angle of p with the 
direction of the minimum of d, , (8)  (see preceding section), 
then in the potential of Eq. (21 ) we have to replace t' - 2 
with t ' - 2exp( - 4ip) in the denominator of the second 
fraction. This replacement alters radically the qualitative be- 
havior of the function $ ( t ) .  This is because the solutions of 

singularities t ,  and so that the quantization condition of 
Eq. (30) is analogous to the condition that the function $( t )  
is single-valued along a contour which begins from the point 
t ,  and returns to the same point around t = 0. If p # 0, the 
distribution of the Stokes lines in the plane 1 changes and in 
the cut [ t , ,  {2exp( - 2 ip ) ]  the oscillations of rh(t) are 
supplemented by, for example, a monotonic rise, so that 
when we follow this contour, we find that there is a 
change not only in the phase but also in the amplitude of the 
function $ ( t ) .  Consequently, it is not possible to obtain a 
function $ ( t )  which is single-valued going round the point 
t = ,tTexp( - 2iy)  if we select one parameter A. Neverthe- 
less, we can attempt to do this by simultaneous selection ofA 
and p, which would correspond to selection of several direc- 
tions of the dendrite growth, but in the limit A > 1 the semi- 
classical integral of the type given by Eq. (30) is proportion- 
al toA '/'exp( - 7ip /2)  and for p in the interval (0, ~ / 4 )  i t  
assumes real values only at $1 = 0. Therefore, the difference 
between p and zero results in disappearance of the spectrum 
ofA. It therefore means that p = 0, i.e., the direction of the 
maximum of the surface tension is the only possible direc- 
tion of dendrite growth. 
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