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A mechanism is proposed which allows one to solve naturally the problem of doublet-triplet mass 
hierarchy in theSU(5) supersymmetric theory. The mechanism consists in making the Higgs 
doublets be pseudo-Goldstone bosons of a spontaneously broken SU(6)  symmetry of the 
superpotential symmetry which contains theSU(5) gauge symmetry as a subgroup. The doublets 
remain massless even after the radiative corrections are taken into account, as long as 
supersymmetry is not violated, but they acquire, in general, a mass of the order of the scale of 
supersymmetry breaking. The proposed mechanism is investigated in detail for the case of soft 
supersymmetry breaking by supergravity. The proposed model allows one to calculate the 
parameters of the low-energy Lagrangian which are usually considered to be phenomenological 
constants. The breaking of electroweak symmetry is related to radiative corrections. The mass of 
the lightest scalar Higgs boson also is of a radiative nature and its magnitude turns out to be close 
to 2.2 GeV. The Yukawa interaction of the t-quark is essential for the spontaneous symmetry 
breaking. The theory sets an upper bound of 52 GeV for the mass of the t-quark. 

1. INTRODUCTION the mass of the triplet is rn + 3 f M / A  and that of the doublet 

Any grand unified theory runs into the well-known is m - 3 f M /A.  Thus, in order to have massless doublets it is 

"hierarchy problem," i.e., the problem of existence of at necessary to impose the relation 

least two mass scales differing by many orders of magnitude. m=SfM/h. (1.4) 
For the SU(5)  theory the masses of the Higgs bosons ( a  
colorless weak doublet and a color triplet which is a weak 
singlet) belonging to one quintuplet of the group SU(5)  
must differ by 13-14 orders of magnitude, since the triplet 
exchange induces proton decay, whereas the doublet is the 
usual Glashow-Weinberg-Salam doublet. The most difficult 
part of this problem is naturally solved within the supersym- 
metric version of grand unification: The radiative correc- 
tions do not violate the hierarchy contained in the tree ap- 
pro~imation.l-~ Nevertheless, the desired hierarchy is 
realized by means of "fine tuning" of the parameters of the 
initial Lagrangian in the tree approximation. 

Consider, for instance, a minimal supersymmetric 
SU(5)  theory. Such a theory contains the following Higgs 
fields: a g - u p l e t  Q, a 5-plet H I ,  and a2*-plet HZLwGch Ere 
the scalar components of the chiral superfields Q, H,, H,. 
The most general form of the superpotential in such a theory 
is 

1 h 
w = ; ; - ~ ~ p @ ~ + - S ~ @ ~ t f ( B , @ A J + m A ~ 1 ; 1 ~ ,  - 3 (1.1) 

from which we immediately find the following expression 
for the Higgs potential: 

V=Spl M @ f h C ~ ~ - ' l ~ S p  (D2+fH,X11112 
+Hz(rn+f@) (m+f@+)liz++Hl+(m+f@+) (m+f@)H,. (1.2) 

The supersymmetric minimum of V( V = 0 )  

corresponds to spontaneous breaking SU(5)-SU(3)  
XSU(2) X U( 1 ) of the symmetry. It follows from Eq. ( 1.1) 
that the masses of the H, and H, are equal to m + f (@), i.e., 

Eq. ( 1.4) guarantees the masslessness of the doublet Higgs 
fields in the tree approximation. The radiative corrections 
lead, in general, to some renormalization of the parameters 
M, A, f ,  m which appear in the superpotential ( 1.1 ), but only 
on account of wave-function renormalizations. This means 
that the particles whose masses vanish in the tree approxi- 
mation remain massless also when the radiative corrections 
are taken into account (the mass terms in the Lagrangian 
acquire only Dyson factors Z related to the renormalization 
of the appropriate wave functions). Thus, the masslessness 
of the doublets is not violated by radiative corrections and 
the doublets acquire a mass only at a scale where supersym- 
metry is violated. Nevertheless, the relation (1.4) in itself 
seems extremely artificial. 

Earlier a series of authors have attempted to explain the 
doublet-triplet hierarchy in a natural manner. In Ref. 4 this 
hierarchy was guaranteed by a special group structure of the 
Higgs sector (the "omitted-partner mechanism"). Unfortu- 
nately, this leads to a very complicated Higgs content of the 
theory. In Ref. 5 the hierarchy was the result of a "sliding 
singlet" rne~han i sm.~  Later some criticism was expressed 
with regard to this mechanism, in particular, arguments 
which indicated that the theory must be unstable with re- 
spect to a violation of supersymmetry in the hidden sector at 
an energy - 10" GeV (Ref. 7).  

A relatively simple method was proposed in Refs. 8, 9. 
It implies, however, either e ~ p l i c i t , ~  or less explicitX fine tun- 
ing. In implicit form this amounted to assuming the equality 
of the coupling constants of the singlet and 24-uplet of Higgs 
fields. This equality is not related to any group symmetry 
and represents a variety of fine tuning. The exact massless- 
ness of the doublets was guaranteed only by supersymmetry 
and, like the above-mentioned relation ( 1.4), it does not 
seem natural. 
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In Refs. 10 a local SU(6)  symmetry was considered. 
Here again one must deal with an extremely complicated 
Higgs sector. 

Finally, in connection with superstring models, the 
group E, was discussed in Ref. 1 1. 

We restrict our attention to the simplest SU(5  )-super- 
symmetric theory with an almost minimal Higgs content. 
We shall propose a very simple mechanism which automati- 
cally guarantees the masslessness of doublets at the grand 
unification scale M. In the proposed model the doublets are 
pseudo-Goldstone bosons of a definite broken global sym- 
metry of the superpotential which is not a symmetry of the 
whole theory. More precisely: one of the two Higgs doublets 
is a pseudo-Goldstone boson, whereas the second remains 
massless as the superpartner of the first doublet. When the 
explicit soft supersymmetry breaking on account of super- 
gravity '' is included, the first doublet remains massless. This 
occurs because the supersymmetry-violating terms also ex- 
hibit the putative global symmetry. Therefore the spectrum 
contains, as before, a pseudo-Goldstone particle. The second 
Higgs boson acquires a mass of the order m,,,, the gravitino 
mass. Finally, the radiative corrections from the gauge and 
Yukawa interactions lead to a nonzero mass also for the first 
Higgs doublet, since these interactions do not exhibit the 
global symmetry under discussion and supersymmetry is 
broken. Thus, the mass of the lightest Higgs boson, just like 
the breaking of the standard group SU(5)  -SU(3) 
XSU(2) X U( I ) ,  is due to radiative corrections. 

Obviously, this scenario consists of two distinct parts: 
the first part relates to a theory with unbroken supersym- 
metry, where strict masslessness of the doublets is assured. It 
seems that this mechanism has a relatively general charac- 
ter, we called it GIFT ("Goldstones Instead of Fine Tun- 
ing"). The second part is related to the explicit form of su- 
persymmetry breaking; here it turns out to be possible to 
develop an effective low-energy theory and derive definite 
predictions for experiments. The discussion here is similar to 
that in Refs. 13-1 8. In fact, the GIFT mechanism allows one 
to calculate the values of the parameters of the effective low- 
energy Lagrangian which are usually assumed to be arbi- 
trary phenomenological constants. As in Refs. 13-18, it 
turns out that the Yukawa coupling is essential for the viola- 
tion of the electroweak group, particularly the Yukawa in- 
teraction of the heaviest t-quark. The t-quark mass is found 
to be of order 40-50 GeV and its exact value depends on an 
unknown numerical parameter A ,  the magnitude of which is 
determined by the properties of the theory in the hidden 
supergravity sector. There exists, however, an upper bound 
of 52 GeV on the mass of this quark, independent of A .  The 
most interesting quantity which, it appears, c211 be comput- 
ed almost exactly, is the mass of the lightest Higgs boson. It 
is equal to 2.25 GeV. 

The paper is organized as follows. In Sec. 2 the GIFT 
mechanism is described in the context of the simplest super- 
symmetric SU(5) theory. In Sec. 3 a consistent low-energy 
model is formulated on the basis of the assumption that su- 
persymmetry is broken on account of supergravity. In Sec. 4 
the renormalization of the parameters of the effective low- 
energy Lagrangian is calculated, the question of breaking of 
the electroweak group is considered, and the masses of all 
particles are estimated. In Sec. 5 a slightly different mecha- 
nism responsible for the electroweak breaking is consid- 

ered-a mechanism of the Coleman-Weinberg type. Finally, 
Sec. 6 summarizes the results. 

2. A SOLUTION TO THE HIERARCHY PROBLEM 

The simplest possible Higgs content in a supersymme- 
tric SU(5)  grand unified theory consists of two quintuplets, 
H I  - 5 and H2 - 5*, and one 24-uplet, @ -24. All these fields 
are scalar c o m s n e n ~  o ~ t h ~ c o r r e s p o n d i n g  chiral fields, 
which we denote by H I ,  H,, @. To these fields we add the 
SU( 5 )-singlet chiral field $. The 35 resulting fields can be 
assigned to the unique adjoint representation %f the group 
SU(6)  which contains SU(5)  as a suigroupAIf z-g of the 
group SU(6)  then the reduction of Z into H I ,  H,, @ and $ 
has the form 

where the "hypercharge" matrix ofSU(6) ,  Y,, = [ - 5/30, 
1/30 ,..., 1/30] ,,, is normalized to unity, T r  Y :, = 1, as are 
the other generators. 

We assume that the Higgs sector of the theory exhibits a 
higher symmetry than the SU(5)  gauge symmetry, namely 
the global SU(6)  symmetry. Tken the superpotential which 
depends only on the one field Z has the simplest form 

In terms of the SU(5)  fields Eq. (2.2) implies, of 
course, a relation between the constants of the superpoten- 
tial expressed in terms of @, H I ,  Hz, p. From (2.2) one ob- 
tains easily the following expression for W: 

For the general y s e  of SU(n)  symmetry a superpotential of 
the type (2.2) (2 -n2  - 1) leads to the potential 

where jM Z + . . . I 2  denotes the product of the matrix 

by its hermitean adjoint. 
There exists a series of supersymmetric vacua with zero 

energy, corresponding to the symmetry breaking: 

(m = 1, ..., n - 1 ) .  The vacuum expectation values ( 2 )  in 
these vacua are 

M n-m 
x=-- M -m 

2rn-n ' '=--a h 2m-n 
(2.6) 
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Any of these zero-energy states can be chosen as the real 
physical ground state. 

We assume that for the SU(6)  -symmetric potential the 
ground state corresponds to an unbroken SU(4)  
XSU(2) X U( 1 ) symmetry, i.e., 

As can be seen from the decomposition (2.1 ), in terms of the 
SU(5)  classification this value of ( 2 )  corresponds to: 

The SU(5)  gauge symmetry is broken to SU(3)  
XSU(2) X U( 1 ), as required. On the other hand,, as can be 
seen from Eq. (2.7) there remains an additional unbroken 
symmetry between color and the SU( 5 )-singlet p. The total 
number of spontaneously broken generators is 35- 
( 15 + 3 + 1 ) = 16. This implies the appearance of 16 Gold- 
stone bosons, of which 12 are eaten by the Higgs mechanism 
and produce the masses of the X and Y gauge bosons of the 
group SU(5 ). The four remaining Goldstone states are weak 
SU(2)  doublets. This is easily seen from the structure of 
( 2 ) .  The Goldstone bosons under discussion are related to 
broken generators which reduce the SU(5)  singlet into a 
SU(2)  doublet, and vice versa. Thus, we can expect in this 
sector at least one massless Higgs doublet (four real degrees 
of freedom). It is easy to see, however, that supersymmetry 
guarantees the masslessness of both doublets which occur in 
the quintuplets HI and H,. 

In order to understand this better we imagine for a min- 
ute that the whole SU(6)  symmetry is a gauge symmetry. 
Then for a real vacuum expectation (Z)  and purely imagi- 
nary generators acting in the adjoint representation 35, only 
'the hermitean part of 2 + 2+ is mixed with the gauge bo- 
sons. The hermitean part of Z + 2+ contains the quintuplet 
H, + H : ,  the doublet part of which is, consequently, a 
Goldstone boson. The mass of the doublet which occurs in 
HI - H: also vanishes, but only on account of the super- 
symmetry. This is nothing but the degeneracy of the two real 
scalar degrees of freedom of any chiral field. 

These field-theory arguments can be verified directly. 
For this it suffices to make the substitution: 

A 

and to express the superpotentials in terms of @' and $ '. The 
legitimacy of such a procedure is based on the fact that su- 
persymmetry is not violated. This means that no F-terms 
develop an2 nonzero vacuum expectation values. The occur- 
rence of (@) # O  and ($ ) # O  can then be understood2s the 
appearance of nonzero vacuum expectation values (@) 2 0  
and ($ ) # O  with nonzero A-components. Subtracting (@) 
and ($ ) from @ and $, respectively, we arrive at (2.9). If the 

supersymmetry were broken, we could not have made use of 
the superpotential and would be forced to discuss the poten- 
tial Vitself (cf. infra). 

From Eqs. (2.9) and (2.3) we obtain 

Here we have partially used notation (for rn and 6')  where 
the color triplet and weak doublet parts are explicitly sepa- 
rated. Accordingly, A is a 3 X 3 matrix, D is a 2X 2 matrix, 
and B and C are 2 X 3 and 3 X 2 matrices. Similar notations 
are understood for the matrix M. We see that the doublets in 
H, and H, remain massless. With the help of Eq. (2.10) we 
can describe the whole spectrum of particles in the theory. In 
addition to the massless Higgs doublets and their fermionic 
superpartners there are: 

1) massive color triplets of chiral superfields (scalar 
and fermionic com~onents)  of mass 3M, belonging to the 
quintuplets HI and H,; 

2) twelve massive gauge bosons of SU(5)  (the X and Y 
bosons) which have absorbed by means of the Higgs mecha- 
nism the Goldstone bosons (@ + @+ = B + C +. The 
mass of these bosons equals Mx = M y  = (3/2) I1'g(M/A). 
The scalar bosons B - C + acquire masses on account of the 
D-term: 

These bosons are degenerate with the X and Y gauge bosons 
and represent together 12 X 3 + 6 X 2 = 48 bosonic degrees 
of freedom. Simultaneously, the theory contains 12 Dirac 
fermions of the same mass ( 12 X 4 = 48 fermionic degrees of 
freedom). The left-handed components of these fermions 
are the fermionic components of the chiral fields B and C, 
and their right-handed components are the X- and Y-gau- 
ginos; 

3) There r e ~ a i n  the and 5 chiral superfields. The 
traceless part of A transforms like the ( 8 , l )  represptation 
under SU(3) x SU(2). , and the traceless part of D trans- 
k r m s  y d e r  ( 1,3). The massAof these fields is 3M. The fields 
A and D also contain a field @,,, related to the weak hyper- 
charge Y2, = A,4/2"2: 
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The field Q,, mixes with the SU(5)-singlet $. The two 
states: 

have the masses 3M and M, respectively. 
The inclusion of the radiative corrections leads, in gen- 

eral, to some change in the particle masses. Since, however, 
for unbroken supersymmetry the radiative corrections re- 
duce to a wave-function renormalization, only nonvanishing 
masses will change, whereas massless doublet fields remain 
massless. 

3. SUPERGRAVITY AND THE LAGRANGIAN OF LIGHT 
FIELDS 

In order to formulate a consistent low-energy theory it 
is necessary to indicate the mechanism which violates super- 
symmetry. We assume that a soft supersymmetry breaking 
occurs on account of supergravity, which seems to be the 
most popular current version. 

Then, in place of the potential (2.4) (for n = 6)  we 
have" 

where m,/, is the gravitino mass (m3/,- 100 GeV) and A is 
a numerical parameter depending on the hidden sector of the 
theory (in general A - 1 ) . 

Since m3/, < M  we search for a minimum of V in the 
form (2.7) with an extra multiplier, 

and expand x in powers of m3/,/M. A direct computation 
yields 

In order to obtain the masses of the scalar doublets HI 
and H2 (since in the sequel we shall no longer be interested in 
triplets we retain for the doublets the notations HI and H2 
which was used before for the full quintuplets) it is necessary 
to turn to the potential which follows from the superpoten- 
tial (2.3 ). As explained already, in the case when the super- 
symmetry is broken we can no longer use the superpotential. 
We shall not write out the whole complicated expression 
which arises from the substitution 2 = ( 2 )  + 2' 
(@ = ( Q )  + @',p  = ( p  ) + p ' ) in the potential containing 
H, and H,. We list only the final result and limit ourselves to 
a few remarks. There are two sources for the appearance of 
masses for the scalars HI and H2: a )  the deviation o fx  in Eq. 
(3.2) from unity and b )  a "direct contribution of supergra- 
vity" of the type (3.1). A straightforward calculation shows 
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that these two contributions cancel each other in the leading 
approximation for the squared masses of HI and H,, i.e., to 
orderM 2(m3,2/M ) = Mm,/,. I t  is known that this proper- 
ty is generic.,' In the next order one can obtain an expression 
for the mass terms: 

Thus, the field (HI - H,+ )/2'12 acquires the mass 2m,,,, 
whereas the field (HI + H: )/2II2 remains massless. This 
is not surprising since the potential (3.1 ) does not break 
SU(6)  explicitly and the state ( H I  + H: )/2'12 remains a 
Goldstone boson. I t  is curious that the mass of the boson 
(HI - H : )/2'12 turns out to be independent of the param- 
eter A.  

Another mass term which appears as a result of the su- 
persymmetry breaking is the mass of the spinor components 
HI and H,, i.e., the higgsino mass. It is easy to see that this 
mass appears in first order in (m,/,/M ) for the quantity 
x - 1. A simple calculation leads to the following result for 
the corresponding mass term 

where HI and H2 are the left-handed higgsino fields and Ci s  
the charge conjugation matrix. 

Let us compare these results with the "phenomenologi- 
cal" low-energy Lagranian of generic f ~ r m . ~ " t  is obvious 
that the most general form for the superpotential containing 
the chiral superfields H, and H, can be written in the form 

For supersymmetry breaking by supergravity we obtain for 
the Higgs potential of the scalar fields 

V ( H i ,  Hz )=(po" fm)  (Hi+Hi+Hz+Hz) 

- B m ~ , ~ p ~  (H,fI,+H,+H2+) 

+'/&' 2(Hl+Hl-HZ+H,)2+1/8g2[ H,+zH,+H,+(-T') H,]  ' .  

(3.7) 
The last terms represent D-terms, and B is an unknown pa- 
rameter. A comparison of (3.7) with Eq. (3.4) yields 

The valuep, = m3/, also agrees with the higgsino mass val- 
ue (3.5). Thus, the GIFT mechanism allows one to calculate 
the phenomenological parameters of the low-energy La- 
grangian. 

4. RENORMALIZATION AND BREAKING OFTHE 
ELECTROWEAK SYMMETRY 

One can now analyze the question of breaking of the 
electroweak symmetry. Retaining in Eq. (3.7) only 

we have 



or, taking into account the relations (3.8), 

In the general case, whenp: #,ui #p:, there exist gen- 
eral conditions for the breaking of the symmetry. The fol- 
lowing inequalities must hold 

The first of these is necessary in order to guarantee the stabil- 
ity along the line v ,  = v,. If it is not satisfied, V- - oo when 
1 u ,  1 = I u, 1 - co . The second condition provides the instabil- 
ity at the point v ,  = v, = 0, since at that point Ila2V/ 
avi au, I I < o. 

The equation (4.3) shows that we are at the boundary 
of spontaneous symmetry breaking. Since, however, the 
SU(6)  symmetry is in fact a pseudosymmetry (it does not 
refer to gauge or Yukawa couplings), it is not indifferent for 
which normalization momentum one assumes the existence 
of this symmetry, and consequently the validity of the rela- 
tions (4.3). Since (4.3) appears in the grand unified theory 
it seems reasonable to assume that (4.3), i.e, the SU(6) -  
symmetry of the superpotential, is valid at the grand unifica- 
tion scale (or even at the Planck mass scale). Then for ener- 
gies - 100 GeV, p: #,ui #p:, owing to renormalization 
effects. The renormalization of the parameters p , ,  p,, p,, 
from the grand unification mass to low energies ( -  100 
GeV) was discussed in the papers 13-18. We shall follow 
closely Refs. 17 and 18. 

We first consider only gauge coupling and neglect the 
Yukawa interactions. Then the relation p; = p: remains 
valid, but p: #,uf = pi. The inequalities (4.4) are not satis- 
fied and symmetry breaking is impossible. This means that it 
is necessary to include Yukawa coupling which is different 
for H I  and H ,  and therefore leads to ,u: #p:. From all these 
couplings we retain only the Yukawa interaction of the t- 
quark and the t-quarkino (also known as the t-squark): 

The renormalization-group equations for the case we 
are interested in were first derived in Ref. 13. In the nota- 
tions of Ref. 18 we have 

Making use of the equations listed in the Appendix1' to Ref. 
18, we can determine the functions q(l,), a ,  (I,,), a2(10), and 
B(I,,). For simplicity we assume - that the mass of the gaugino 
vanishes: M I / ,  = 0 (i.e., y = M,l,/m3,2 = 0 ) ,  which al- 
though literally unacceptable from a phenomenological 
point of view, corresponds to "minimal coupling" to super- 
gravity. We then obtain 

[a, (1,) p b z  1 
q(l" = [A, (1.) ] "." [[D (lo) 1" 

The gauge coupling constants g,(O), g,(O), g,(O) in (4.7) 
related to the group SU(3)  x S U ( 2 )  X U( 1 ), are defined at 
the grand unification scale MGuT. The function D(1) de- 
scribes the evolution of the Yukawa constant h, ( I ) .  The re- 
lation between the quantity h, (I,,), which determines direct- 
ly the mass of the t-quark m, = h, ( 1 , ) ~ , / 2 " ~ ,  and the 
coupling constant h, (0 )  at MGuT is given by the relations 

Whereas the gauge couplings are known, the Yukawa con- 
stant h, ( I o )  is not apriorifixed (as long as we don't know the 
mass of the t-quark). Substituting the numerical values ofg, ,  
g,, g, we obtain" 

E ( ) 1 3  F( lo)  2290, D(1o) ={I-0.848[hr (lo) 1')-', 

For the function q(1,) we obtain 

q(lo) =1.28 (1-0.85ht2)"'~1.28(1-0.21ht2-0.068ht4), (4.10) 

where h, = h,  (I,,) = 2'12m,/v,. In the last equation (4.10) 
we have expanded in terms of h :, since, as will be clear in the 
sequel, h : 4 1. 

We must now calculate a ,  (I,,), a, (lo), and B(I,,), which 
enter into Eq. (4.6). The renormalization of a2(IO) is deter- 
mined only by the Yukawa interaction of the 6-quark, which 
we have neglected. Consequently 

As regards the functions a ,  (I,,) and B(l0),  they depend, un- 
fortunately, on the parameter A introduced in the preceding 
section, which is determined by the vacuum expectation val- 
ues in the hidden sector and represents the coefficient in the 
cubic term of the potential: Arn,12X (scalar  field^)^. For 
a ,  (1,)) one can find 

Finally, for B(I,,)/B ( B  = 2)  we have 

The equations (4.10)-(4.13) yield the following renormal- 
ized values of p: , p i ,  and ,u: : 
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As already mentioned, without the Yukawa interaction 
(h,  = 0 )  we would have p: = p i  # p i .  An interesting trait 
of the solution (4.14) consists in the fact that pi is almost 
equal to p: = pz,  although the renormalization of each of 
these quantities is not that small. This means that the terms 
-h:, hfmustbesmall:  h:<l .  

In order that the condition (4 .4 )  be satisfied, p: must 
lie between two quantities which are very close to each other; 
( p :  + pi ) / 2  and ( p :  pi ) ' I 2 .  Indeed, although the quantity 
p: differs from p: by O ( h : )  the difference between 
( p :  + p i  ) / 2  and ( p :  pi ) ' I 2  is of order O ( h  f ). This means 
that there must exist a narrow interval of values h :of width 
- h in which the inequalities (4 .4 )  are valid. The maximal 
value of h : is determined by the equation 

This yields, approximately, 

The minimal value h k,, is determined by the condition 

Expanding the difference h i,, - h kin in terms of h : it is 
easy to obtain 

These limits in h, determine the maximal and minimal val- 
ues of the mass of the t-quark. Since p: = p i ,  symmetry 
breaking occurs for u ,  - v2. Consequently 

mf=h,u,/2"'=h,v/2, v=(GF.2'")-'"=246 GeV. (4 .19)  

We consider two numerical examples. For A = 0, 
h La, -0.10, h - h , ,  0 . 1  myax = 39.36 GeV, 
myax - m y " z 0 . 2  GeV; For A = 3, h k,, -0.02, 
mf""" = 16.82 GeV, m$" - my'"z0.04 GeV. It is interest- 
ing to note that there exists an absolute upper bound on the r-  
quark mass, independent ofA (the maximum is attained for 
A = - 1.28). This bound is 

mt<51.7 GeV. (4 .20)  

If, however, A is considered as a free parameter, then there is 
no lower bound on m,  . 

In the general case the solution of the equations d V /  
dv, = 0  with V  determined by the expression (4 .2 )  is (for 
u ,  < v,)  

We see that for our case v ,  ~ u , ,  whereas for the quantity 
v(u2 = U :  + U :  ) one can obtain from Eq. (4.21) an expres- 
sion containing the quantities h i,, and h iin determined by 
the equations (4 .15)-(4 .18):  

When h, varies from h,,, to h,,, , u takes values from zero to 
infinity. 

The mass of the neutral pseudoscalar particle which is 
in fact ( v ,  Im H :  - u2 Im H y  ), equals 

From (4.14) it follows that 

The mass of the charged Higgs boson is m i  + = m$ + m b .  
For the neutral scalar particles the general expression 

for the mass is 

where sin 28 = 2p: / ( p :  + pi ). 
Since cos 28-0, the heavy scalar is almost degenerate 

in mass with the charged Higgs boson, whereas the mass of 
the light scalar is 

This mass vanishes forp? = p: = pi ; cos2 28 is propor- 
tional to h k,, - h :. The last difference can be expressed by 
means of Eq. (4.22) as 

so that we finally obtain 

since mi/ (m2,  + m$)"2 < 1 we have, making use of (4 .16) ,  

1 0.96+0.31A2 mz 
rn,= < m z .  - =-= 

40 1+0.675A+0.263A2 40 
2.25 GeV. 

(4.29) 

If m, > m ,  then msL = 2.25 GeV. In reality this limit is 
reached already for m$ 5 m:. In fact, msL = 2.25 GeV if 
m , / ,  5 40-50 GeV [see Eq. (4.24) 1 .  

We now consider the masses of the superpartners of W 
and Z mixed with higgsinos. For the charged higgsino-wino 
we have for v ,  = v, = u/2'I2 two massive Dirac spinors with 
masses 

where p' = m312 q(l,,) = l.28m3,, [cf. ( 4 .  l o ) ] .  If p ' > m ,  
(i.e., - m,12>70-80 GeV), the light EL has the mass 
m( WL ) = m L / p f .  Since there exists the experimental 
bound m  ( EL ) > 23 GeV, we find that m 3 / ,  < 220 GeV. 

The neutral higgsino-zino and photino are described by 
four Majorana spinors. Their masses are 

1 gzuz 1  
mt ,  ( 2 )  = - p' ' + - k p' (p' 2+g2u2) li, 

2  4 
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The masslessness of the photino is, of course, a consequence 
of the simplification, related to the assumption of the "mini- 
mal" character of supergravity. 

Finally, it is interesting to estimate the masses of the 
superpartners of the quarks and leptons. To order O(h :) all 
these masses except that of the i-quarkino (squark) are 
equal to m312 (the radiative corrections are of the order 
h : = 4m:/u2). For the ?-quarkino one obtains easily 

This expression appears when one takes into account the 
mixing of the left-handed and right-handed quarkino-super- 
partners of the t, - and t ,  -quarks. 

5. SYMMETRY BREAKING A LA COLEMAN-WEINBERG 

The renormalization effects related to the large momen- 
tum interval between MGUT and M ,  violate the symmetry 
,u: = ,u: =pi  which reflects the GIFT mechanism. This 
"large-scale" renormalization, which looks quite natural in 
the real world, has no direct bearing on the GIFT mecha- 
nism. From a theoretical point of view it is interesting to 
raise the question: what happens if the "large-scale'' renor- 
malization is absent, i.e., theSU(6) symmetry and the equa- 
lities ,LL: = ,ui = ,u: hold for energies - 100 GeV? It is ob- 
vious that in this case a more accurate accounting of small 
momenta is needed, i.e., a calculation of the Coleman-Wein- 
berg corrections to the effective potential. 

At the tree level the potential (4.2) for 
,u: = ,LL~ = p: = 2m2 has the form 

(We have changed the notation: m,,,+m.) The minimum 
of V, corresponds to (7)  = 0, (i.e., v ,  = v,), whereas the 
value of ({ ) is undetermined. The quantity (6 ) must be de- 
termined from the one-loop Coleman-Weinberg potential. 
The latter is given by the well-known expression 

where mi are the masses of all the particles in the external 
field ( f ,  7 )  and the factor ( - 1) refers to all fermions. 

It is easy to see that the solution (7)  = 0 remains valid 
also for V,, - V, + V,. (This is because V, depends in fact on 
v2.) Therefore it suffices to have V, for 7 = 0, i.e., for u ,  = u, 
(4 = v ) .  

We first neglect the Yukawa interactions and take into 
account the contributions of H , ,  H2, W, Z and their super- 
partners, leaving out the contribution of the t-quark/quar- 
kino. Then it is easy to obtain 

Here the first terms correspond to the contribution of H + 

and W, and the negative terms correspond to the higgsino- 
wino [cf. Eq. (4.30) 1. The terms with gt+g correspond to 
the contribution of the neutral particles. 

The potential (5.3 ) does not depend on the cut-off A, if 
one discards the inessential additive constant (42m4 In A2). 
This circumstance is somewhat surprising. The cancellation 
of the terms v4 In A2 can be understood. For m = 0 and 
u ,  = v2 supersymmetry is in fact not broken, so that the 
masses of the bosons in the external field v remain equal to 
the fermion masses, as a result of which terms proportional 
to In A2 cancel in the sum (5.2). As regards the cancellation 
of the terms m2v2 In A2, it has a somewhat "accidental" as- 
pect. Thus, for instance, we shall see in the sequel that when 
the contributions of the t-quark and t-quarkino are taken 
into account, there is no such cancellation. 

On account of what was said, the expression (5.3) can 
be rewritten in a form which does not contain A. Omitting 
the additive constant we obtain 

the x-dependence of this expression yields the curvature of 
the potential along the valley v,  = v,. Unfortunately f ( x )  
has a maximum rather than a minimum for x = 2.2, and for 
x - co f (x )  - 8x -+ - co . Thus, in place of a self-consis- 
tent symmetry breaking we find instability for large x .  The 
situation changes immediately as soon as one adds the con- 
tribution of the t-quark-quarkino to (5.3). This contribution 
equals 

Here h, is the Yukawa coupling constant, and A is the pa- 
rameter we encountered before. The asymptotic behavior of 
the expression ( 5.5 ) for large u is 

whereas the asymptotic behavior of V, (5.4) is 

which means that for sufficiently large v the sum V if' + V, is 
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positive. The function V '," + V, has a minimum, so that if 
one fixes the position of this minimum: 
u = (2'I2G, ) --'I2 = 246 GeV, then one obtains for the mass 
of the Higgs particle an expression which does not depend on 
A. This is nothing else but the well-known Coleman-Wein- 
berg mechanism. For hru/2>m, for instance, it is easy to 
find 

The result (5.8) differs from the expression (4.28) obtained 
for the same mass in the preceding section. 

6. CONCLUSION 

Let us sum up briefly the results obtained in this paper. 
We have proposed a mechanism which explains in a natural 
manner the masslessness of the doublets which are part of 
the quintuplets of a supersymmetric SU(5)  grand unified 
theory. The reason for this is that the doublets are pseudo- 
Goldstone bosons of a globally spontaneously broken SU(6)  
symmetry of the superpotential. Although this symmetry is 
not a symmetry of the whole theory, the doublets remain 
massless as long as the supersymmetry is intact. When the 
supersymmetry breaking is switched on, the doublets ac- 
quire, in general, a mass of the order of the scale of the super- 
symmetry breaking. 

This general mechanism (GIFT) was then applied to 
treat the special case of supersymmetry breaking by super- 
gravity. In this case even after the supersymmetry breaking 
one of the two doublets remains massless in the tree approxi- 
mation, since it is again a Goldstone boson of the tree poten- 
tial. However, since supersymmetry is now broken, it will 
acquire mass on account of radiative corrections. We have 
considered in detail the case when this occurs on account of 
renormalization of the parameters of the potential in a wide 
range of momenta, from the grand-unification mass to the 
mass of the W-boson. We have shown that in this case, for 
fixed values of the parameters determined by supergravity 
(m,l,-the gravitino mass and A-a parameter related to 
the vacuum expectation values in the hidden sector of the 
theory), a correct spontaneous breaking of the electroweak 
symmetry occurs only in a narrow range of t-quark masses, 
where we obtain an absolute upper bound on the mass of the 
t-quark m, < 52 GeV. The mass of the lightest scalar particle 
turns out to be, most likely, -22 GeV. All the other masses 
are also fixed, but are numerically unknown, since the pa- 
rameters m,/, and A are unknown. 

In the last section of the paper we have considered a 
somewhat different mechanism for spontaneous breaking of 
the electroweak symmetry, a la Coleman-Weinberg. If the 
renormalization effects related to the wide range of mo- 
menta from M,,, to Mw are absent, a more accurate ac- 
counting of small momenta becomes necessary, i.e., a calcu- 
lation of the Coleman-Weinberg potential. ( In  the presence 

of "large-scale" renormalization, the Coleman-Weinberg 
corrections due to small momenta are only a few percent and 
can be neglected.) It turns out that in this case too the 
Yukawa coupling of the t-quark is essential for the 
electroweak symmetry breaking. The mass of the lightest 
scalar boson can be calculated, but its numerical value de- 
pends on A and m,/, and remains unknown. 
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