
Bound states of electron and optlcal phonon in a quantum well 
S. M. Badalyanl) and I. B. Levinson 

Institute for Problems of Technology, Microelectronics, and Specially Pure Materials, USSR 
Academy of Sciences 
(Submitted 10 July 1987) 
Zh. Eksp. Teor. Fiz. 94,371-378 (March 1988) 

The spectrum of a polaron in a magnetic field perpendicular to the walls of a quantum well is 
investigated. It is shown that a bound state of an electron with an optical phonon exists. 

1. INTRODUCTION 

It was shown in Refs. 1-3 (see also the reviews4.')that 
bound itinerant electron + longitudinal optical (LO) 
phonon states exist in a quantizing field. The energy of these 
states lies near the threshold of LO-phonon emission by an 
electron in a lower Landau band. After emitting the LO 
phonon, the electron is located on the bottom of the Landau 
band, where the density of states is high. Therefore the effec- 
tive interaction in the near-threshold region is strong even in 
the case of weak electron-phonon coupling. If the cyclotron 
frequency w, = eH/mc is of the order of the LO-phonon 
frequency w,, the binding energy is W--a2&,, where a is 
the Frolich coupling constant. In most 111-V semiconduc- 
tors a S 0.1, so that the binding energy is quite small, 
W S  0.3 MeV. This may be one of the reasons why no bound 
states were observed in the absorption spectra. 

If the electron motion along H is bounded by the walls 
of a quantum well, the density of the states on the bottom of 
the Landau band changes from a square-root singularity to 
the stronger delta function. The binding energy for such a 2 0  
electron should therefore be higher than for a 3 0  electron. 

We obtain in the present paper the bound states of an 
electron with an LO phonon in a quantum well with walls are 
perpendicular to H. The well walls are assumed for simpli- 
citl; to be infinitely high, so that the wave functions and 
energy sf an electron moving along z((H are 

where d is the width of the well. It is assumed also that the 
well is narrow enough, i.e., E2 - E, )fiwo,fiwH. 

In contrast to an electron, an LO phonon is not always 
localized in a quantum well. We consider therefore two 
limiting cases; of a nonlocalized 3 0  /LO phonon, when its 
wave function for motion along z is 

( 2 )  

and of a localized 2 0  /LO phonon, when 

qnII  (z) = (21d)'" sin qllz, qll=nnld, n=l,  2, . . . . (3)  

Here L is the normalized volume. The dispersion of the LO 
phonon is neglected: w (q) = w,. 

The energy levels are shown in Fig. 1. The lower thick 

line is the bottom of the conduction band. The energy is 
reckoned from the lower electron level, whose height above 
the bottom is E, + fiwH/2. The dashed line shows the 
threshold Ec = ho near which the bound states of interest 
to us are located. 

2. BOUND STATES 

Bound states are sought by the samemethod as in Ref. 3 
for the 3 0  case, viz., as the poles of the scattering amplitude 
8. The equation for Z is illustrated in Fig. 2. In this equation 
E is the total energy of the electron and phonon (we put 
f i  = 1 for brevity). The equation is written in the gauge-in- 
variant t e~hnique ,~  therefore only the numbers of the Lan- 
dau band is used for the electron (solid lines) and the gauge- 
noninvariant quantum number k, is absent. The electron 
Green's function G is diagonal in s (Ref. 6 )  but is not diag- 
onal in k. The assumption E, - E, b w,, a,, however, per- 
mits neglect ofthe off-diagonal elements G,,. . In the danger- 
ous cross section contained in the second term of the 
right-hand side of the equation in Fig. 2, the function G can 
be taken without allowance for the interaction with the 
phonons, and only the term iS = 1 is to be retained in the 
summation over E.  All the foregoing allows us to put every- 
where k = 1 (and omit this subscript hereafter), so that 

Integration was carried out over the energy parameter 
of the phonon, so that the phonon propagator-the dashed 
line-corresponds to the matrix element 

B ( q )  =Boo ( q ) ,  
.Bo=xa (polm)z, po'=2mwo, 

d 

Po 
Q ( ~ I = ?  I j d.19 (2) I 'qqIl (z) ( - o n  (ql) - 

q, + q , , I  0 

( 5 )  

FIG. 1 .  Energy levels. 
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FIG. 3. Bare amplitude. 

FIG. 2. Equation for the scattering amplitude. i ' ( ~ ;  t t 1 ) = [ 8 ( t ) @ ( t r )  ]-'12 z @ . ( t )  m., ( ~ O E , . ~ ( E ;  t i T ) ,  
nn' 

The diagrams that contribute to the irreducible ampli- b i ( t t ' ) = [ @ ( t )  ~ ( t ' )  ] ' Q ( t t r )  . 
tude are shown in Fig. 3. The point corresponds to a 
gauge-invariant part of the electron-phonon interaction ver- (11) 

tex: Transforming to the dimensionless quantities 

~ ' ( t t ' ) = - o , I ? ( & ;  t t ' ) ,  ~ ' ( t t ' ) = - o o 6 ' ( t t f ) ,  

( 6 )  
we obtain the final equation 

where L are Laguerre polynomials and q, is the polar angle of 
the vector q, . mz 

To find the spectrum of the bound states near the R '  ( t t ' )  =I(' ( I t r )  +h j d i  K' ( t i )  R' ( i t 1 ) .  
threshold E z E, it suffices to consider the amplitude 2 for O 

s = s' = 0. By analogy with Ref. 3, we introduce the Fourier 
( 1 3 )  

components Thus, R is the Fredholm resolvent of the kernel K, which we 

2n 
now write out in explicit form 

where 1 = 0, + 1, + 2, . . . . Fourier components with differ- 
ent 1 satisfy the independent equations 

where 0' is defined by analogy with 2' and 

,Zi ( e )  - - C L O H O ~ ( E - ~ ~ + ~ O ) - ~ .  ( 9 )  

The equation for the amplitude X' is simplified by sym- 
metrizing it and averaging over n.  We introduce for this pur- 
pose the averaged form factor 

and new amplitudes 

Here a = o,/w,, and the two terms in the square brackets 
are connected with the two terms of Fig. 3. 

We see now that the amplitude 2' has a pole in E ifil ( E )  

coincides with an eigenvalue of the kernel K ' .  In other 
words, the equation for the energies of the bound states of the 
electron and phonon is 

where the subscript r numbers different eigenvalues of the 
kernel K'. It follows from ( 1 5 )  that the energies of the 
bound states are 

In the case of a 3 0  electron the bound states appeared 
only below the threshold, for in this case a continuum of two- 
particle electron + phonon states is located above the 
threshold. There is no such continuum for the 2 0  electron, 
so that bound states are present both below the threshold 
( W >  0 )  and above it ( W <  0 ) .  This means that the energies 
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of the bound states are determined, according to (16), by 
eigenvalues of both signs. 

3. INTRABAND ABSORPTION 

Bound states should appear in the absorption spectrum 
of light at a frequency w zw,. On absorbing a photon of this 
frequency, the electron remains on the initial energy level, 
and a phonon that is bound to the electron is created. If it is 
assumed, as in Ref. 7, that the temperature and density of the 
carrier are low enough, so that T g  Wor E, < W, the absorp- 
tion coefficient can be expressed in terms of the scattering 
amplitude 2.  It is assumed that the light propagates along z, 
has circular polarization, all the electron are on the level 
k = 1, and s = 0. Proceeding as in Ref. 8, we can show that 
the light-energy fraction absorbed in the quantum well is 

The plus and minus signs pertain here to right-hand and left- 
hand polarization of the light, and ~ ( w )  is the dielectric 
constant of the well walls. Next, 

where II * (w; z,, z,) is the photon polarization operator in 
the coordinate representation. Proceeding as in Ref. 7, we 
can find an expression in terms of the scattering amplitude 
X1withl= + 1: 

Here ,N is the carrier density per cm2 of quantum-well wall 
area, and 

di = 5 d t  ( t )  . 

m 

R* = j J d t  d t t  c - ' l a ( t + t )  ( t t 1 ) " [ i ~ ( t ) l ) ( t 1 )  ( t t ' ) .  

Expanding the resolvent R as a sum over the poles, we 
obtain ultimately 

The oscillator strength for a transition to a bound state r with 
I = If 1 is here 

OH d t  e - l / z t ' " ~  ( t )  '"XF*l ( r )  (22) 

wherex, ( t )  is an eigenfunction of the kernel ( 14). Using the 
completeness of the system of functionsx,, it is easily shown 
that 

Note that the first term in the square brackets in ( 19) 

corresponds to a perturbation-theory calculation of the ab- 
sorption and yields a delta-like absorption peak at the 
threshold for w = w,. Actually, however there is no such 
peak in absorption, since it is cancelled out when the second 
term is taken into account. Recall that in the 3 0  case this 
corresponded to transformation of the singularity 
(a - 0,) - ' I 2 ,  which becomes infinite at the threshold, into 
the singularity (w - 0,) ' I 2 ,  which goes to zero.' 

4. BINDING ENERGIES ANDOSCILLATOR STRENGTHS 

The actual calculation of the binding energy and of the 
oscillator strengths can be carried out by considering the 
limiting situations-strong and weak fields H (i.e., w, Bw, 
and w, gw,). Using the condition that the well be narrow, 
which is equivalent to d(a,p,-', we find first the averaged 
form factors ( 10) and (20). For nonlocalized 3 0  /LO phon- 
ons we have 

4 t 2 ( t ) ' ,  i6 = (no) '". (24) 

For localized 2 0  /LO phonons, 

cf, ( t )  =di =b6'". (25 

where 

1 
b = (p) , L = ~  7 1 o j d e  sin2 t sin ng I = 0.46. 

fi=O)Oi(~)d=(pOd/lC) '. (26) 
In the 3 0  /LO case the well width d does not enter in the 

kernel (14). The binding energies and the oscillator 
strengths are therefore independent of d (so long as d g a ,  
p,-I). In the 2D/LO case the well width d enters in the 
kernel only as a factor d. Therefore the eigenvalues A, ad,  
and the eigenfunctions X, are independent of d. From this, 
using (16) and (22), we easily find the dependences of the 
binding energies and of the oscillator strengths on d: 

Moreover, comparing the form factors (24) and (25) in the 
kernel (14), we see that 

i.e., the binding energies and the oscillator strengths de- 
crease as the phonon becomes localized. The reason is that 
for 3 0  /LO the actual phonon momentum in the matrix ele- 
ment (5)  is qll =a-' ,  as against qll z d  - '  for 2D/LO. In the 
calculation of Wand f below we confine ourselves to the 
branches 1 = f 1, for only they enter in the intraband ab- 
sorption coefficient in the region w zw,. 

StrongJields (041). In strong fields only the term s = 0 
is to be retained in the sum ( 14), so that 

We see hence that the spectra and oscillator strengths of the 
branches I = 1 and I = - 1 are obtained from each other by 
mirror reflection about the threshold. All the physical pa- 
rameters, particularly d and H, enter in the kernel K * ' only 
in the form of multipliers (via the from factors). The binding 
energies and the oscillator strengths of all the states depend 
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on d and H in like manner. All these conclusions are inde- 
pendent of the degree of localization of the phonon. 

For 2 0  /LO, the kernel K' (14) differs only by a factor 
from the kernel investigated in Ref. 3. Therefore, borrowing 
the eigenvalues and eigenfunctions from this reference, we 

get 

wherep = (5'12 - 1)/2 = 0.618 ..., r = 0,1,2 ,... . 
No resolvent could be found for 3D/LO. It is easily 

seen, however, that 

where 2, and i, are the eigenvalues and eigenfunctions of 
the kernel 

Since this kernel contains no parameter, it follows that 2 ,  
and the integral in ( 3  1 ) are of order unity. Using, as in Ref. 
3, the Sylvester determinants of the kernel (32), we can 
show that eigenvalues of either sign exist, and their number 
is infinite. 

Weakjields (~$1). In this case the kernel K' ( 14) can 
be approximated by a sequence of degenerate kernels? 
Omitting the calculations, we present only the results. 

In the lowest order in H w e  get three bound states above 
the threshold: two with I = + 1 and one with 1 = - 1. For 
2 0  /LO we have 

For 3 0  /LO we have 

It is seen from these equations that the state with 
I = - 1 is located between the two states with I = + 1 and 
the oscillator strength of the state with I = - 1 is the sum of 
the oscillator strengths of the two states with I = + 1. 

In higher orders in H, bound states appear with binding 
energies and oscillator strengths proportional to higher 
powers of H. 

It is clear from the results of the calculations for W, and 
f, that the absorption spectrum in both right and left polar- 
ization should constitute an "asymmetric doublet" (Fig. 4) .  
In a strong field H this is asymmetry with respect to a nu- 
merical parameter of type p,  and in a weak field-with re- 
spect to the large parameter a. 

FIG. 4. Spectrum of absorption of bound states 

5. NUMERICAL ESTIMATES 

It is clear from the results of Sec. 4 that the most favor- 
able object for the observation of bound states in an absorp- 
tion spectrum is a quantum well in which the LO phonon is 
not localized. This situation obtains in 
Ga, , Al, As/ GaAs / G a l  - , Al, As structures with small x. 
For example, at x = 0.3 the frequency of the LO oscillations 
of GaAs changes little on going from pure GaAs to the alloy 
Gal  , A l , A s ,  viz., from 292 to 281 cm-' (Ref. 9).  The 
degree of localization of the LO phonon should therefore be 
small. 

We choose for the estimates a GaAs quantum well with 
d = 100 A, where h, = 57 meV and E, - E,  = 170 meV, 
approximately five times larger than h, = 36 meV. Since 
k, = 17 meV even in a strong field H = 100 kOe, the as- 
sumption that the well is narrow is well justified. 

In a field H = 100 kOe we have a = 2.1 and we can use 
Eqs. (34) for the estimates. This yields 

Since these bound states lie above the threshold, their 
observation should not be hindered by strong lattice reflec- 
tion, as was the case for 3 0  electrons, when all the bound 
states were below the threshold. 

To estimate the absorbed energy fraction (21) we re- 
place the delta function by a Lorentzian having a width cor- 
responding to the lifetime r. At the absorption maximum we 
have then I T I ~ ( W )  -7, SO that 

We assume for the estimate JY = 5.10" cm-2 and r = 10 ps 
(corresponding to a mobility ,u = 2.5. lo5 V.cm2/s2. We ob- 
tain then w =:O. 1 for f = 0.04. Recalculation to the bulk ab- 
sorption coefficient x = w/d yields x=: lo5 cm-' (at a bulk 
density N / d  = 5.10" cm-9) .  
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