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Current relaxation in a disordered conductor is analyzed by an approach based on the nonlinear o 
model. It is found that after a long time the relaxation currentj(t) is described by a log-normal 
asymptotic expression j ( t )  a exp [ - (ln2 t)/u]. The value of u increases without bound near the 
mobility threshold, with the result that relaxation processes are slowed dramatically. Mesoscopic 
fluctuations in the value ofj( t)  are also considered. At absolute zero, T = 0, these fluctuations 
increase with time, so the mean value ( j ( t )  ) cannot be used to describe relaxation in specific 
samples. For T #O there is a broad interval of times in which the quantity j (  t)  is self-averaging. In 
this interval, the log-normal asymptotic behavior of ( j ( t )  ) characterizes specific samples. It is 
also shown that in specific samples j ( t )  contains reproducible aperiodic oscillations with a time 
scale fi/Twhich reflect the distribution of impurities in the sample. 

1. INTRODUCTION 

The substantial progress toward an understanding of 
the properties of disordered metals which has been achieved 
in recent years has resulted from research on the quantum- 
mechanical corrections to the conductivity (see, for exam- 
ple, the reviews in Refs. 1 and 2). Even in the region of good 
metallic conductivity, where these corrections are small, 
they must be taken into consideration in an analysis of the 
behavior of the conductivity as a function of the temperature 
T, the magnetic field H, the dimensions L of the sample, and 
the frequency w. In the present paper we show that the quan- 
tum-mechanical corrections determine the course of relax- 
tion processes in disordered conductors. Incorporating these 
corrections is by no means a trivial matter. In a description 
of the relaxation after a long time, for example, it is not suffi- 
cient to consider the lowest-order perturbations. Further- 
more, an ordinary renormalization-group analysis of local- 
ization theory is insufficient.'-" 

As an example of a relaxation process we consider the 
time dependence of the electric current j when an external 
field E is turned on or off. For an arbitrary time dependence 
E(t) ,  the current j ( t )  can be found if the frequency depend- 
ence of the conductivity, d m ) ,  is known: 

rn 

where u ( t )  is related to a (w)  by the Fourier transformation 

o ( t )  = j o (a) d w i t n .  (2)  

The quantity a ( t )  is the response of the system to an electric- 
field pulse which is a 8-function of the time. 

When the quantum-mechanical corrections are ig- 
nored, the response function ~ ( t )  can be written 

00 
oo ( t )  = - T exp (- 4 ), 

which corresponds to the ordinary Drude formula 

Here u,, is the residual conductivity, which is related to the 
one-spin state density v and the classical value of the diffu- 

sion coefficient D, by the Einstein relation no = 2e2vDo, 
where Do = 1 2 / d ~ ,  I and r are the mean free path and colli- 
sion time of an electron, and d is the dimensionality of the 
space. 

Expression ( 3 )  determines the response function only 
at early times, t 5 7. For t > T, the quantity a ( t )  is governed 
entirely by quantum-mechanical effects. The ordinary coop- 
eron correction to u(w) is given by the expre~s ion '~~  

where L,, = (D0rP0 ) ' I 2  is the length scale over which the 
electron wave function undergoes phase relaxation due to 
inelastic processes, and T,, is the phase relaxatiin time. The 
component of o ( t )  corresponding to (4 )  is 

where we have to = .r,, for an isolated sample, and where we 
have 

for a cube of volume Ld with bulk contacts. Here E, = +iD / 
L is the width of the energy band which contains the exact 
one-electron levels which contribute to the cond~ctivity.~ 
This width is determined by the time L 2/D, which is the time 
required for an electron to diffuse to the contact, over which 
the phase relaxation occurs. According to (5),  in the time 
interval T < t < t,, the relaxation current thus falls off alge- 
braically, while for t > t ,  the decay becomes exponential. 

In Secs. 2 and 3 we show that the relaxation current is 
not described by the ordinary quantum-mechanical correc- 
tion (4)  after a long time. It turns out that in the limit t- 
the decay of the relaxation current is far slower than the 
exponential decay (5),  although it is faster than any power 
o f t  - I :  

The value of u in(7) for a sample of any dimensionality d is 
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FIG. 1. Transient characteristics of a disordered conductor at low tem- 
peratures. At large values of u (i.e., at u,/o&l) the relaxation is greatly 
prolonged. The dashed line shows an exponential decay j ( t ) .  

Here a, and a are respectively the bare value (the classical 
value) and the renormalized value (the observable value) of 
the static specific conductivity. An important point is that u 
can be extremely large (Sec. 3).  In the three-dimensional 
case, for example, u increases without bound as the Ander- 
son metal-insulator transition is approached. An increase in 
u causes all relaxation processes to slow down. 

Figure 1 is a sketch of the transition characteristic, i.e., 
a plot of j ( t )  for a discontinuous application of the field E. 
The current rises very rapidly (over a time on the order of 7) 

to its classical value j, = a,E; j ( t )  then falls off, initially in 
accordance with the power law (5 ) , and for t % t, in accor- 
dance with the log-normal law ( 7 ) ,  to a steady-state value 
j = oE which is determined by the renormalized value of a. 
As a decreases (e.g., as the temperature is lowered, or as the 
order parameter changes, taking the sample closer to the 
Anderson transition), the quantity u increases in accor- 
dance with (B), stretching out the decay of the relaxation 
current. In this case the equilibrium regime is reached after 
an extremely long time. 

The nonexponential decay of the response function ( 7 ) 
means that the disordered system cannot be characterized by 
one definite relaxation time. It is natural to associate with 
this system a set of relaxation times it,) with a distribution 
function f (t, ). It is in this form that we find an expression 
for o ( t )  (Sec. 3): 

o ( t )  a - J exp (-t/t,) f (t,) d t ~ t , .  (9)  

The function f (t, ) falls off in a log-normal fashion at large 
t, . If it is assumed that in addition to the log-normal asymp- 
totic behavior the function f (t, ) has a comparatively sharp 
maximum at t, -t,, (Fig. 2) ,  then expression (9)  will de- 
scribe the sum of quantum-mechanical components (5 )  and 

FIG. 2. Distribution of the phase relaxation times. At t, > t,, , the distri- 
bution function (the solid line) falls off in log-normal fashion-far more 
slowly than exponentially (the dashed line). 

(7).  It is shown in Sec. 6 that the distribution function of the 
phase relaxation times is indeed of this nature in the elec- 
tron-phonon interaction. 

A distribution like f (t, ) has been found previously5 for 
mesoscopic fluctuations in the static conductivity6.' and in 
the state den~ i ty .~  A distribution of this sort characterized 
the scatter in the values of these properties in an ensemble of 
samples having identical macroscopic characteristics. It has 
also been found5 that under certain conditions the average 
values of quantities are inadequate for describing a specific 
sample. Here, on the other hand, we have only presented 
results for average values up to this point. Under what condi- 
tions is the average response function sufficient for describ- 
ing relaxation processes in a specific sample? To answer this 
question we should calculate the variance of the mesoscopic 
fluctuations of o ( t ) ,  i.e., the scatter in this quantity from 
sample to sample. 

The fluctuations in o ( t )  are calculated in the formal 
limit T = 0 in Sec. 4. It turns out that for t > t, (to = fi/E, at 
T = 0)  these fluctuations exceed the mean value. This result 
means that expressions (3)  and (7) for the response func- 
tion, averaged over all realizations, do not describe the relax- 
ation in a specific sample. The log-normal asymptotic behav- 
ior (7)  is determined by the contribution of infrequent 
(improbable) realizations with large times t, . 

This conclusion, however, is valid only at T = 0. When 
we take the thermal spreading of the Fermi distribution into 
account (Sec. 5; we ignore bulk inelastic processes), we find 
that reproducible aperiodic oscillations with a time scale of 
WTappear in the response function. As is shown in Sec. 5, 
this situation has a certain ergodic aspect: Taking an average 
of u ( t )  over time intervals At%fi/T is equivalent to taking 
an average over realizations. As a result, for the average of 
the response function over the interval At there exists a re- 
gion of times (which depends on the value of At) in which 
the response function of a specific sample decays in accor- 
dance with the law (7) .  

The asymptotic response function remains log-normal 
when we take account of the phase relaxation of the electron 
wave function caused by an inelastic interaction in the vol- 
ume. We demonstrate this point in Sec. 6 for the particular 
example of the electron-phonon interaction. The fluctu- 
ations in a ( t ) ,  however, remain of a self-averaging nature 
over a wide time interval. As in the case T = 0, the relative 
magnitude of the fluctuations is proportional to L - At 
T = 0 this small factor is offset by the circumstance that a 
nonalgebraic relaxation occurred at times t 2 WE, = L 2/ 

D, which increase with the dimensions of the system. When 
inelastic processes are taken into account, the relaxation oc- 
curs over times t k r,, which do not depend on L, so the 
fluctuations are suppressed in the thermodynamic limit. 
Over times 

the relaxation processes in specific samples are character- 
ized by the log-normal asymptotic expression (7).  

2. QUANTUM-MECHANICALCORRECTIONS TO THE 
FREQUENCY DEPENDENCE OFTHE CONDUCTIVITY; 
ASYMPTOTIC BEHAVIOR OFTHE RESPONSE FUNCTION 

The behavior of the response function u ( t )  after a long 
time t> t, is determined by the frequency dependence of the 
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conductivity, u(w), at low frequencies, w & t , '. A slow de- 
cay of the response function (7)  evidently corresponds to an 
w dependence of u which has a singularity as w -0. In this 
section of the paper we discuss the reasons for the appear- 
ance of this singularity, which was first found in Ref. 9. 

Under the condition wto < 1, the frequency dependence 
of the conductivity can be sought as a power series in w. In 
this section we approach the problem of the frequency de- 
pendence of the conductivity from the standpoint of an ordi- 
nary admixture diagram technique with separate diffusion 
and cooperon two-particle propagators.1° In each specific 
diagram, both the electron Green's functions and the diffu- 
sion poles depend on w. An expansion of the Green's func- 
tion in the frequency leads to a series in wr, while an expan- 
sion of the diffusion or cooperon leads to a series in wt,,. The 
frequency dependence of the conductivity can thus be writ- 
ten in the form a(@) = a, (w) + uZ(w), where 

(There are also cross contributions, of course, but they will 
never be important, as we will see below.) In the classical 
limit we have Cn = 1 and S, = 0, and sum ( 10) ,becomes the 
usual Drude formula, (3) .  When quantum-mechanical ef- 
fects are taken into account, the coefficients Cn and S, can 
be found as power series in a parameter, given in the two- 
dimensional case by 

[We are staying in the so-called leading-log approximation; 
i.e., we will ignore contributions proportional to ( f i /  
~ ~ 7 ) "  Inm (t0/r) with n > m. 1 

We wish to stress that perturbation theory in higher 
orders in a leads to nonvanishing contributions to the fre- 
quency dependence u(w). We know quite well that the 
quantum-mechanical correction (4)  to the static conductiv- 
ity, although it appears to be the result of a first-order per- 
turbation theory in a ,  actually describes the sum of all of the 
quantum-mechanical contributions. With d = 2, all of the 
leading-log contributions (like the corresponding contribu- 
tions with d # 2, which are not analytic in r/t0) cancel out in 
all orders of perturbation theory other than the first. This 
cancellation follows from the renormalizability of the non- 
linear u model: an effective field theory for the localization 
problem which was proposed by Wegner" and which has 
been studied by several i n ~ e s t i ~ a t o r s . ' ~ - ' ~  At a finite fre- 
quency w, on the other hand, this cancellation does not oc- 
cur. 

We are considering only the case L % I ,  i.e., to> r. At 

n-k,-k2 
n k n -k  k ,  - k ,  

first glance it would appear that we could ignore the contri- 
bution of ( l o )  to a ( @ ) .  Actually, the long-time asymptotic 
behavior of the response function), (7), is governed specifi- 
cally by this contribution. The reason lies in the very rapid 
growth of the coefficients in expansion ( 10) with increasing 
n. In the following section of this paper we show that the 
coefficients Cn increase more rapidly than n!: 

This growth leads to a singularity in u(w) as 61-0. The 
coefficients S,, in expansion ( 1 1 ), on the other hand, grow 
far more slowly, and their contribution to the relaxation cur- 
rent falls off far more rapidly than (7) .  

To verify that expressions ( 10) and ( 13) for u(w) are 
equivalent to the long-time asymptotic behavior in (7)  of 
response function u( t ) ,  it is sufficient to substitute (7)  into 
the relation 

o (a) = eiYto ( t )  dt 

and to expand the exponential function in a series. An eva- 
luation of the integrals at each power wn leads to relation 
(13). 

A growth law similar to ( 13) has been observed in a 
study of the various components of the frequency depend- 
ence of the diffusion coefficient in an analysis of the stability 
of single-parameter scaling in localization t h e ~ r y . ~  Even ear- 
lier, it had been shown that a dependence of the type ( 13) 
arises in a study of the higher-order moments of the local 
state density (the participation ratios)." Finally, a similar 
growth law is characteristic of the higher-order moments of 
mesoscopic fluctuations in the conductivity and the total 
state d e n ~ i t y . ~  

All of the results have been derived in a certain general- 
ization of the nonlinear u model. In the following section of 
this paper we offer a derivation of relation ( 13) in this for- 
malism. At this point we will attempt to clarify the reason for 
this rapid growth of the coefficients Cn in terms of an admix- 
ture diagram technique. Figure 3a shows a diagram for cal- 
culating the coefficients Cn in the classical limit (in zeroth 
order in a). This diagram is a simple electron loop, in which 
only the upper Green's function depends on w; the vertices 
with arrows arise from the differentiation" of the Green's 
function with respect to w. We see that the entire n depend- 
ence of this diagram arises from the factor 

a ( - i ~ ) ~  + , and as a result we find the Drude formu- 
la. Here 

FIG. 3. Examples of diagrams which contribute to the ex~ansion d 
the coefficient C, in powers of the semiclassical parameter a. Solid 
lines-electron Green's functions; arrows-differentiation with re- 
spect to the frequency; dashed lines-averaging over admixtures. 
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where G,,,, (p) is the retarded (or advanced) Green's func- 
tion of an electron in the momentum representation. The 
first-order perturbation theory in parameter (12) is deter- 
mined by diagrams of the type in Fig. 3b. Each of these dia- 
grams is proportional to 6 ,,, + , a ( n  + l ) .  The number of 
diagrams of the same type is also equal to n + 1: the number 
of distributions of n differentiations with respect to the two 
Green's functions. Accordingly, the contribution to C,, 
which is linear in a is proportional to n2a. As we move on to 
second order in a, we find that the number of diagrams 
which contribute to C, increases to n2, and each contains a 
factor l , ,  + , a n2. In other words, this component is pro- 
portional to n4a2. In calculating Cn we thus find a series in 
n2a instead of a series in a, such as arises in the calculation of 
the static conductivity. The meaning is that for any arbitrar- 
ily small value of a one can find a value of n at which it is not 
legitimate to restrict the analysis to the lowest-order pertur- 
bation theory, and the entire diagram series must be 
summed. 

Attempts to carry out this summation by the admixture 
diagram technique or even to estimate the contributions of 
higher orders in a run into insurmountable difficulties be- 
cause the diagrams contain, in addition to the diffusions and 
cooperons, some additional admixture lines,'' various 
numbers of diffusion poles in the diagrams of a given pertur- 
bation-theory order, etc. It is vastly more productive, as we 
know quite well, to work in a formalism based on the nonlin- 
ear o model. An analysis based on the formalism is described 
in the following section of this paper. It leads to the growth 
law ( 13) for the coefficients Cn and thus asymptotic behav- 
ior (7) .  The results of the analysis in Sec. 3 were published 
previously in a brief communication.'X 

3. EXPANDED NONLINEAR a MODEL 

The nonlinear u model is ordinarily used in localization 
theory to calculate the correlation function for the densities 
of noninteracting electrons in a random potential. l 3 * I 4  This 
correlation function is used to reconstruct a normalized dif- 
fusion coefficient, which is related to the conductivity by the 
Einstein equation. Methods for calculating the conductivity 
udirectly were developed in Refs. 19-21 and 5. To calculate 
the frequency dependence U(W) here, we modify the formal- 
ism of Ref. 19, which was generalized in Ref. 5 in a calcula- 
tion of the moments of mesoscopic fluctuations. 

The conductivity of a cube of volume Ld can be written 
in the form2' 

A=0 

In zeroth order in WT, the functional of the nonlinear o mod- 
el in the external field of a source A has the natural form 

F = ~ * j t r ( V . Q ) ~ d ~ r  8 (15a) 

+ * j tr (AQ) ddr. 
4 

Here, however, V, is a covariant derivative, which differs 
from the gradient 3, by the commutator 

VaQ=aaQ-i[Aa, Q]. (16) 

In Eqs. ( 14)-( 16), a and 0 are vector indices in a d-dimen- 
sional space, and Q(r )  and A ( r )  are Hermitian matrix qua- 
ternion fields with the structure 

Q = Q ~ T ~ ,  Q~ = ~aPk"*~,  ( Q ~ ) *  = Q ~ ,  (17) 
A=A"z,, A " = ~ p p " p .  ab , (Au)*=-AIL. 

. ,. Here the T,, are unit quaternions: T~ = I,  and T,,,,, = la ,,y,z 

(6 are the Pauli matrices. The replica indices a and b run 
over values from 1 to N; in the final results, N should be set 
equal to zero. The indices p and p' each take on two values, 
and the matrix A in ( 15), which is diagonal in these indices 
and which is given by 

reflects the presence of retarded and advanced Green's func- 
tions in the original microscopic expression for the conduc- 
tivity. The functional ( 15) is nonlinear because of geometric 
limitations imposed on the field Q: 

Expressions ( 14) and ( 15) were derived (in a slightly differ- 
ent notation) in Refs. 19 and 5 from the Kubo formula for 
the conductivity of noninteracting electrons in a random po- 
tential. In those earlier studies, the simplest expression for A,  
with 

was used in order to find the correct coefficient of the expo- 
nential function in ( 14). These limitations are not manda- 
tory because of the gauge invariance of functional ( 15) un- 
der the transformations 

where U(r) is a unitary quaternion-real matrix: i.e., 
U€Sp(2N), where Sp(N) is the simplectic group. [Condi- 
tions (17) and (19) means that Q belongs to a quaternion 
Grassmann manifold Sp (2N)/Sp ( N )  e Sp (N). ] 

In this section of the paper we are interested in the case 
T = 0 and frequencies which are so low, 

that the infrared catastrophes are cut off by the quantity 
E, = / D  / L  ,, i.e., by the finite dimensions of the system. A 
renormalization-group analysis of the functional ( 15) is car- 
ried out in the usual wayIL9: The field Q is represented as the 
product Q( r )  = e + ( r ) Q , ( r ) u ( r ) ,  whereQ,,(r) arethefast 
components, and ~ ( r )  - 0 + ( r )  ~ f i ( r )  the slow compo- 
nents, of the field Q(r ) .  A renormalized functional is found 
by integrating over Q,, 

and depends only on G. By virtue of the gauge invariance of 
(20), the charge in tr(VQ)' in ( 15a) is renormalized in the 
same way as the charge in tr(3Q)' in the ordinary o model. 
(This assertion was verified by direct calculations in Ref. 
19.) A renormalized (i.e., physical) value of the conductiv- 
ity is calculated with the help of ( 14). I t  of course turns out 
to be proportional to the renormalized value of the coeffi- 
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cient of tr(VQ)' in (15). We know quite that the 
renormalized value found for the static conductivity in this 
way obeys the Gell-Mann-Low equation, which is written in 
the single-loop approximation as 

where E = d - 2, and g is the dimensional conductance of a 
cube of volume Ld , given by 

! 
n, d = l  

g - $L'~., ad = n2, d=2. (24) 
2n2, d=3 

It is convenient to write the solution of Eq. (23) in the form 

whereg, = g(L = I) - ( ~ ~ 7 ) ~ -  ' % 1 is the bare value of the 
conductance, equal to the classical conductance of a cube of 
volume Id, and g, = E- ' with E > 0 means the critical value 
of the conductance. The conductivity o given by expressions 
(24), (25) agrees with the conductivity calculated from the 
perturbation expression (4) .  This agreement reflects the 
cancellation of the contributions from higher-order pertur- 
bation 

Vertex ( 15b) is not renormalized by virtue of the con- 
servation of the number of  particle^.'^-'^ The frequency de- 
pendence of the conductivity determined by this vertex can 
be found by perturbation theory from ( 14). A perturbation 
technique within the framework of the nonlinear o model is 
described in several  place^,'^,'^,^ and we will not reproduce 
the corresponding calculations here. We would like to point 
out that the integrals over the momenta which diverge at the 
lower limit are cut off under condition (2 1 ) by the reciprocal 
dimension of the system. The result is an expansion in w/E,, 
(11) (at T=O we have t,=E;'). The expansion coeffi- 
cients do not contain combinatorial factors growing faster 
than n!. 

When only functional (15) is taken into account, no 
corrections to the conductivity which contain powers of wr 
arise. An effective field-theory functional was derived in 
Ref. 9 for calculating the density correlation function with 
these corrections. In the derivation of that functional from 
the Schrodinger equation for a particle in a random poten- 
tial, some additional contributions arise, consisting of all 
possible products of wrAQ and Id, Q. Similar vertices arise 
in a functional which makes it possible to calculate the con- 
ductivity directly. A very important point is that the gauge 
variance which we mentioned above remains in force for the 
functional augmented in this manner. It depends only on the 
covariant derivatives V, in ( 16). 

To calculate the observable value of o ( w ) ,  we should 
renormalize all the additional vertices and then, incorporat- 
ing them in the functional F, calculate a path integral in the 
zeroth approximation in g p l ,  i.e., by setting Q = A [see 
( 18) 1. In the renormalization-group procedure, only the 
vertices which do not vanish in the case Q = A contribute to 
the frequency dependence of conductivity ( 10). A func- 
tional which contains these vertices can be written in the 
form3' 

n r 

The superscript and subscript on F:  specify the powers of 
wAQ and a, Q, respectively. The symbol 9 means all possi- 
ble permutations of the noncommitting matrices in the tr. 
The seed values of the coefficients Z ",re generally different 
for different permutations. 

In the zeroth approximation (Q  = A) we have 
d, Q = 0, so the result of the path integration in ( 14) is pro- 
portional to tr A'. Differentiation with respect to the source 

A leads to expression ( lo) ,  with 

Consequently, o(w) is determined by the behavior of the 
charges Z ; under the renormalization-group transforma- 
tions. 

Although only vertices (26) contributed directly to 
( l o ) ,  we need to also consider some additional vertices 
which contain a large number of covariant derivatives. The 
situation is that these are the vertices which (as we will show 
below) determine the renormalization of the charges Z ," of 
functional (26) under renormalization-group transforma- 
tions. Nevertheless, we will first discuss the situation which 
arises if we ignore the contributions of higher order in V, Q 
and restrict the analysis to the functional (26). Most of the 
qualitative features of the phenomenon remain the same. 

In Ref. 9, where vertices F L  with m > 2 were ignored, a 
renormalization-group equation was derived for the charge 
Z ; , which can be written in the single-loop approximation 
in the following symbolic form4': 

A rigorous derivation of the corresponding renormalization- 
group equations for the charges was carried out in Refs. 5 
and 6 with gradient-free vertices F :  a tr(AQ)" . We will ac- 
cordingly omit the essentially similar derivation of Eq. (27). 
The solution of this equation is 

Here E ;  = n2 - n and the quantity u is found from (23)- 
(25): 

In the weak-localization region, this quantity is small: 
u -go- ln(L /1) with d = 2. An important point is that as 
an insulating state is approached the quantity u becomes 
large even in the range of applicability of the single-loop 
(leading-log) approximation. At the boundary of this region 
we have 

Expressions (28)-(30) describe the growth of the charges 
Z ; with increasing n. Near the metal-insulator transition 
these charges have a critical power-law dependence with an 
exponent - E ; : 

We can write a description of how the other additional 
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vertices influence charge renormalization (26). It can be 
shown that a series of vertices of the type 

appears in the derivation of an effective field theory from an 
original microscopic model of free electrons in a random 
potential. Here &,,, , .,2k is the absolutely symmetric tensor, 
and the bare values are 

The most important vertices are 

Vertices of this sort are not ordinarily taken into considera- 
tion, since the normal dimensionality of the charges Z:, is 
d - 2k; i.e., for k > d /2 they are formally negligible. Their 
anomalous dimensionality, however, turns out to be ex- 
tremely large. It is found that at d = 2 these charges increase 
in accordance with the following law under renormaliza- 
tion-group transformations: 

A proof of this law is given by Kravtsov, Lerner, and Yud- 
son.26 

Let us demonstrate how the vertices (32) influence the 
renormalization of charges Z ; in (26), which contribute 
directly to the conductivity. We first note that if we substi- 
tute expression ( 16) for the covariant derivative into (32) 
we find a set of vertices which contain various powers of the 
gradients d, and of the sources A , .  The only vertices which 
can contribute to charge renormalization (26) [and to con- 
ductivity (14)] are those in which the power of A is no 
greater than two. In a description of the effect of the vertices 
(32) on the renormalization of observable quantities, we 
should therefore retain in (32) the two gauge derivatives V, , 
replacing the others by ordinary gradients 8,. The gauge 
invariance makes it possible, however, to retain in (32) only 
the gradients, i.e., to carry out all the calculations under the 
condition A = 0 and to wait until the final expression to 
make the substitution (d, ),+ (V, ) I .  

Let us examine the single-loop contribution to the re- 
normalization-group transformation (22), which is propor- 
tional to the product of vertices F:, + , and FA [see ( 15b) 1. 
The corresponding diagram is shown in Fig. 4. Each line in 
this diagram is a diffusion propagator (Dq2)-'; an integra- 
tion is carried out over the momentum q (where 
A1 - '  < q < 1 -', and R is a scaling factor). This diagram is 
accordingly logarithmic in the case d = 2 if we single out in 
vertex F:, + , the two gradients from the "fast" components 
of the field Q (the effect is to give rise to a factor of q2 in the 

FIG. 4. Single-loop contribution of a vortex containing 2n + 2 gradients 
to the renormalization-group transformation of a vertex containing 2n 
gradients. 

momentum representation), and if we take the other 2n gra- 
dients from the "slow" components. Consequently, the cal- 
culations reveal a vertex5' which contains 2n gradients and a 
field AQ, i.e., the vertex F; ,  . When the contribution of this 
diagram and the definition of u in (29) are taken into ac- 
count, we can write the renormalization-group equations for 
the charge Z in in the following symbolic form4': 

where E in is the highest eigenvalue which arises during the 
renormalization of F in  if the other vertices are ignored. The 
growth index in the inhomogeneous term in Eq. ( 3  1 ) is, by 
virtue of the factor g- ' cc eu , one larger than the growth in- 
dex in Z :, +, , which is n2  + n, according to (32). It turns 
out to be greater than E:,, so the u dependence of the 
charges Z :, is not the intrinsic dependence but that imposed 
by the solution of Eq. (34). 

In renormalization-group transformations, the vertices 
with a large number of gradients thus influence the renor- 
malization of the vertices in which the number of da Q de- 
creases, but powers of AQ arise. On the other hand, there is 
an inverse effect. Consequently, the renormalization-group 
equations have a triangular structure. In each step (as 
shown in Fig. 4) ,  the number of gradients is reduced by two, 
while the number of matrices AQ is increased by one. The 
sequential decrease in the number of gradients and the 
growth in the power in the renormalization-group transfor- 
mations can be described by 

The growth index of the vertex F tG ,, increases by one in 
each step of the transformations (35), since the structure of 
the renormalization-group equation is analogous to that of 
(34) in each step. As a result we find 

This result proves expressions ( 1 1 ) and ( 13) for the fre- 
quency dependence of the conductivity, u ( w ) .  To make the 
transformation to a ( t ) ,  it is convenient to use the identity 

1 
exp (un2) = - 

1 S )  e x  - 1 .  (37) (4nu) '" , 7 

As will become clear below, it is not by chance that we have 
designated the integration variable t, . Substituting expres- 
sion ( 13) for the coefficients Cn into ( lo),  using identity 
(37), and switching the order ofthe summation and the inte- 
gration (an approach similar to Borel summation of asymp- 
totic series) we find 

After an integration overt, , this result leads to a log-normal 
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asymptotic expression for the response function (7) .  
Expression (38) is of independent interest, however. We see 
that the nonexponential decay of the response function (7)  
is found as the result of averaging exponential contributions 
exp( - t /t, ) with a relaxation-time distribution which has 
a log-normal asymptotic behavior at long relaxation times 
t,. If we assume that this distribution function has a com- 
paratively sharp maximum at t, =:to, we find expression (8 ) , 
which describes both the asymptotic response function (7)  
and the ordinary exponential contribution to u( t ) ,  ( 5 ) . (In 
Sec. 6 we demonstrate how this form of the t, distribution 
function is found as a result of a direct calculation.) We thus 
see that the prolonged relaxation is determined by the wide 
scatter in the times t, . In the following section of this paper 
we will discuss whether this scatter is a property of a specific 
conductor or whether it is a mesoscopic scatter from sample 
to sample. 

4. MESOSCOPIC FLUCTUATIONS IN THE RESPONSE 
FUNCTION 

At zero temperature, a sample of any dimension L is 
mesoscopic. This statement means that such characteristics 
of the sample as its conductivity and state density are not 
self-averaging for d<2; i.e., their relative scatter from sam- 
ple to sample does not decrease with increasing L. For 
2 < d < 4, this scatter is also anomalously large: The relative 
magnitude of the fluctuations falls off as L (Refs. 6 and 
7), not as L - d'2,  with increasing L. 

A question which naturally arises is whether the meso- 
scopic fluctuations of the response G(t) are large. In other 
words, does the nonexponential decay of this function at 
long times described by (7)  characterize processes in an in- 
dividual sample, or is it a consequence of a formal average 
over an entire ensemble of samples? To answer this question, 
we calculate the fluctuation moments of u ( t ) ,  which com- 
pletely characterize the scatter in this value from sample to 
sample: 

h 

where the angle brackets mean an average over realizations 
of the random potential (i.e., over the ensemble of samples), 
and (. . . ), represents irreducible averages (cumulants) . 

Mesoscopic averages of the type (39) can be deter- 
mined by generalizing the technique developed in the pre- 
ceding section of the paper in a natural way. A formalism for 
calculating mesoscopic fluctuations of the static conductiv- 
ity on the basis of an effective-field theory was developed in 
Ref. 5. Analogously, we can derive the following expression 
for the moments of the mesoscopic fluctuations in a (w)  : 

(40) 
The functional F is found from that described in the preced- 

ing section [see ( 15), (3  1 ) 1, through the assignment of an 
additional pair of indices i, j to all the matrix fields and 
through the replacement of the matrix w A  in ( 15b) and (3 1 ) 
by the following matrix, which is diagonal in i, j: 

The additional indices are introduced in order to distinguish 
the variables referring to various conductivities in the prod- 
uct in (40). In the original formulation of the theory at the 
microscopic level, these indices specified the various current 
loops which describe the conductivity of a given sample (be- 
fore an average is taken over impurities) .5 The introduction 
of additional indices makes it possible to avoid nonphysical 
diagrams which do not decay into k current loops before the 
averaging (such diagrams, which contain loops with more 
than two external lines, unavoidably arise in an effective 
field theory). The field of the source A is diagonal in i, j in 
this case (A, .  = A ,  6, ), and the structure of the derivatives in 
(40) causes the nonphysical diagrams to vanish. 

The vertices FE, which are found from the vertices 
(3  1 ) by the procedure described above for transforming 
from F to 9, contribute directly to (40). After calculations 
similar to those carried out in the preceding section, we find 

where the coefficients C?,} are proportional to the renor- 
malized charges Z ;, for the vertices of the form ( 3 1 ), and 
the summation is carried out over all possible partitions {k) 
of the number n into a sum of k natural numbers. The coeffi- 
cients C:,} depend relatively weakly on the partition {k). 
The dependence of C ik> on n and k is determined primarily 
by the exceedingly rapid growth of the charges Z ; , .  As 
above, we find that the growth index of these charges is de- 
termined by the influence of vertices of the F:," + ,, type, in 
a diagram similar to (35). As a result we find 

Substituting (43) into (42) and then into (39), and using 
the identity (37) to sum this series, we find the following 
result for the k th fluctuation moment K(t , ,  ..., t, ): 

K(t1,. . . , t k )  

The time dependence of this expression differs from that in 
(38), for the average response function ( a ( t )  ), one by the 
replacement t-t ,  r t ,  + . . . + tk .  We thus find 

Comparison of this expression with (7)  shows that the k th 
moment falls off considerably more slowly than (u( t ) ) ,  
over time. This result means that after a long time, when 
( a (  t )  ) is described by expression (7) ,  the scatter in the val- 
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5. FLUCTUATIONS IN u(t) AT NONZEROTEMPERATURES 

FIG. 5. Diagrams which dominate ( ~ ( t , ) .  . .u(t, )), at times which are 
not too large. 

ues of a ( t )  from sample to sample will be very large. Conse- 
quently, the average value of a ( t )  is not representative of a 
specific sample. 

Let us find the scatter in the values of a ( t )  at times for 
which the average value ( a ( t )  ) is described by ( 5 ) .  [In the 
metallic region, where the value of u  in ( 7 )  is small, the 
range of applicability of expression ( 5 )  also extends to times 
greater than to . ]  In this region, the magnitude of the mesos- 
copic fluctuations can be found easily by ordinary perturba- 
tion theory. The k th irreducible fluctuation moment is de- 
termined primarily by diagrams of the type shown in Fig. 5 .  
Calculations yield 

where t, = t ,  + . . . + t ,  . In particular, the relative variance , 

of the response function in the case t ,  = t ,  = t  is 

(60' ( t )  ) 

<o( t )  )2  

The mesoscopic fluctuations in the value of c ~ (  t )  , while small 
for t  < to, become substantial for t  > to [this assertion applies 
only to the case T = 0 ,  in which the vortex to in ( 4 )  is equal 
to L  ' / D l ,  and they are particularly large with respect to the 
average value at t >  ( to /4u) ln( to / r ) ,  i.e., in the region of 
applicability of asymptotic expressions ( 7 )  and ( 4 5 ) .  

We wish to stress that the relative variance of a( t )  falls 
off as L - as the sample dimensions increase. Nevertheless, 
for the times of interest here, t  > to, where relaxation pro- 
cesses are important, fluctuations are large even in the limit 
L  - w . The explanation is that at T  = 0  relaxation processes 
occur only in the bulk contacts at the boundary of the sam- 
ple. The relaxation time to = L  , /D increases with increasing 
dimensions, so when we take the thermodynamic limit 
L  - w the times of interest also tend toward infinity. 

Even at extremely low temperatures, however, the 
phase relaxation time of the electron wave function ( rpo  ), 
corresponding to relaxation due to inelastic interactions in 
the volume, becomes shorter than L  2 /D.  As we will see in 
Sec. 6,  the average response function ( a ( t )  ) is characterized 
again in this situation by a log-normal asymptotic behavior, 
which is reached at times rp0 < t < L  2 /D.  However, the fac- 
tor L  - in the variances has the consequence that at fixed 
time t  satisfying this inequality the fluctuations a ( t )  are in- 
consequential in the thermodynamic limit. For samples of 
comparatively small dimensions ( L  5 (+iD / T )  ' I 2 ,  

(DrF0 )'I2), on the other hand, the fluctuations remain 
large. In the following section of this paper we show that 
their statistics, however, are qualitatively different from 
those in the case T = 0. 

In this section we analyze the effect of nonzero tempera- 
tures on the fluctuations in the response function. For the 
moment, we ignore the phase relaxation caused by inelastic 
interactions in the sample; i.e., we assume as before that the 
relaxation occurs exclusively at the boundary of the sample. 
In this approximation, the temperature affects only the fluc- 
tuations, without affecting the average values. We will show 
that incorporating the temperature leads not only to a de- 
crease in the fluctuations at T >  Ec , as in the static case,' but 
also to "mesoscopic grass" in the response function: repro- 
ducible aperiodic fluctuations in a ( t )  with a time scale 
St- fi/T. 

At T f O ,  the Fourier transform of the variance 
( U ( ~ I ) U ( ~ , ) ) ~  is 

m m 

where n = n ( E ,  T )  is a Fermi distribution, and K ( E , ,  E ~ ;  w , ,  
a,) is the irreducible average of two current loops. At times 
for which ( a ( t ) )  is determined by expression ( 5 ) ,  the quan- 
tity K ( E , ,  E ~ ;  w , ,  w 2 )  is determined by the diagrams in Fig. 5 .  
The distinction from the T  = 0  case is that w ,  is replaced by 
w ,  + AE in the diffusion poles, while w, is replaced by 
w, - AE, where AE = E ,  - E,. Calculations yield 

where KO is given by expression ( 4 6 )  with k = 2, and the 
function 

falls off exponentially for t  > fi /T. 
Expression ( 4 9 )  continues to hold at long times, where 

KO is determined by asymptotic expression ( 4 5 ) ,  as can be 
shown by modifying the expanded nonlinear a model (Secs. 
3 and 4 )  for the calculation of the correlation function K ( E ;  
W )  in ( 4 8 ) .  To calculate this correlation function, we can use 
expression ( 4 0 ) ,  replacing the matrix wA [see (41 ) 1 in the 
functional 7 by the matrix i. + wA, where i. is a matrix 
which is diagonal in the indices i, j and which is a unit matrix 
with respect to the other indices. As a result, w,, ,  is replaced 
by a , ,  AE in expansion ( 4 2 )  (k  = 2) .  When we then use 
the growth law ( 4 3 )  for the coefficients of this expansion 
and carry out calculations similar to those described in Secs. 
3 and 4, we in fact find expression ( 4 9 ) .  

The exponential decay of the correlation functions ( 4 9 )  
for It, - t,l > fi /T evidently means that the response func- 
tion a ( t )  is jagged in a specific sample. In other words, there 
are aperiodic oscillations in this function which are repro- 
ducible for a given sample, with an average period on the 
order of fi/T. 

The jaggedness of the response function means that the 
hypothesis of an ergodic nature holds for it: Taking an aver- 
age of a ( t )  over a time interval A t ) f i / T  (but A t g t )  is 
equivalent to taking an average over an ensemble of samples. 
For proof it is sufficient to consider the quantity 
- - 
K ( t ,  t ) ~ ,  = ( (a(t)~,-(a ( t )  >)9 
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where the superior bar means an average over the interval 
Ak 

Substituting (49) and (50) into (51), we find 

where K0(2t) is the variance of the fluctuations in a ( t )  at 
T =  0, which is found from (45) or (46) in the case 
t, =: t2 = t ( k  = 2) .  This result means that the variance of the 
response function averaged over the time interval At de- 
creases by a factor of ( TAt / f i )  'I2. 

This suppression of the fluctuations in u ( t )  has the con- 
sequence that even in the case under consideration here, 
L < (Dr,, )'I2, there is an interval of times in which it is 
possible to observe a log-normal asymptotic behavior in a 
specific sample. A direct comparison of (53) and ( 7 )  shows 
that the fluctuations are small for t 5 t,,(L /I)" where 
82 (4d.5) 'I2. This interval of times arises, however, only in 
the case d = 2 + E > 2 near the Anderson transition. These 
limitations on the range of applicability of the log-normal 
asymptotic behavior are removed when we take account of 
inelastic processes in the volume, to which we now turn. 

6. RESPONSE FUNCTION WITH INELASTIC PROCESSES 

How do the relaxation processes unfold at temperatures 
T 2  WT,,, where it is necessary to take account of the phase 
relaxation of the electron wave function during inelastic in- 
teractions in the volume? For definiteness, we restrict the 
analysis to a qualitative description of the electron-phonon 
interaction, although the arguments presented below remain 
valid when any type of inelastic interaction is taken into ac- 
count. Our goal is to show that there exists a wide range of 
phase relaxation times with a distribution function f (t, ) 
which has a log-normal asymptotic behavior. A response 
function found by averaging exp( - t /t, ) with a weight 
f (t, ) will then have a log-normal asymptotic behavior, ( 7 ) ,  
after long times. 

The inverse effect of the phonon-electron relaxation is 
determined by a diagram of the type shown in Fig. 6a. We 

FIG. 6 .  Diagrams for ( (7; ' ) ), . a-Diagram for (7, I ) ;  b-diagram for 
the higher-order fluctuation moments ((7; ' )' )) in lowest order in a. At 
a transition to the next order in a (when yet another interloop diffusion or 
cooperon is added), the number of diagrams is increased by a factor of k '. 

know quite well that a slight disorder does not affect this 
quantity. In an ensemble of conductors of mesoscopic di- 
mensions ( L  5 L,, - (DT,, ) ' I2), however, this quantity 
(and the reciprocal of the phase relaxation time, r; ', which 
is proportional to it) fluctuates from sample to sample in a 
manner reminiscent of the behavior of the conductivity or 
the density of electron states. 

The distribution function f (T, ) can be reconstructed if 
we know all the fluctuation moments of this quantity. The 
most substantial contribution to ((7; ' ) ).-the k th mo- 
ment of the mesoscopic fluctuations in T; '-is described by 
diagrams of the type shown in Fig. 6b at large values of k. 
These diagrams look exactly like the diagrams which de- 
scribe the mesoscopic fluctuations in the static conductivity 
or state d e n ~ i t y . ~  The sole distinction is that a vortex in each 
loop corresponds in this case to a traceless tensor 
q, qa - q2SUpd - '  instead of a vector, for the conductivity, 
or a scalar, for the state density. This sole distinction is total- 
ly irrelevant to an evaluation of diagrams. The reason is that 
these estimates are based exclusively on a computation of the 
number of ways in which the diffusions or cooperons can be 
arranged in each diagram. Such a computation shows that, 
as in Ref, 5, in the calculation of the higher-order moments 
we cannot restrict the analysis to low-order perturbation 
theories in a [see ( 12) 1 ,  since a power series in the param- 
eter n2a arises. 

The moments of r; ' are calculated on the basis of the 
expanded a model. The calculation is essentially the same as 
that which yields the fluctuation moments of the conductiv- 
ity. The additional vortices in this case contain powers of the 
tensor source h,, and have the (symbolic) form 
t r ( h Q h ~ )  k .  Vertices of this type, in low orders (with respect 
to h ) ,  are presented (in a different notation) in Ref. 22. We 
will omit the procedure for renormalizing the charges for 
these vortices, since this procedure differs from that present- 
ed above (Secs. 3 and 4 )  only in inconsequential details. As a 
result we find that, at large values of k, we have 

( (T,-') k ) c ~ v o k -  (1IL)""-'' exp ( lc2u). 
, (54) 

This expression is determined by vortices which contain 
high powers of the tensor source h. There is of course a con- 
tribution to ((7; ' )  k ), from the multiple differentiation [of 
the form (40) ] of the vortex which contains only the second 
power of the source. ( In  lowest-order perturbation theory, 
this contribution is described by diagrams similar to those in 
Fig. 5.) This contribution does not contain powers of the 
small parameter I /L, so it is predominant at small values of 
k. At large values of k, the contribution (54) dominates. 

The distribution function f (T, ) is reconstructed from 
its moments in the same way as for the distribution function 
of the mesoscopic fluctuations in the conductance and the 
state density.5 As a result we find a distribution function 
with a comparatively sharp Gaussian peak at r, -- T,, and a 
log-normal asymptotic behavior at large T ,  (Fig. 2 ) .  The 
region T,, - T,, is determined by the contribution of relative- 
ly low-order moments, while the asymptotic behavior is de- 
termined by the contribution (54), of large-k moments. 

This analysis has been carried out for samples of mesos- 
copic dimensions. It is in this case that we can ignore the 
higher orders of the electron-phonon interaction, and we can 
skip the procedure of making T; ' self-consistent. It is physi- 
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cally clear, however, that in the limit L -- co we are interested 
in fluctuations in T; not throughout the volume but in do- 
mains with dimensions on the order ofL,, . In this case, the 
log-normal asymptotic behavior of the relaxation current in 
the sample is found when we average the contributions from 
all such domains with the distribution function found here. 
This distribution function essentially describes fluctuations 
in this local phase relaxation time. 

We note in conclusion that the quantity u, which char- 
acterizes the log-normal asymptotic expressions in (7)  and 
( 3 8 ) ,  increases toward the Anderson transition. As u is in- 
creased, the log-normal part of the distribution function 
(Fig. 2 )  extends to cover nearly the entire fluctuation re- 
gion, so the transition to the insulating state should also be 
accompanied by a pronounced slowing of all relaxation pro- 
cesses. As the transition is approached, the distribution 
function of the static conductivity and the state density be- 
have in a similar way.5 This result seems quite natural when 
we recall that in the one-dimensional case, i.e., the purely 
insulating case, the fluctuations in the r e ~ i s t a n c e ~ ~ . ~ ~  and (as 
was recently established) those in the state densitys32s are 
described by log-normal distributions. The transition to an 
insulating state should accordingly be accompanied by a 
transition from a normal distribution in the metal to a log- 
normal distribution in the insulator. The asymptotic form of 
the distribution is log-normal even in a metal, reflecting the 
contributions of atypical realizations of the random poten- 
tial which are insensitive to the metal-insulator transition. 

We are deeply grateful to A. G. Aronov, P. B. Vigman, 
V. P. Prigodin, D. E. Khmel'nitskii, and V. I. Yudson for 
useful discussions. 

"The frequency dependence in this, as in any other, specific diagram can 
of course be calculated exactly, without an expansion in o. However, a 
direct summation of all of the important diagrams cannot be carried out 
either in an expansion in w or without such an expansion. A representa- 
tion of the diagram results as a power series in o is convenient for making 
a comparison with the results of an analysis of the nonlinear a model 
(Sec. 3), wbere a different representation of the frequency dependence 
would not bt possible. 

''We are setting fi = 1 in all of the intermediate equations; we restore the 
correct dimensionality in the estimates and the final expressions. 

"In this notation, F: is the same as the functional ( 15a), and FA is the 
same as functional ( 15b), of the ordinary u model. 

"The complete set of important operators in the renormalization (26) 

includes all the vertices which are generated during renormalization- 
group transformations. These vertices are found from (26) by carrying 
out a partition into all possible products of matrix  trace^,^.^ so that the 
number of coupled renormalization-group equations, which is equal to 
the number of these vertices, is determined by the number ofpartitions of 
the natural number N + 2 into sums of natural numbers. Only the contri- 
bution of the maximum eigenvalue of this system of equations is incorpo- 
rated in (27). 

5'All vertices which are generated during the renormalization of vertices 
(32) contribute to this sum. They contain the same number of deriva- 
tives as in (32), but their tensor structure is arbitrary, and the integrand 
is partitioned into the product of all possible matrix traces, as in the case 
of the renormalization of gradient-free vertices of high o r d a  in m (Refs. 
9 and 5). 
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