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An analysis is made of the statistics ofone-electron energy levels in a finite (bounded) system 
with a statistical disorder. A study is made of the variance ( [SN(E)  ] ') of the number of levels 
N ( E )  in an energy band of width E due to variation of the realization of the random potential. A 
scaling theory is used to deduce a qualitative description of the influence of a metal-insulator 
transition on the value of ( [SN(E)  ] '). I t  is shown that at the transition point the variance is 
proportional to the average number of levels ( N ( E )  ) in a band, exactly as for a state well within 
the insulator range, but the coefficient of proportionality is less than unity. This theory is 
compared with the results of computer modeling carried out by applying the Anderson model to 
the case of a simple cubic lattice of 5 X 5 x 5 sites with cyclic boundary conditions. The influence 
of a change in the degree of disorder and of the metal-insulator transition on the statistics of 
separations between the nearest levels is considered. 

1. INTRODUCTION 

Fluctuations of the residual conductivity of small metal 
samples due to variation of the realization of the random 
impurity potential, known as mesoscopic fluctuttions (see, 
for example, the review in Ref. 1 and the references given 
there), are currently attracting much attention. 

According to Thouless, the conductivity of a cube with 
a side L at low temperatures T ( E , ,  where 

is governed by the energy levels of electrons lying within a 
band of width E, centered on the Fermi level [Din Eq. ( 1 ) is 
the electron diffusion coefficient and r ,  is the diffusion time 
of electrons across the whole sample]. The average, over the 
realizations of a random potential, admittance G (represent- 
ing the reciprocal of the impedance) of a sample measured in 
units of e2/fi is simply equal to the average number of these 
levels: 

Al'tshuler and Shklovskii2 drew attention to the fact 
that fluctuations of the admittance of a cube from one real- 
ization to another are largely governed by the corresponding 
fluctuations of N(E,) ,  which is the number of levels in a 
band of width E,. Al'tshuler and Shklovskii2 investigated 
the problem of the variance 

of the number of levels in a band of arbitrary width E. The 
angular brackets denote averaging over the realizations of 
the random potential. These authors considered the case 
when ( N ( E ) )  is small compared with the total number of 
levels in the system. The quantity ( [SN(E)  ] ') for a metal 
sample was determined by the impurity diagram technique 
in the range of parameters where L % I S A ;  here, I and A are, 
respectively, the mean free path and the wavelength of an 
electron. 

Dyson3 studied earlier the problem of statistics of ener- 
gy levels in complex nuclei and dealt with a similar problem 
of eigenvalues of an ensemble of random matrices (Hamilto- 

nians) in which all the matrix elements are distributed nor- 
mally near zero and are characterized by the same variance. 
For the variance ( [6N(E)  12) in the simplest case of real 
symmetric matrices (orthogonal ensemble) Dyson found 
that 

[here and later we shall use (SN 2,  for the quantity in Eq. 
( 3 )  1. The constant B was calculated by Dyson and Mehta4 
and was found to be B =: 2.18. 

An interesting feature of Eq. (4)  is the smallness of the 
fluctuations (6N2)  4 ( N ( E ) ) .  This means that the sequence 
of levels differs considerably from the random Poisson se- 
quence, which should be characterized by (SN2)  
= ( N ( E )  ). The additional "stiffness" of the system of levels 

is due to their quantum-mechanical repulsion. 
The results of Ref. 2 for (SN 9 of a metal cube sur- 

rounded by an insulator and, therefore, containing unbroad- 
ened levels agree with the Dyson formula of Eq. ( 4 )  if E<E, 
(only the value of the constant B cannot be determined by 
the impurity diagram technique). This agreement is in our 
opinion due to the fact that in a characteristic time fi/E a 
diffusing electron can travel across the whole sample, so that 
the matrix elements of the Hamiltonian relating to various 
states lying within an energy band of width E are of the same 
order of magnitude. 

If the energy levels exhibit decay represented by y due 
to, for example, the possibility of escape of a particle from a 
sample, it follows from Ref. 2 that ( N ( E ) )  on the right hand 
side of Eq. ( 4 )  should be replaced with E /y  and for y - E the 
variance (SN 2, is of the order of unity, i.e., it is even smaller 
than (SN ') , . 

If E$ E,, the value of (SN ') obtained in Ref. 2 is con- 
siderably greater, irrespective of the boundary conditions, 
than the Dyson variance (SN 9). and depends on E,: 

The reason for the increase in the scale of fluctuations is that 
in the range E) E, an electron can cross only a small propor- 
tion of a sample in the characteristic time fi/E and this part 
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of the sample is roughly speaking a tiny cube of side 

Individual tiny cubes of this kind have practically indepen- 
dent systems of levels. This means that fluctuations of the 
number of levels in each tiny cube are independent and 
( 6 N 2 )  is proportional to their number ( L  / L ,  ) 3 :  

where (Sn') is the variance of the number of levels in a cube 
of size L ,  when these levels lie within an energy band E. 
Since such a cube is open, it follows that y-D / L  = E and 
(Sn2)  - 1. 

It therefore follows from Ref. 2 that in the region of 
high metallic conductivity the variance of the number of lev- 
els in a band of given width depends strongly on E, ,  i.e., it 
depends on the admittance G of the sample. Clearly, the sta- 
tistics of the levels should be sensitive, in contrast to the 
average number of levels ( N ( E )  ), to a metal-insulator tran- 
sition. We shall provide a qualitative description of the de- 
pendence of (SN 2 ,  on E for a transition from a good metal 
(via a critical region) to an insulating state. In the next sec- 
tion we shall discuss the dependence of the variance of the 
number of levels outside the metal-insulator critical region, 
i.e., we shall discuss this dependence for a good metal and an 
insulator with strongly localized electron states. In  Sec. 3 we 
shall discuss qualitative ideas on the behavior of the depen- 
dence of (SN ' )  on E in the critical region, based on the scal- 
ing relationship for the metal-insulator transition. The re- 
sults of a numerical modeling of the problem by the 
application of the Anderson model to a cube of 
5 X 5 X 5 = 125 sites, carried out for a wide range of the scat- 
ter of the levels, are presented in Sec. 4. A detailed quantita- 
tive comparison of the results of this machine experiment 
with theoretical predictions for the metallic range is made in 
Sec. 5. In addition to the dependence of (SN 2,  on E, we shall 
consider how the distribution functions of spacings between 
the two nearest levels, which is the problem of major impor- 
tance in discussing the repulsion of levels, behaves in the 
region of this transition. The results will be given in Sec. 6. 

2. STATISTICS OF ENERGY LEVELS OUTSIDE THE CRITICAL 
REGION 

In the case of a good metal when I$A at sufficiently low 
energies E the value of (SN 2 ,  is given by Eq. (4 )  or (5) .  The 
dependences given by these equations are valid as long as L ,  
is greater than the mean free path I ,  as long as E < f i / r ,  where 
T is the mean free time. If E $ f i / r ,  then fluctuations ( S N 2 )  
cease to rise on increase in E. The order of magnitude of the 
fluctuations is given by 

This is true because the shifts of the levels under the 
action of the random potential do  not exceed f i /r  and, conse- 
quently, the contribution made to SN by a band of width E 
comes solely from its boundary regions of width %/T.  A 
graph of the dependence (SN 2 ) / ( N ( E )  ) on E in the case 
when I$A is shown schematically in Fig. 1 (curve 2)  togeth- 
er with the graph of the dependence ( 4 )  (curve 1 ). As I 
decreases and approaches A, the value of E, decreases and 
(SN ') rises for bands of width E > E, .  If I&, at the limit of 

FIG. 1. Schematic representation of the theoretical dependences of 
( S N 2 ) / ( N ( E ) )  on the average number of levels ( N ( E ) ) :  1) Dyson for- 
mula ( 4 ) ;  2 )  good metal (1>/1);  3 )  limit of the critical region (/=A); 4) 
insulator [Eq. ( 9 ) ] ;  5 )  transition point [Eq. ( 1 4 ) ] ;  6)  metal in thecriti- 
cal region; 7 )  insulator in the critical region. 

the critical region near the metal-insulator transition, the 
value of f i /r  is of the order of the maximum energy scale f i2/  
mA =p, wherep is the Fermi level. Then the range of valid- 
ity of Eq. ( 7 )  vanishes and for E < f i2/mL ' we find that Eq. 
( 4 )  applies, whereas for f i2/mL < E <p,  we have to use Eq. 
(5 ) .  This behavior of (SN ' )  is represented by curve 3 in Fig. 
1, which can be called the boundary of the critical region of 
the metal-insulator transition on the metal side. 

On the other hand, it is clear that in the insulator phase 
far from the metal-insulator transition the distribution of 
levels on the energy axis should be absolutely random (of the 
Poisson type). This is easiest to understand using the famil- 
iar Anderson model. The Hamiltonian of this model is 

where a: (a ,  ) are the creation (annihilation) operators of 
an electron at a site i in a lattice (for the sake of argument, a 
simple cubic lattice); j are the numbers of six nearest neigh- 
bors of the site i in the lattice; E~ is the random energy of the 
site i measured in units of the overlap integral I of the nearest 
sites and distributed uniformly between - Vand V. 

I t  is known that in the Anderson model an increase in V 
results in a metal-insulator transition at V= V, = 8  (Ref. 
5) .  Clearly, if V$ V,, we can ignore the overlap of the wave 
functions at the lattice sites and we find that the wave func- 
tions are localized at individual sites. In this case the distri- 
bution of the energy levels is practically identical with the 
distribution of the "bare" energies E , ,  i.e., it is absolutely 
random ( Poisson-type ) . We then have 

The result given by Eq. ( 9 )  is represented by a straight line 4 
in Fig. 1. 

I t  therefore follows that we now know the dependence 
of ( S N 2 )  on E on both sides of the critical region near the 
metal-insulator transition. We shall therefore determine 
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how the transition takes place between these sides, i.e., how 
(SN ') behaves in the critical region near the metal-insulator 
transition. 

3. QUALITATIVE BEHAVIOR OF ([6N(E )I2) IN THE CRITICAL 
REGION 

I t  is natural to begin an analysis of the critical region 
from the metal-insulator transition point itself. I t  follows 
from the scaling theory that if T = 0  then at the transition 
point the admittance and the diffusion coefficient depend in 
such a way on the spatial scale L  that the admittance of a 
cube of any size L  is G,, which is independent of L.  Accord- 
ing to the majority of the modern data,' we have 

It  follows from Eq. ( 10) that 

where g  is the density of states at the Fermi level. Conse- 
quently, in the case of a cube of size L,  we have 

i.e., Ec 5 A, where A  - (gL 3 ,  - '  is the average separation 
between the levels. Clearly, in this case the range of validity 
of the Dyson formula, E  5 Ec,  generally vanishes. For all the 
energies E  > A  the inequality E b  E, is satisfied at the transi- 
tion point. We can then estimate ( S N 2 )  using Eq. ( 6 ) .  In  
using this equation we need to find first the size L ( E )  of the 
tiny cube through which an electron runs in a time W E .  The 
quantity L ( E )  is described by 

Substituting Eq. ( 1  1 )  into Eq. ( 1 3 ) ,  we obtain L  
= fiG,/gEe2 or, from Eqs. ( 6 )  and ( l o ) ,  

where p-0.25. 
Therefore, at the transition point, as well as deep inside 

the insulator, we have ( S N 2 )  a ( N ( E ) ) ,  but the magnitude 
of the fluctuations (SN 2 ,  is approximately 4  times less. The 
result given by Eq. ( 14) is represented by straight line 5  in 
Fig. 1 .  

In fact, we do not note the exact value of the coefficient 
p. This is because Ref. 13 simply gives the order of magni- 
tude since the diffusion coefficient D  depends critically not 
only on the energy, but also on the frequency and wave vec- 
tor. We were unable to include these dependences within the 
framework of the one-parameter scaling treatment without 
additional assumptions. However, in our opinion the most 
important conclusion is that the ratio (SN 2 ) / ( N ( E ) )  in the 
critical region is equal to a constant smaller than unity. 

We shall now consider the critical region on the metal 
side (i.e., the region between curves 3 and 5 in Fig. 1 ) .  We 
shall do this bearing in mind that in this region Eq. ( 1 1 )  is 
valid only for scales L  such that L  < f ,  where f is the correla- 
tion length of the metal-insulator transition. In the Ander- 
son model this correlation length can be written in the form 

where a  is the lattice constant. If L  $6, then instead of Eq. 
( l l ) ,  we now have 

We shall consider such values of V, - V that L $ f $ a .  I t  
then follows from Eq. ( 16) that 

and if Ec (6) $ E> A, then the Dyson formula (4)  should 
apply. If E$Ec ( f ) ,  then Eq. ( 6 )  applies and L ( E )  can be 
found from the condition D ( f ) f i / E  = L  f, ( f ) ,  i.e., 

Equation ( 1 8 )  is meaningful only if L ( f )  $6, i.e., if 

In the opposite limiting case of E  > A ( f )  or L,  ( 6 )  < f ,  the 
behavior of (SN ' )  should be indistinguishable from the be- 
havior of the transition point, i.e., it should be identical with 
Eq. ( 14).  The expected nature of the dependence of (SN *)/ 
( N )  on E  in the critical region is represented by curve 6 in 
Fig. 1 .  On increase in 6 the points at  both kinks (gL 2 f )  -' 
and ( g c  3 ,  -' approach A  and the dependence becomes prac- 
tically indistinguishable from Eq. ( 14) (curve 5  ) if <z L. 
Conversely, when f  is reduced to a, curve 6  is converted to 
curve 3. 

We shall now consider briefly the critical region but on 
the insulator side of the transition. In this case if E b  A ( c ) ,  
the repulsion between the levels is important in a region of 
space of dimensions much smaller than f and the fluctu- 
ations (SN ') are practically the same as at the transition 
point. If E< A(&) ,  the average separation between the levels 
is much greater than f ,  they overlap weakly, and the proxim- 
ity to the transition has no effect, because the fluctuations 
( S N 2 )  will be the same as well inside the insulator range. 
Therefore, the function (SN 2 ) / ( N ( E ) )  undergoes a one-pa- 
rameter transition from 1 t o p  to at E=. A  ( f )  (see curve 7 in 
Fig. 1 ). A reduction off from L  to a shifts the "knee" of this 
curve from E z  A  to E  = p. 

4. NUMERICAL EXPERIMENT 

The purpose of our modeling experiment was to check 
the scaling relationship of Fig. 1 in the case of a specific 
model of a disordered system. We used the Anderson model 
of Eq. ( 8 )  and considered a cube of 5  X 5 X 5  sites with peri- 
odic boundary conditions, i.e., we considered an unbounded 
simple cubic lattice in which the random energies E~ are peri- 
odic and the period amounts to five lattice constants along 
each coordinate. In this problem the levels are discrete, so 
that there is no question how to deal with broadened levels. 
The calculation procedure was as follows. A random num- 
ber generator created values of E, within the interval [ - V, 
V]. A 125 X 125 matrix of the Hamiltonian was diagonal- 
ized') and calculations were made of the numbers of levels 
within a band of energies of width E, = ( V + 6 ) / 2  centered 
on zero and in narrower bands of width Ei = E,/2"*, where 
i = l , 2 ,  and 3. Then each of these bands was divided into 2" 
strips of the same width: 

E,,=E,/2"E,/2k+"2, 
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where k = 1,2,3,4.  We calculated the number of levels N in 
the original bands and in each strip and then we averaged N 
and N over 2, strips of each width. The results were then 
averaged over -- 200 realizations of the energy E ,  and finally 
we found (SN2) = ( N 2 )  - ( N  )' for each width E,,. The 
width of the band E,, was so small that it was not possible to 
notice significant changes in the density of states from one 
strip to another within the band. It was therefore natural to 
assume that all the strips of one width were under the same 
statistical conditions and represented a single ensemble. 
This was checked by determining whether the initial width 
of the energy band E, had any significant effect (SN '). I t  was 
found that in the range V>3 the points corresponding to all 
the widths of the strips E,, were located near one curve. 
There was no systematic dependence on i. 

The behavior of (SN ' ) / (N(E) )  calculated for different 
values of V demonstrated by continuous curves in Fig. 2 
together with an estimated error. Roughly speaking, we can 
see that the results of a numerical calculation are in agree- 
ment with the theory. Firstly, in the case of a relatively good 
metal ( V = 3)  the behavior of ( [6N(E)  ] ') is indistinguish- 
able from that predicted by the Dyson formula. Secondly, as 
V increases, the deviation from the Dyson formula appears 
first of all at  higher energies, as expected theoretically. ( In  
the next section we shall consider in detail the dependence of 
( 6 N  ') on the energy E in the case of sufficiently small values 
of Vand we shall show that this dependence is in good agree- 
ment with the theory and is governed only by the admittance 
of a sample.) Thirdly, in the region of the transition 
( V = 7.5) we find that (SN2) / (N(E) )  is indeed not too far 
from 0.25. Fourthly, if Vis large, then ( S N 2 ) / ( N ( E ) )  ap- 
proaches unity. 

There are also some unexpected results. Firstly, at 
V =  99 the variance (SN2) / (N(E) )  is considerably less 
than unity at high values of ( N ( E )  ). This can be understood 
if we allow for the finite nature of the total number of levels, 
which is No = 125. Clearly, for a random system of No lev- 
els, we have 

We shall now consider the transition point. We can interpret 
Eq. ( 14) so that at the point of the metal-insulator transition 

FIG. 2. Dependences of ( G N 2 ) / ( N ( E )  ) on ( N ( E ) )  calculated on a com- 
puter for different degrees of disorder V: 1) 3; 2 )  5; 3 )  7 .5;  4 )  10; 5 )  15; 6 )  
30; 7 )  99; the dashed curve represents the Dyson formula ( 4 ) .  

in an infinite (unbounded) system the levels cluster (co- 
alesce) in groups of approximately four each, but otherwise 
their distribution is random. The conclusion that on 
allowance for the finite nature of No we have (SN *) = 0.25N 
applies to such a system. Finally, it seems likely that in the 
range of validity of the Dyson formula the quantity ( N ( E ) )  
of Eq. (4 )  can be replaced with m. We shall therefore assume 
that in the case of a bounded system when ( N ( E ) )  is com- 
parable with No and, instead of the dependence of (SN2)/  
( N ( E )  )_on ( N ( E )  ), we should compare the dependence of 
(SN2)/N on 8 with our theory. This modification of the 
results was carried out in Fig. 3. We can see that the right- 
hand sides of the graphs for V = 99 are no longer bent and 
agree well with the theoretical law predicting ( S N ~ ) / %  = 1. 

The second, more serious and not catered for by the 
transition from Fig. 2 to Fig. 3, unexpected feature is the 
absence of critical behavior of curves, i.e., their approach at 
high energies to a curve corresponding to the metal-insula- 
tor transition, which is manifested clearly in the theoretical 
results in Fig. 1. In general, the picture in Figs. 2 and 3 is 
smeared out compared with Fig. 1 to such an extent that we 
cannot say whether the transition takes place. As mentioned 
earlier, in the case of large systems we have V, z 8. However, 
we are speaking here of a tiny cube with periodic boundary 
conditions. These conditions might shift V, toward higher 
values, for example, to V,  =; 9-10. The region near these val- 
ues of V, was not investigated in small steps of V, as one 
would have to do it in investigating the critical behavior, 
because-on the one hand-the error of the results was too 
large for this procedure to be meaningful. On the other hand, 
the unexpectedly small values of (SN ' ) / (N  ) for V = 30 and 
15 and larger values for V =  7.5 limited so much the poten- 
tial critical region that we could not see how the "knees" 
corresponding to Fig. 1 could develop here. 

We can postulate two possible reasons for such a behav- 
ior of (sN')/R. The first is that the investigated system is 
simply too small to exhibit critical behavior. Unfortunately, 
because of the limited capacity of the computer (BESM-6) 
we were unable to check this hypothesis. Secondly, we could 
assume that smoothing out of all the singularities in Figs. 2 

FIG. 3. Same as in Fig. 2, but after conversion from ( N ( E ) )  to 
N  = ( N ( E ) )  [ I  - ( N ( E ) ) / N , , ]  allowing for the finite total number of 
levels N,,. The dashed curves correspond to: I )  Dyson formula ( 4 ) ;  11) Eq. 
( 9 ) ;  111) Eq. ( 1 4 ) .  
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and 3 is a consequence of the invalidity of the proposed scal- 
ing relationships in the case of the metal-insulator transition. 
Very roughly speaking we could imagine that for a given 
value of V  the fluctuations of the characteristic parameter 6 
from sample to sample near the transition could become so 
large that the whole pattern in Fig. 1 is essentially smeared 
out. It is possible that both factors are important in our case. 

5. CORRECTION TO THE DYSON FORMULA IN THE WEAK 
LOCALIZATION REGION 

It is clear from Fig. 3  that at low values V  = 3-5 the 
difference between (SN ' )  and the value predicted by the Dy- 
son formula ( 4 )  is small. However, this difference is signifi- 
cant and it increases with both Vand E. In the present sec- 
tion we shall consider the correction to the Dyson formula 
( 4 )  for a good metal, which is obtained using the impurity 
diagram technique, and we shall compare this correction 
with the results of computer calculations. 

The problem of fluctuations of the density of states and 
of the number of levels in a band of given width of a metal 
with impurities was solved in Ref. 2. It was shown there that 
fluctuations of the density of states are described by dia- 
grams containing two diffusion or two Cooper poles (see 
Fig. 3  in Ref. 2 ) .  These diagrams lead to the following 
expression for the mean square of the fluctuations of the 
number of states in a band of width E. 

where y is the width of a level and q = ( q ,  ,q,,q, ) is the 
momentum of a diffuson, which assumes values discrete and 
dependent on the boundary conditions. In a cube of side L in 
the case of periodic boundary conditions, which are used in 
the calculation on a computer, we have 

As shown in Ref. 2, inclusion of only the term with 
q = 0  in Eq. ( 19) yields an expression analogous to the Dy- 
son formula, or more exactly, differing from this formula 
only by aconstant and by replacement of N ( E )  with E / y .  In 
fact, the perturbation theory formula ( 1 9 )  is valid only if 
y> A, where A is the average spacing between the levels. If 
this condition is not satisfied, then in a study of the statistics 
of energy levels we have to go beyond the perturbation theo- 
ry framework (see, for example, Ref. 7) .  

We shall be interested in the case when y = 0 when the 
term with q = 0 in Eq. ( 19) generally becomes infinite. In 
fact, if the calculations are correct, we should obtain the 
Dyson formula. The difference between ( 6 N 2 )  and the Dy- 
son value ( S N 2 ) ,  is described by the sum of Eq. ( 19) with- 
out the term with q = 0 .  Using Eq. ( 2 0 ) ,  we now obtain 

If E%4r2E, ,  Eq. ( 2 1 )  reduces to Eq. ( 5 )  obtained in Ref. 2  
and the latter is insensitive to the boundary conditions. 
However, if E 5 4a2Ec,  then Eq. ( 2  1 ) describes the correc- 
tion to the Dyson formula valid in the weak localization re- 
gion. In particular, if E < 4 r 2 E c ,  then 

where G is the admittance of the sample associated with 
( N ( E ,  ) ) in accordance with Eq. ( 2 )  and 

It follows from Eq. ( 2 2 )  that in the case of a good metal 
the admittance can be found quite readily by investigating 
(SN 2 ,  corresponding to low values of ( N ( E )  ). 

On the other hand, the admittance of a cube in the case 
of weak disorder (at  low values V )  can be calculated analyti- 
cally if we allow for the scattering of an electron by each site 
in the Anderson model using the Born approximation. In 
this approximation the reciprocal of the free time is 

At the center of a zone of a simple cubic lattice with a period 
a  the density of states is 

In calculation of the diffusion coefficient, admittance, and 
mean free path we need the average of the square of the ve- 
locity on a constant-energy surface E  = 0 .  A calculation per- 
formed on a computer gives 

Using Eqs. ( 2 4 ) - ( 2 6 ) ,  we now obtain 

and 

Substituting Eq. ( 2 8 )  into Eq. ( 2 2 ) ,  we find that for E 
< 477%" and a cube of side L = 5a, we have 

Equation (21 ) can also yield the dependence of ( (SN 2 ,  

- (SN ' ) ,  ) 'I '  on Zv2 outside the linear range. A graph of 
this dependence obtained on a computer is represented by 
the continuous curve in Fig. 4.  The dashed curve in this fig- 
ure represents the asymptotic dependence (5 ) .  

Figure 4  shows the dependences of ( S N 2 )  
- (SN 2 ,  ) ' I 2  on @v2 plotted using the same data as in Fig. 
3. We shall first consider the results obtained for V<5. We 
can see that at low values  of@^ the dependences are linear, 
in agreement with Eq. ( 3 0 ) ,  and their general form is in 
agreement with the theory. However, the slope at low values 
N V 2  is somewhat less than 0.0057, which is not surprising 
because-according to Eq. (20)-we have I z a  already for 
V  = 3, i.e., the scattering is not weak. The Born approxima- 
tion can be improved by introducing in Eq. ( 2 4 )  a numerical 
factor A  - ' ( V 2 )  [ A ( O )  = 1 1 .  Then in Eqs. ( 2 7 ) - ( 2 9 )  the 
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quantities D, G, and I have an additional factor A  ( V  I ) .  Se- 
lecting this factor with the aid of Eq. (21 ), we can then de- 
scribe satisfactorily the experimental results obtained for all 
values in the range V ~ 5 . 5 .  By way of example, we show in 
Fig. 4 how the curve with A  ( V  ' )  = 1.5 describes the experi- 
mental results for V  = 5.5. The inset in Fig. 4 gives the values 
of A (  V 2 )  found in this way and the corresponding depen- 
dence I (  V 2 ) .  I t  is clear that the dependence A  ( V  ' )  is de- 
scribed by A ( V 2 )  = A ( O )  + BV2 with A ( 0 )  = 1 . 1  0.15, 
which is in agreement with the theoretical value A  ( 0 )  = 1 .  
Therefore, we can see that the numerical experiment in the 
metallic region is in good agreement with the theoretical 
predictions based on Eqs. ( 2  1 ) and (28  ) . 

We shall consider now the data of Fig. 4 for V>7.5. 
Clearly, the deviation from the curve corresponding to a 
good metal rises rapidly in the range V>7.5. In particular, it 
seems that for V  = 10 and 15 the difference 
( (SN 2,  - (SN ' ) ,  ) does not tend at all to zero on reduction 
in Zv2. However, this is an indication of the occurrence of 
the metal-insulator transition. 

6. DISTRIBUTION FUNCTION OFTHE SPACINGS BETWEEN 
THE NEAREST LEVELS 

The distribution of spacings between the nearest eigen- 
values of random matrices has been investigated on many 
 occasion^.^ In the matrices such that all the elements are 
distributed near zero and are characterized by the same vari- 
ance, we find that the probability density P ( s )  is described 
well by the Wigner formula 

where A  - ( s ) .  On the other hand, it is clear that if the diag- 
onal matrix elements are distributed at random between 
- V  and V, the off-diagonal elements vanish and we obtain 

the Poisson distribution 

FIG. 4. Dependences of [ (SN *) - ( S N ' ) ,  ] '"on KV',  where ( S N ' ) ,  is 
found from Eq. ( 4 )  for different values of V: 0) 3; A )  4.5; A)  5.5; 0) 7.5; 
*) 10; V)  15; .) 4; 0 )  5. The continuous curve is calculated using Eq. 
(21) for G corresponding to the theoretical formula (28);  the dashed 
curve represents Eq. (5) ,  which is valid in the case of asymptotically large 
E. The dash-dot curve is plotted on the basis of Eq. (21) for a value of G 
which is 1.5 times greater than Eq. (28) .  The inset shows the dependence 
of the correction factor A (  V 2 ,  and of the expression 1V2/a on V'.  

The distributions described by Eqs. ( 3  1 ) and ( 3 2 )  are repre- 
sented in Fig. 5  by continuous and dashed curves, respective- 
ly. 

Our aim was to investigate whether the transition from 
Eq. ( 3 1 )  to Eq. ( 3 2 )  occurs in the Anderson model on in- 
crease in V, i.e., on transition from a good metal to an insula- 
tor far from the transition. With this in mind we followed the 
diagonalization of the Anderson Hamiltonian by calcula- 
tions of the spacing between the nearest levels in a band cen- 
tered around E = 0  and ofwidth E, = ( V  + 6 ) / 2 ,  where the 
density of states was assumed to be practically constant. The 
region 0  < s < 2A was divided into 20 segments and sorting of 
the values in these segments was carried out. The values in 
the range s  > 2A were not sorted, but P ( s )  was normalized 
within the interval [ 0 ,  rn 1. 

Figure 5  shows the functions found in this way for 
V =  7.5, 15, and 30. If V =  3, the experimental curve for 
P ( s )  is practically indistinguishable from the Wigner distri- 
bution of Eq. (31 ). A similar result for a good metal was 
obtained recently in Ref. 9 for the Anderson model with a 
Gaussian distribution of the energies E ~ .  At  V  = 5  in the re- 
gion of s z  1.2A there is a small reduction in P ( s )  compared 
with Eq. (31 ). At V  = 7.5 this effect is much stronger (Fig. 
5 ) .  There is a simultaneous increase in P ( s )  in the region of 
the tail of the function (s > 2 A ) ,  which is noticeable on in- 
crease of its contribution to the normalization. However, it 
must be stressed that right up to V  = 7.5 there is no change 
in P ( s )  in the region of the rise, i.e., in the region where 
s / A  < 0.7.  Beginning from V  = 10 the nature of the evolu- 
tion of P ( s )  on increase in V  changes. These curves show a 
rapid rise of P ( s )  at low values of s  and the maximum shifts 
toward small values ofs. The curves approach Eq. ( 3 2 ) ,  with 
the exception of the range of very small values of s .  In our 
opinion, this behavior is evidence of a transition to the insu- 
lator phase. In  the case of an insulator cube of infinite dimen- 
sions the function P ( s )  should tend to unity for s -0 .  This 
occurs because the wave functions of levels adjacent on the 

FIG. 5. Distribution function representing the difference between the en- 
ergies of two adjacent levels P ( s )  calculated for different values of V: 0 )  
7.5; A)  15; 0 )  30. The continuous curve corresponds to the Wigner for- 
mula of Eq. ( 3  1 ) and the dashed curve corresponds to Eq. (32).  
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energy scale are usually localized in different parts of space. 
The exponential tails of these functions overlap so little that 
the repulsion of the levels can be ignored. On the other hand, 
in a small cube there is a minimum splitting of initially very 
closely spaced levels and this limitation is imposed by the 
size of the cube. This is responsible vanishing of P ( s )  in the 
limit s -0 .  If V = 30, we can investigate how the dip of P ( s )  
in the limit s - 0  increases on reduction in the cube side from 
5 to 4 and then to 3, and we can thus demonstrate that the dip 
is related to a boundary effect. 

We shall now consider the asymptotic behavior of P ( s )  
at high values of s. It is natural to consider how a transition 
takes place between two very different types of asymptotic 
behavior described by Eqs. ( 3 1 )  and ( 3 2 ) .  We shall show 
now that this transition is related to the gradual change in 
the nature of the dependence of (SN ' )  on ( N  ) on increase in 
Vinvestigated above. In fact, the probability of the absence 
of any level in a band of width s, where on the average there 
are ( N  ) levels, can be estimated in the range of relatively 
small Gaussian fluctuations: 

In the case of an insulator, when Eq. (9 )  applies, we can 
readily deduce Eq. ( 3 2 )  from Eq. ( 3 3 ) .  A reduction in V 
reduces (SN 2 ,  and, consequently, increases the rate of fall of 
P ( s ) .  At the insulator-metal transition we obtain from Eqs. 
( 3 3 )  and ( 1 4 )  the following probability: 

The fall in accordance with Eq. ( 3 4 ) ,  although it is faster 
than that predicted by Eq. ( 3 2 ) ,  is still slower than that 
described by Eq. ( 3  1 ) . In the critical region on the insulator 
side an increase ins results in a change from the intermediate 
asymptote of Eq. ( 3 2 )  through a distant asymptote of Eq. 
( 3 4 ) .  

On the metal side the situation is even more complex. 
For example, even in the case of a good metal ass  increases, 
the law describing the fall of P ( s )  changes twice. In the inter- 
vals 1 )  A < s < E , ,  2 )  E, < s < f i / r ,  and 3 )  f i / r < s < p ,  we 
find that instead of ( S N 2 ( s ) ) ,  we should substitute in Eq. 
( 3 4 )  the formulas (4), (51, and ( 7 ) .  In the third interval 
( W r < s < , u ) ,  we find that 

is a law similar to Eq. ( 3  I ) ,  but the dependence is weaker 
because of the small numerical coefficient. In the second 
interval ( E ,  < s  < f i / r )  the behavior of P ( s )  is quite unusual: 

Finally, in the interval A < s  < E, , we find from Eqs. ( 4 )  and 
( 3 3 )  that 

P (s) a exp {-s2/A2 ln(s /A)  ) , ( 3 7 )  

which differs from the familiar expression ( 3 1 )  only by a 
logarithmic factor in the argument of the exponential func- 
tion. We shall now show why in fact this logarithmic factor 
may be absent and in the range of validity of the Dyson for- 
mula ( 4 )  we can substitute for ( S N 2 )  in Eq. ( 3 3 )  a quantity 
of the order of unity, which leads directly to Eq. ( 3  1 ) . This is 
because the Dyson formula ( 4 )  was obtained by summing 
the mean squares of fluctuations of the number of levels of 
different scales,* and the smaller the scale, the greater ampli- 
tude of the fluctuations of the level number density, so that 
the contribution to (SN ' )  from all the scales separately is the 
same and is of the order of unity. In the case of a very im- 
probable fluctuation of interest to us the density of levels 
vanishes in a certain segment of width s and, therefore, the 
amplitude of the fluctuations of the density of all scales is the 
same and is given by ( N ( s ) ) / s .  In this situation only the 
largest scale of s  is important and instead of ( S N 2 )  in Eq. 
( 3 3 )  we have to substitute a value of the order of unity. We 
shall limit ourselves to qualitative ideas, because the behav- 
ior of P ( s )  at large values ofs was not investigated by us on a 
computer. Those changes in the contribution of the tail of 
P ( s )  to the normalization which can be seen in Fig. 5 are not 
in conflict with the above ideas. 

Note added in proof {February 10, 1988). Additional 
calculations yielded the function P ( s )  in the range 2  < s < 4. 
The results are in good agreement with Eq. ( 3 3 ) .  They will 
be published later [I. Kh. Zharekeshev, Fiz. Tverd. Tela 
(Leningrad) (in press) 1. 

The authors are grateful to F. M. Izrailev who stimulat- 
ed the work reported above. 

"Programs for inputting the matrix (8)  into a computer were checked by 
diagonalization and sorting of levels in the case when V = 0, i.e., when 
there was no scatter of E , .  The energy and degree of degeneracy of the 
levels in a 5 X 5 X 5 cube at V = 0 were readily found analytically using 
the tight-binding method. The computer calculations agreed with these 
analytic results. 
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