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A theory is developed of magnetooptic solitons and simultons formed under normal Zeeman 
effect conditions due to the interaction of pulsed radiation with a quasiresonant medium. An 
analysis is made of the feasibility of controlling the profiles, polarization, and frequency 
properties of short light pulses by means of a magnetic field. 

1. INTRODUCTION 

Many striking achievements in nonlinear optics have 
been stimulated by the rapid progress in the development of 
methods for the generation of ultrashort light pulses and for 
controlling their parameters. '-"onlinear magnetooptical 
effects have been investigated initially in the processes of the 
interaction of resonant media with cw coherent radiation 
(see, for example, Refs. 4-9). However, recently some new 
physical results have been obtained using short pulses in 
nonlinear magnetooptics (this is particularly true of the 
technique of synchronized picosecond pulses used to record 
ultranarrow structures in nuclear magnetic 
The importance of magnetic and polarization effects in the 
processes of the self-interaction of coherent pulsed radi- 
a t i ~ n ' ~ . ' ~  is also due to the potential application of these ef- 
fects in nonlinear optical data systems. 

The present paper describes a theory of magnetooptical 
solitons and simultons formed as a result of a quasiresonant 
interaction of short light pulses with a Zeeman multiplet of 
radiative transitions. We consider the effects of a magnetic 
field on pulsed radiation as a result of the scattering of pho- 
tons by split Zeeman sublevels. We use a system of coupled 
nonlinear Schrodinger equations for the amplitudes of oppo- 
site circular components of radiation to describe quasireson- 
ant scattering oflight in which a photon of one of the circular 
polarizations disappears and a photon with the opposite po- 
larization appears. 

2. NONLINEAR MAGNETOOPTICAL ACTIVITY OF 
QUASIRESONANT MEDIA 

We assume that coherent pulsed radiation with a car- 
rier frequency o = kc acts on a transition between energy 
levels m and n with the Bohr frequency om, and angular 
momenta J,,, and that this radiation propagates along the 
direction of the vector of an external magnetic field H. Un- 
der the normal Zeeman effect conditions the splitting of the 
levels is described by the parameter A = p&H / f i ,  where p, 
is the Bohr magneton andgis the Landt factor. If the param- 
eter A or the absolute value of the frequency mismatch 
R = w - w,, are large compared with the relaxation con- 
stants of the medium, the absorption is negligible and the 
self-interaction of the optical field is entirely due to the mag- 
netooptical activity which results from the difference 
between the refractive indices n u  for the opposite circular 
components of the radiation a = + 1 with slow amplitudes 
E , ( t ) .  

The main rules governing the magnetooptical activity 
in strong coherent fields were established by D'yakonov and 

Perel'4 and were modified to describe resonant media in 
Refs. 7 and 13. It follows from the general relationships gov- 
erning the nonlinear susceptibility l 3  that the birefringence of 
the a = . 1 components and the Faraday self-rotation of 
the polarization of a traveling optical wave in a quasireson- 
ant medium with a cubic nonlinearity are determined by the 
following refractive indices 

Here, N denotes the difference between the rates of excita- 
tion of the states m and n ,  and dm, is the reduced dipole 
moment of a transition. The dependence of the refractive 
indices on the angular momenta of the levels is described by 
the coefficients A,,, , , ,  (7t = 0, 1,2) expressed in terms of the 
Wigner 6J symbols. Equations ( 1 )-(3) are derived assum- 
ing that the homogeneous line width r and the decay con- 
stants of the levels r,,, are small compared with the param- 
eters A and (01. The nonlinear Faraday effect is due to an 
asymmetry of the dependence of the refractive index nu on 
the magnetic field. 

This approximation is justified for gases if the Zeeman 
splitting of the levels satisfies the inequality 
kZ << A << rc  ' ( J ,  + J ,  ) - ' , where Z is the average thermal 
velocity of the particles and T,  is the duration of collisions 
between them. In this case we can ignore the Doppler line 
broadening and the dependence of the collisional relaxation 
frequencies on the magnetic field. 

It follows from Eq. (2)  that in the simplest model of the 
identical decay (relaxation) constants ( r = r,,, ) the non- 
linear parameters nk2' and f i '2L  are independent of these con- 
stants: 
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In a zero magnetic field the nonlinear coupling between the 
opposite circular components of the radiation is character- 
ized simply by the coefficient A = 2(A,, + A,, )/A,, which 
has values ranging from 0 to 2: 

This coupling is due to light scattering which alters the spe- 
cific circular polarization of a photon to the opposite one, 
subject to the selection rules AM = + 2 applied to the pro- 
jection of the angular momentum M .  The oppositely polar- 
ized circular components do not interact at all in the process 
of birefringence only for transitions of the J = 1/2+ 1/2 
type. 

The propagation of light pulses in a quasiresonant mag- 
netically active medium subject to dispersion of the group 
velocity in the case when In:) - 1 I < 1 is described by a sys- 
tem of two coupled nonlinear Schrodinger equations for the 
amplitudes of the circular components of the radiation: 

The system of equations (5) was derived using methods sim- 
ilar to those described in Ref. 3. 

In the case of moderately short pulses, when the disper- 
sion of the group velocity can be ignored (8, - 0 ) ,  the solu- 
tion of these equations 

describes phase self-modulation of the circular components 
of radiation. The nonlinear magnetooptical activity of the 
medium is manifested by splitting of the frequencies 

which change not only because of the self-interaction but 
also because of the nonlinear interaction of the u compo- 
nents. In the case of nonlinear coupling between components 
with opposite polarizations, these components contribute to 
modulating one another's phases. 

We shall compare the characteristic nonlinear phase 
self-modulations L, of the o components governed by the 
condition p, (0,  L, ) = 1 :  

In the vicinity of a resonance'' of the component a = + 1 
when IR - A1 < A ,  and E+,(T,  0 )  =.E-,(T, O), we have 

Phase modulation of the component u = - 1 is in this case 

entirely induced and the lengths due to induced modulation 
and self-modulation are very different: 

The characteristic frequency shifts Sw, for pulses with 
the Gaussian profile 

I E,(r, 0) I = 1 E:' I exp (-r2/2r.') (12) 

and with widths T, are described by the expression 

This example illustrates the dependences of the frequency 
shifts Sw, on the initial durations and amplitudes of the 
pulses, on the selection rules governing the angular momen- 
tum, and on the relationship between the offset R and the 
Zeeman splitting parameter A. In the case of circular com- 
ponents with very different intensities the nonlinear magne- 
tooptical activity effects are determined by the stronger 
component. 

3. SOLITONS AND SIMULTONS NEAR A RESONANCE OF ONE 
OF THE COMPONENTS OF THE ZEEMAN STRUCTURE OF 
RADIATIVE TRANSITIONS 

It is particularly interesting to consider steady-state 
propagation of multifrequency pulses with a common enve- 
lope in multilevel linear media. These pulses are called si- 
mu l ton~ . ' ~ . ' ~  We shall show later that under the Zeeman ef- 
fect conditions both soliton and simulton propagation may 
arise because of the nonlinear magnetooptical activity of the 
medium. 

Near a resonance of the radiation with one of the com- 
ponents of the normal Zeeman doublet of a line 
(10 - h i g h )  andfor 1E+,I-IE-,(wecanignorethenon- 
linear contribution of the nonresonant circular component 
of the radiation to the refractive index no. In this approxima- 
tion the amplitude of the component of the radiation E + , 
close to a resonance obeys the usual nonlinear Schrodinger 
equation 

which was solved by Zakharov and Shabat by the inverse 
scattering problem approach. l 6  Propagation of the opposite 
nonresonant component u = - 1 of a pulse is described by 
the linear Schrodinger equation 

the potential of which is proportional to 1 E + , I '. 
The steady-state profile of the u components of a pulse 

can be found by substituting in Eqs. (14) and (15) the ex- 
pressions 

E,=A,(T') exp [ i ( ~ , z + ~ ' / 2 0 , u ) ] ,  T'=t-z/u. ( 16) 

It is known' that the one-soliton solution of Eq. ( 14) for the 
case when B+ ,, p+ , > 0 is 

( 0 )  A+,=A+, sech q ,  q=zf/r+, ,  Q > A .  (17) 

The duration T + , and amplitude A T', of a soliton are relat- 
ed by 
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Substitution of Eq. ( 17) into Eq. (15) gives 

a,ZA-i+(E+U qch2 q)AV1=0, (19) 

In this formulation the problem reduces to determination of 
a discrete spectrum of negative energies for a particle mov- 
ing in a field with the potential U = - Uosech2q. 

The Schrodinger equation ( 19) can be modified by the 
standard substitution a = tanh q into the equation for the 
generalized Legendre functions" 

d dA- Ea -[ da (l-a~)-~]+ da [ p ( ~ + i )  --I 1-a' A-,=o, 
(21 

where 

to the form 

This system of equations has the integrals of motion 

The solutions of the above equation which are damped out in 
the limits q = & a ,  can be expressed in terms of the Euler 
gamma functions r ( x )  and the Gegenbauer ultraspherical 
polynomials C ;"+ "*'(a) (see Ref. 18): 

The condition p - E = I = 0, 1, 2, ... determines the energy 
levels 

as well as the suitably quantized values of the parameter 
g-1: 

where I < p .  
A soliton a component of the radiation close to a reso- 

nance induces nonlinearly a whole set of soliton regimes for 
the opposite nonresonant component, labeled by the index I .  
In particular, the value I = 0 corresponds to the solution 

A-,=~.!;'sech~ q. (26) 

In the model ofpractical decay (relaxation) constants of Eq. 
(2a), we have 

PZU~'"= (2A) '"A/(Q-A) >I. (27) 

The solutions (17) and (23) taken together with the fre- 
quency splitting of Eq. ( 16) describe a series of magnetoop- 
tical simultons, representing elliptically polarized pulses 
with a rotating polarization axis. If p - 1% 1, the induced 
solitons of Eq. (23) are strongly compressed compared with 
the case described by Eq. ( 17). 

4. EXACTSOLITON AND SIMULTON SOLUTIONS 

In the case of a focusing nonlinear medium when O,, 
P,, B, :, 0 the system of wave equations (5 )  can be modified 
by the substitution 

E.= (2/(3,) '"u, (28) 

Here, N, and P represent the numbers of photons in the u 
component and the total momentum of the wave packet, 
where 2F is the Hamiltonian of the system: 

idZu,=6%/6u,'. (33 

The steady-state solutions of the system of coupled non- 
linear Schrodinger equations [Eq. (29) 1 with zero bound- 
ary conditions at r = + a are sought in the form 

uO=O,"q.(z') exp [ i( koz+~'/2~00+60) I, 

The amplitudes q, satisfy the equations of motion 

a~rzqo=-a~/aqo  (35) 

in a field with a potential U, which in terms of the polar 
coordinates 

q+i=r cos cp, q -~=r  sin (P (36) 

is 

u= [--  r2/roZ+ B(cp) r6 J 12, 

B(v)  =B+, cos' cp+B-1 sin4 cp+2 cosz cp sinz cp, B,=a,0-,/0,. 

There are certain paths in the potential field U along which 
the coefficient B ( p )  is extremal and, consequently, we have 
dU/dp = 0. The motion along these paths corresponds to 
the solutions 

r=T .-iB-'la( 90) sech (T'/TO), (38) 

where p, represents the roots of the equation 

aB (cp) /acp=o. (39) 

In view of the symmetry of the function B(p) ,  it is suffi- 
cient to analyze its changes in the interval O<p<.rr/2. The 
roots q, = 0 and 17/2 correspond to solitons with opposite 
circular polarizations (B  = B, for u, #O, u - , = 0) .  More- 
over, there is a third root 

provided the parameters B, satisfy the inequality 
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This root is characterized by 

and it represents a coupled state of two opposite circular 
components with split frequencies, i.e., it corresponds to a 
magnetooptical simulton. 

We can determine the conditions of stability of this so- 
lution against one-dimensional perturbations simply by de- 
riving the Lyapunov functional which in this case is extre- 
mal. This problem was solved earlier by Zakharov and 
Kuznets~v. '~  We shall take the Lyapunov functional to be 
the quantity 

These solutions of the system (29) are stationary points 
of the Hamiltonian R for fixed values of N and P, because 
these equations appear when we vary the corresponding 
functional 

The functional represents transformation of the Hamil- 
tonian R to a moving reference system. The transformation 
of the amplitudes of the circular components of the radiation 
u, is then similar to the Galilean transformation for the 
wave functions: 

u,(T, Z) =U",,(Z--Z/V, z)exp(i~/2vO,), (45) 

so that % = Z(iio ). We have to find the extrema of *and 
the conditions of their existence. 

Introducing new variables 

we find that the lower limit of the functional 

is determined by the inequality 

%>0+,0-. ) [r,"r4 mas B ( q )  ]dt. 
- - (48 1 

A minimum of the functional % corresponds to 
p, = a,@, = 0 and B = B(&), where & is the root of Eq. 
(39) for which the coefficient B is maximal. 

If B + > 1, then the coefficient B (p )  has two maxima at - - 
q, = q, = 0 and at 77/2, which correspond to stable soliton 
pulses with circular polarizations. In the model of equal de- 
cay (relaxation) constants of Eq. (2a), when 

these stability conditions become 

and-according to Eq. (4)-they are satisfied for transi- 
tions subject to the selection rules AJ = + 1 applying to the 
angular momenta ( J >  1 ). 

In the opposite case when B, < 1, the function B ( p )  
has one maximum at p = q,,, where the root p0 is given by 
Eq. (40) and a simulton state of two nonlinearly coupled a 
components of the radiation is stable. When the decay (re- 
laxation) constants of the medium are equal the conditions 
for simulton stability are determined by the inequalities 

which corresponds to transitions subject to the selection rule 
AJ=  0 ( J>1) ,  and also to transitions of the J =  0-1 type. 

In zero magnetic field, when 

the system of wave equations (5)  reduces to a system of 
coupled nonlinear Schrodinger equations for a medium with 
a scalar nonlinearity, which was integrated by ManakovZO 
using the inverse scattering method in the case when A = 1. 
A mechanism similar to that described in Ref. 20 accounts 
for the interaction of steady-state pulses in an anisotropic 
magnetically active medium. 

Thus, collisions of two solitons with opposite circular 
polarizations create a magnetooptical simulton of the type 
described by Eq. (40) if B , < 1. In fact, in this case there is 
no energetic restriction against two soliton a components of 
the radiation coalescing into one simulton, because the si- 
multon energy R0 is less than the total energy of the uncou- 
pled circular components ,?+, + R- ,. The condition of 
validity of the estimate 

is identical with the Condition for stability of a simulton 
(B,l < I ) .  

In the case of scattering of two solitons with identical 
circular polarizations but different durations r,,, and 
centers moving with different velocities u ,  < u,, we find that 
At,,, are described by the expressionz1 

These shifts are particularly noticeable in the vicinity of a 
resonance of a given radiation component with the corre- 
sponding Zeeman component of a radiative transition 
( 1 SZ - aA 1 (A). Simulton regi es induced nonlinearly by a 
a component close to a resona '4 ce and discussed in Sec. 3 
reproduce the pattern of scattering of soliton pulses with 
identical polarizations. 

We conclude by noting that we have exhibited the ef- 
fects of formation and interaction of Zeeman solitons and 
simultons in quasiresonant magnetically active media on the 
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basis of a one-dimensional model, i.e., ignoring the trans- 
verse structure of the pulses. Since the growth increment of a 
transverse instability of the pulses decreases away from a 
resonance,22 it follows that this approximation is quite valid 
in the case of quasiresonant radiative processes. 

The authors are grateful to E. A. Kuznetsov for valu- 
able discussions. 
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