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Numerical calculations based on the weak coupling theory are carried out for La2Cu04. The 
main result is that there is a considerable difference between the Hubbard model with a single 
charge and the interaction of a general form with four effective charges. In the first case the metal 
is always unstable and, depending on the sign of the charge, it goes over either to the 
antiferromagnetic or the superconducting state. In the general case the metal may remain stable 
or go over to the state, considered previously, consisting of a "singlet superconductivity 
(SS) + spin density wave (SDW) + charge density wave (CDW)" coherent mixture. Paired 
SS + CDW, SS + SDW, and SDW + CDW coherent mixtures should also be possible. 

1. INTRODUCTION 

The present article completes the construction underta- 
ken earlier',2 of a weak-coupling theory for La2Cu04. This 
theory is based on the peculiarity of the electronic spectrum 
of La2Cu04 first considered by Hirsch and Scalapino3 (see 
also Ref. 4) .  Naturally, the question arises at once, what is 
the meaning of weak-coupling limit in a situation when the 
interaction is clearly of order unity, and possibly even 
stronger. We believe that the results; for small charges will 
allow ajudicious extrapolation (for more detail, see the Con- 
clusion) into the region of intermediate and strong interac- 
tion, where all the qualitative results of the theory remain 
valid: increase in transition temperatures, the uniqueness of 
the long-range order and flucutations, etc. 

The results of studies of a two-dimensional metal with a 
nearest-neighbors approximation for the electronic spec- 
trum14 give a basis for such hopes. In this approximation 
the Fermi surface of La,Cu04 is nearly the square shown in 
Fig. la (Refs. 3,4). The existence of the corners leads to an 
anomalously strong enhancement, proportional to the 
square of the logarithm of the energy (or temperature), of 
flucutations of all the possible types of long-range order: 
singlet superconductivity (SS) , spin-density waves (SDW) 
and charge-density waves (CDW). The strong fluctuations 
on the one hand lead to a transition temperature different 
from the BCS formula3: T, cc exp( - const g - " 2 ) ;  on the 
other hand, they in general render useless simple ladder the- 
ories of the BCS type.',' The behavior of the system is deter- 
mined by complicated nonlinear integrodifferential equa- 
tions describing the coexisting of strong fluctuations of all 
three types. These equations can only be solved numerically. 

The SS, SDW and CDW interaction is most clearly 
manifested in the dependence of the state of the material on 
the bare charges. In the weak-coupling approximation there 
are four charges in all.ls2 In the Hubbard limit, when all the 
charges are equal and positive, the results of numerical cal- 
culation (Sec. 3) are practically the same as those of the 
ladder approximation2.3: the system is antiferromagnetic 
and is in an almost pure SDW state. (Note that in the non- 
physical variant of the Hubbard model with attraction the 
system would be in the SS + SDW state given by the ladder 
approximation: a metal is always unstable in the Hubbard 
model. ) 

In the general case of different bare charges, the picture 
given by numerical calculation is unexpectedly rich. On the 

one hand, there is the region of metallic stability and on the 
other, there is the possibility discussed earlier'.' of a mon- 
ster-a coherent combination of SS + SDW + CDW. By 
symmetry considerations2 this monster is necessarily ferro- 
magnetic, which unexpectedly conflicts with the old results 
of Nagaoka5 in the strong-coupling limit. 

Finally, even at first glance, the pure SS, SDW or CDW 
states for unequal bare charges differ noticeably from the 
results of the ladder approximation. Besides the leading fluc- 
tuations (for example, SDW) there is a distinct admixture of 
the other functions (SS and CDW) which, in its turn, dis- 
torts the pure state, leading to an intrinsic dependence of the 
renormalized charges on electron momentum. 

The results of numerical calculation are described in 
detail in Sec. 3. In addition, we have outlined the calcula- 
tional method (Sec. 2) .  

2. CALCULATIONAL METHOD 

We first simplify somewhat the system (9)  of parquet 
equations in Ref. 2. From symmetry considerations for iden- 
tical particles it follows that in Eq. (7)  of Ref. 2 

= -  yz='f-2. (1)  
In addition, the diagrams for y, can be cut off at the Cooper 
diagrams, and for y3 and y,, at the zero-sound diagrams, that 
is, 

Thus, we have six unknown functions in all, y,, y,, y,, C, Z ,  
and Z , ,  , which must be determined by solution of the par- 
quet equations. 

Each of these quantities is a function of four variables. 
A natural choice of these variables for the functions consid- 
ered is listed below [the notation is from Eq. ( 8 )  of Ref. 21: 

From a formal mathematical point of view, the arguments of 
all the functions (3)  can be denoted in an arbitrary way, for 
example ({,, 5,, l,, 5, ) .  It is understood that for each of the 
functions y,, y,, y4, C, Z ,  and Z ,, these arguments have their 
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FIG. 1. 

own physical meaning, determined according to (3)  and Eq. 
(8)  in Ref. 2. Furthermore, we will employ this same nota- 
tion for the arguments of all the functions (3).  

To simplify the notation, we introduce the following 
symbol. Let A, B, C be arbitrary functions of four variables 
(PI, Pz, f , ,  f 2 ) .  Then we will write an expression of the form 

E l  

as the convolution 

A=BoC. (5 

For the arbitrary function A(f ,, c2, c, ,  f,) we introduce the 
 function^({,, c,, f ,, c,) of four variables, which is connect- 
ed with the original function by the following relation: 

A ( E 1 ,  E 2 ,  t1, t 2 ) =  
=A(Ei, min ( Z , ,  t 2 ) ,  rnin ( t i ,  L ) ,  min ( t i ,  L ) ) .  (6) 

Then, in the notation of (5)  and (6),  the parquet equa- 
tions for the functions (3)  take the form 

where 

The quantities y, , y,, , y,,, in (8)  are just the vertex y,, writ- 
ten in terms of the different sets of arguments (8)  of Ref. 2. 
The different combinations of "tilde" signs over Z ,  , Z ,, and 
C appear in passing from one set of arguments to another 
with logarithmic a c ~ u r a c y . ~  

The Eqs. (7)  and ( 8) were solved numerically. For this, 
expression (4) was replaced by its discrete analog. The ver- 
tices y, C, Z were calculated in the form nD, where Ogn( 16 
is an integer, and D = 1/16 is the mesh interval. The interval 

on the right side of (4)  was replaced by a summation using 
the trapezoid rule. For A({,, 12, e l ,  C,) =A({,, P2, f2, 6,) 
and g2>f1, f2, it is sufficient to consider the range of argu- 
ments f,>f,>f,. Thus from the system (7)  we get the sys- 
tem consisting of 

k-0 1-0 m-0 

ordinary differential equations in the variable PI, taken to be 
time. This system of 5814 equations was solved numerically 
by the fourth-order Runge-Kutta method with initial condi- 
tions, at f ,  = 0, of: 

Results of the numerical solution are discussed in Sec. 3; 
here we transform (7)  and (8)  into another form more con- 
venient for analytical investigation and interpretation of the 
numerical results. 

Solving Eqs. (7)  by iteration in time f, ,  we see easily 
that for any of the functions y,, y,, y,, C, Z, , Z,, we get an 
expansion of the form 

n-m-p-q 
~ z ~ g ~ ~ g 4 " E i " ~ z - ~ - '  6 i k 6 z 1 .  

k lmnpq 

(10) 

This implies that the function A(&,, f,, el 6,) is in fact a 
function of three arguments: l1l2 = 8, gI/g2 = X, and g2/ 
'5, = Y: 

A ( E l ,  E , ,  51, b z ) = A ' ( E i E z ,  t i / E a ,  t 2 l E z )  

=A'(& X, Y ) ,  O<X<1, O G Y G I .  
(11) 

If we consider each of the quantities y,, y,, y,, C, Z ,  , Z ,, as a 
function if 0, X, and Y, then the parquet equations for these 
functions will have the form of (7)  and (8) ,  where now the 
derivative and the convolution (5)  are expressed as 

and, in place of (6), we have 

A ( 0 ,  X, Y ) = A ( 0  min (X, Y ) ,  1, 1 ) .  (13) 

Note that the terms with a tilde entering into (8) are, 
according to ( 13), retarded in time with respect to the terms 
without the tilde. Therefore, according to (7)  and (8),  the 
derivatives A (8,X, Y) depend not only on the values of the 
functions A(B,X,Y) at that same instant 0 of time, but on 
their values at preceding times. In other words, the system of 
Eqs. (7),  (8),  (5 ) ,  ( 12) and (13) is a system of differential 
equations with a memory. 

Numerical results from the formulation (4)  and (6) 
become more transparent in the retarded representation of 
( 12) and ( 13). In Figs. 2, 3, 4 and 6, different functions 
A(8,X, Y )  for fixed 8 are contained in the XY plane. On each 
plot 11 conton-S are drawn, with the interval (MAX- 
MIN) /12, where 
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MAX = m a x [ A ( ( j , X ,  Y)], M I N  = m i n [ A ( e , X ,  Y )  1. 
x.y x,y 

Cross-hatches indicate the direction of decrease. In the cap- 
tions the values of 8, MAX and MIN are shown. 

We now transform the system of Eqs. (7) and (8) to a 
simpler form. We introduce the quantities 

Equations (7) and (8), written in terms of the variables 
( 14), have the form 

where Ti (8,X,Y) coincides with the expressions in curly 
brackets in (15), and the following correspondence exists 
between the indices in ( 17) and ( 15): 

In terms of the original variables of (2)  and (8)  the ri have 
the following form: 

Taking account of the correspondence ( 18) and E ~ s .  
( 14) and ( 15), the quantities y,, , , y ,  , ,y,, . , differ from 
( 19) only by the absence of the retarded terms and the con- 
stant g,. Then we have 

i 

0 

All this procedure was carried out numerically. 

where the notation A = AoA is used in the sense of (5).  The 3. RESULTS OF THE NUMERICAL CALCULATION 

initial conditions (9)  now take the form The results of the numerical calculation are collected in 
the table. The quantity 8, in the table is the time for which 

y,,+=y,,-=-gl, yb,+=Tb,-=gI,, y,,+=y,,-=gl-2g3. the solution of the system of Eqs. (7)  becomes singular. It is 

(16) 
related to the transition temperature by the formula 

If we discard the retarded terms in Eqs. ( 15 ),then these 
equations decouple and coincide with the equations of the 
ladder approximation. Thus, the whole parquet effect lies in 
the existence of the time-retarded terms in ( 15), which link 
these equations. 

Having solved Eqs. ( 15) [or the equivalent Eqs. (7)  
and ( 8 1 we can find the susceptibilities xi (8) correspond- 
ing to the different types of electronic instabilities in the sys- 
tem. In the model considered there are six types of instabili- 
ties: SS * , SDW * , and CDW * . The f signs correspond to 
order parameters that are symmetric or antisymmetric with 
respect to interchange of the van Hove points A and B in Fig. 
lb. In the case of a + sign( - sign) and s-type (d-type) 
pairing takes place, for which the order parameter does not 
change sign (changes sign twice) on traversing the square 
Fermi surface. 

To find xi (O), we must first calculate the auxiliary 
quantity Yi (8 ,X), making use of the equation 

i=SS$ SDWf CDW* (17) 

where Igl is the general scale constant g,,g,,g,,g, (the calcu- 
lational results are valid, of course, for sets ofg,,g,,g,,g, dif- 
fering by an overall multiplying factor Jgl ) . The quantity 8, 
is the estimate for 8, in the ladder approximation. The row 
designated by x indicates which of the susceptibilities 
xi - co for 8- 8,. We note that in all the cases investigated 
the form of the instability agrees with that given by the lad- 
der approximation. Below, we comment on the most typical 
solutions. 

a )  The Hubbard model, g,  = g, = g, = g,. As was al- 
ready said, the results in rough outline differ little from the 
ladder results of Ref. 2 [Eqs. ( 13 )-( 15) 1. The transition 
point is fixed by the value 8, = 0.52 (the ladder would give 
8, = 0.50). For g > 0 the leading instability, naturally, turns 
out to be the SDW+, and the leading renormalized charge y, 
as a function of the relative momenta X and Ychanges by less 
than 15% (Fig. 2a). However, the "strange" vertices de- 
pend very strongly on the momenta. In Fig. 2b the isolines of 
y, are shown for 8 = 0.52. It is evident that as the transition 
point is approached the charge y,, initially positive, takes a 
negative "superconducting" sign. Moreover, the supercon- 
ducting region arises from the region of momenta near the 

TABLE I. 
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condition4 ' 1 1 1 ' I 1 I 
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1 
0.5 
0 

-1 

- 
>2.1 

g1 ' 1  1 
1 
0 

- 1 

- 

>12..j 

-1 
- 1 
- 1 
-1 
SS+ 

CDW+ 

0.52 

gs 
g3 
g4 

0, 
- 

1 
1 
1 

I SDW+ 

0.52 

-0.5 
- 1 
- 1 
-1 

CDW+ 

0.56 
0, 0.5 0.5 

l l i  

0.5 

2 
0 

-1 
SS- 
SDW' 
CDW- 
2 . 2  

0.5 
-1.5 
SS - 

5 . 3  
1.0 1.0 I - 



FIG. 2. Contours of the function A (B,X, Y )  for initial conditions No. 1 and 
e= 0.52: a-y4(B,X,n, MAX = 379, MIN = 331, b--y,(B,X,Y), 
MAX = 0.5, MIN = - 14.8. 

points A and B in Fig. lb  (the upper right-hand corner 
X = Y = 1, Fig. 2b), as far as possilbe from the region of 
perturbation theory (the coordinate origin 1. 

This behavior can be understood as follows. Neglecting 
the retarded terms in Eq. ( 15) for y ,  +, for 8 near 8, we get 
the equation 

which has a solution of the form 

Substituting the expression in the remaining equations of 
( 15), we find, for example, that 

We see that a pole in the SDW channel leads to the appear- 
ance of only a weak logarithmic singularity in other chan- 
nels, and only at points near X = Y = 1. Thus the neglect of 
the retarded terms is valid. 

The Hubbard model preserves the symmetry, relative to 
changes of sign in charge, inherent in the ladder approxima- 
tion. for g < 0 the driving instabilities are the SS+ and 
CDWf, and Fig. 2b depicts (with the opposite sign) the 
isolines for y4. 

For interactions of general character with differing bare 
charges the stability region for the different types SS* , 
SDW * , and CDW * is roughly determined by the ladder 
Eqs. ( 13)-( 15) in Ref. 2 for the transition points. We begin 
with the most interesting charge regime, where the SS, SDW 
and CDW coexist. 

b)  g ,  = 1 , g , = 2 , g , = 0 , g 4 =  - 1. In theladder ap- 
proximation we have a SS- + SDW+ + CDW- instability 
for these values of charges, approaching 8, = 1 .O. This same 
coherent mixture remains unstable in the parquet approxi- 
mation although the transition temperature is lower: 
8, = 2.2. The unsuitability of the ladder approximation ap- 
pears more vividly in the sharp dependence of the vertices on 
momenta. The leading renormalized charge has a character- 
istic peak for large momenta (that is, for X = Y = O), and 
the charge yo, - = y ,  - = y,, - turns out to be a nontrivial 
function of the momenta, having maxima for X = Y = 0 and 
X =  Y= 1 (Fig. 3b). 

In the ladder approximation the coherent mixture 
SS + SDW + CDW is unstable, If one moves away from the 
point at which the bare charges gss- ,gs,,+ and g,,,- are 
equal, there will be one leading channel, an the other two 
become unfavorable. In the parquet approximation the situ- 
ation is not so fixed. An appraisal taking into account the 
dependence of the renormalized charges on the momenta 
shows that, apparently, there is a final region of instability 
that is a SS + SDW + CDW monster. 

This means that even when one channel clearly domi- 
nates, the results are none the less far from those of the lad- 
der approximation. We will describe one of these symmetric 
situations. 

C )  g, = 1, g2= 2, gJ =O.5, g4 = - 1.5. In the ladder 
approximation a SS- instability develops for 8, = 1.0. The 
SS- instability remains the sole driving instability in the par- 
quet approximation, but the transition temperature differs 
greatly: 8, = 5.3. The momentum dependence of the renor- 
malized charge is nontrivial. The leading charge y,, + again 
has a sharp peak for large momenta (X = Y = 0) and the 
charge y4 alternates as a function ofXand Yin sign (Fig. 4).  

Finally, on the metallic instability: in the ladder ap- 
proximation the region of metallic instability always exists 
(see Eqs. ( 13)-( 15) in Ref. 2) .  We cite the results on the 

I. 
boundary of the instability in the ladder approximation: 

gss - = gsDw + = gcDw - = 0 . 
d )  g, = g, = 1, g, = 0, g, = - 1. Here at first glance 

we have the zero-charge picture, which we traced up to the 
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FIG. 3. Contours of the function A (&X, Y) for initial conditions No. 4 and FIG. 4. Contours of the function A ( e,X, Y) for initial conditions No. 5 and 
e = 2.1: a-y,, + ( e , x , n ,  MAX = 528, MIN = 46; b--yo,- ( e , x , n ,  e = 5.2: a-yo,+ , ( e , x , n ,  MAX = 2596, MIN = - 0.3; b--y,(e,x,n, 
MAX = 2.4, MIN = 0.7. MAX = 2.3, MIN = - 0.5. 

value 8 = 12.5. The generalized susceptibilities 
xss- = xsDw+ = xcDw- in the region 0 > 3 depend linearly 
on 8, which corresponds to all the ri -0 according to (17) 
and (20) (Fig. 5). However, the renormalized charges 
r s s  = rsDw+ = rcDw- are still intrinsic functions of the 
momenta, on the order of unity, and only their alternating 
character leads to the vanishing of the integrals determining 
the susceptibility. It is difficult to visualize how such precise 
cancellation remains right up to 8 = w ( T  = 0).  A more 
likely picture is that for some-possibly very large-value of 

0 the compensation breaks down and the system suddenly 
undergoes a phase transition. 

In Fig. 6, as illustration, the values of y,, - are shown 
for 8 = 7.2. The remaining vertices have an analogous form. 
With subsequent evolution in 8 they hardly change over the 
whole XY plane, with the exception of the vicinity of the 
point X = Y = 0. The quantities y,, * ,y,, , and y,, , tend to 
constant values of f 1/3, for which the right-hand sides; of 
(15 )  vanish. Since they cease to depend on 8, X and Y, the 
retarded quantities 2 ( O,X, Y )  approximately coincide with 
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FIG. 5 .  Behavior of XSS-  ( 0 )  (upper curve) and x,,+ ( 6 ' )  (lower curve) 
for initial conditions No. 7. 

the A (B,X, Y) . The exception is in the neighborhood of the 
point X = Y = 0, since there the retarded terms cancel out: 

We see that the right side of (23) is positive and roughly 
equal to (2/3) 2. Thus at the point X = Y = 0 there is a linear 
increase with time. It is very likely that it turns into a polar 
singularity at the point X = Y = 0. In fact, just such an insta- 
bility arose in cases (b)  and (c )  studied above. 

The results presented demonstrate the richness of the 
weak-coupling model with four bare charges. Particularly 

FIG. 6. The quantity %,- (B,X,Y) ,  with 6' = 7.2, MAX = 2.0, 
MIN = 0.2, and initial conditions No. 7. 

instructive is the possibility of a coherent combination of all 
the conceivable types of instabilities (and the corresponding 
fluctuations). This monster appears in asymmetric situa- 
tions when the size of the charges is substantially different; at 
the most extreme g, should flip over (see Refs. 1 and 2) .  In 
particular, for Ig21 + co the monster is always stable. The 
charge asymmetry automatically implies that the model 
takes into account interaction with a large number of neigh- 
bors; this interaction should in principal be alternating. In 
this same way the competition between Coulomb repulsion 
and attraction via phonon exchange is included, allowing 
one to explain the nontrivial isotope effect in compounds 
based on La2Cu4. 

4. CONCLUSION 

In conclusion we turn again to the question of how the 
weak-coupling model relates to reality. We cannot exclude 
completely the possibility that in actual La,CuO, and the 
related compounds we are dealing with moderate or at least 
not too strong coupling. In this situation the effect of the 
specific (square) shape of the Fermi surface can be entirely 
preserved, and then all the consequent features of the model 
will be manifested. A large number of bare charges allows 
one to explain simply the experimentally observed sensitiv- 
ity of La,Cu04 - , to oxygen content. In the weak-coupling 
limit the effect of alloying, in particular the suppression of 
antiferromagnetism and the onset of superconductivity, is 
easily and naturally explained. The theoretical possibility of 
coherent SS + SDW + CDW mixtures is compatible with 
the experimental hints of the coexistence of superconductiv- 
ity, ferromagnetism and antiferromagnetism. Finally, it is 
not difficult in theory to consider three-dimensional effects 
as well, putting in interaction between different copper lay- 
ers. 

We intentionally do not cite experimental work, so as 
not to create the illusion that we have any sort of formula 
ready for comparison with experiment. In view of its loga- 
rithmic accuracy, the theory can give only qualitative results 
in spite of its complexity. The result of a double-logarithmic 
approximation would have meaning only for extremely 
weak coupling. 

"These charges are fixed by the value of the corresponding vertices ( 19) 
for 6' = 0. 
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