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Exact solutions of stability problems are obtained for two anisotropic gravitational systems of 
different geometries-a layer of finite thickness at rest and a rotating cylinder of finite radius. It is 
shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. 
However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The 
physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating 
layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans 
modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational 
branch, this also being responsible for the beam gravitational instability. This is the reason why 
this instability and the anisotropic gravitational instability have so much in common. 

1. INTRODUCTION 
Stellar systems of the most diverse scales-globular 

clusters, elliptical galaxies, various subsystems of spiral gal- 
axies, etc.-are, being collisionless, ' characterized by an an- 
isotropic velocity distribution function of the stars.2 From 
the evolutionary point of view, the occurrence of anisotropy 
is entirely natural if it is assumed that the stellar systems1) 
were formed in a collapse process. When a system of noncol- 
liding gravitational masses collapses, the released potential 
energy is expended in the first place on an increase in the 
kinetic energy of the motion in the direction of contraction 
(the longitudinal direction). It is therefore natural to expect 
the formation of strongly anisotropic systems in which the 
velocity dispersion in the longitudinal direction is apprecia- 
bly greater than the dispersion of the transverse velocities. 

However, since real systems have only a moderate de- 
gree of anisotropy, the question arises of the mechanisms of 
isotropization that act in collisionless gravitating systems. 

One of the known mechanisms is Lynden-Bell mixing 
(violent relaxation).) Despite the large number of studies 
devoted to this mechanism, there are various arguments 
which raise doubts about the possibility of Lynden-Bell re- 
laxation in real stellar systems. We recall that Lynden-Bell 
relaxation was investigated3 for the example of a strongly 
nonequilibrium system. Two stages of relaxation were 
found.3 After a first "violent" period, which takes place over 
the dynamic time r, the system slowly relaxes to the unique 
Fermi distribution f,. Since as a result of the first stage the 
relaxation function f differs little from the equilibrium (Fer- 
mi f,) function, universality of the Lynden-Bell mechanism 
would have the consequence that among stellar systems with 
age t$r  there should be none that differ appreciably from 
equilibrium systems. Nevertheless, such systems are ob- 
served (see Refs. 4 and 5 and the literature quoted there). 

A second argument against Lynden-Bell relaxation in 
stellar systems is the presence of strong instabilities in sys- 
tems in which, according to Ref. 3, Lynden-Bell relaxation 
should occur. If there is to be no Jeans instability leading to 
growth of transverse perturbations6" in the system consid- 
ered by Lynden-Bell,3 the system must have a sufficiently 
large velocity dispersion in the directions at right angles to 
the radius: 2(v:)/(v: ) 5 1.5-2.5 (Refs. 2 and 8-10). How- 
ever, this contradicts modern cosmological ideas.".'2 

In this paper we shall not dwell further on the group of 
problems relating to the Lynden-Bell relaxation mechanism 
but will concentrate on the search for and elucidation of 
possible collective instabilities. 

It is well known that in a collisionless plasma isotropi- 
zation is brought about by instabilities: the firehose instabil- 
ity when TII > T, (the indices 11 and 1 denote the directions 
along and at right angles to the magnetic field B,) and the 
anisotropic instability when TII < T, . In gravitating systems, 
the mechanism of the firehose instability proceeds in essen- 
tially the same way as in plasma systems. The condition for 
the firehose instability is satisfied if the centrifugal force 
which arises when the system is subject to bending (trans- 
verse) perturbations exceeds the stabilizing force of the 
magnetic pressure (in a plasma) or the gravitational attrac- 
tion (for a gravitating system). The gravitational force 
which stabilizes the firehose instability leads, in its turn, to 
the Jeans instability. Therefore, one sometimes says that the 
firehose and Jeans instabilities complement each other, by 
which is meant that they develop in adjacent parameter re- 
gions (see Refs. 1 and 2) .  

A dispersion relation for an anisotropic gravitating sys- 
tem was derived for the first time in Refs. 13 and 14 for a 
rotating cylinder of infinite radius. Attention was drawn in 
these studies to the analogy between this relation and the 
dispersion relation of HarrisI5 for an anisotropic plasma in a 
magnetic field. Wu" found2' that the eigenfrequencies are, 
in general, complex, and this was the first example of an 
oscillatory Jeans instability. While giving deserved recogni- 
tion to this nontrivial fact (which Wu in his paper passes by 
without comment, to which we will refer below), we never- 
theless feel we must point out an error in one of Wu's main 
results. In Ref. 13, Wu determines a critical value of the 
anisotropy, fl f, = c i  /c: ~ 0 . 2 9 3  (ell and c ,  are the velocity 
dispersions of the particles along the rotation axis and in the 
perpendicular direction), which, in his opinion, separates 
the unstable solutions (having p2  < fl i,) from the stable 
ones (with p > p :, ) . The value of fl :r is given in the ab- 
stract of Ref. 13 as a main result. This result is incorrect. 
There is no upper limit for the anisotropy value at all-an 
anisotropic rotating cylinder is unstable both whenp < 1/2 
and whenfl > 5.3 (Refs. 1 and 2). In the latter case, pertur- 
bations of the boundary that have a wavelength long com- 
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pared with the radius R of the cylinder develop; this is the 
firehose instability (see Refs. 1 and 2).  Wu's model,13 which 
is radially unbounded, is in principle incapable of permitting 
study of the possibility of such in~tability.~' 

The aim of the present paper is to investigate the physics 
of the anisotropic gravitational instability using as an exam- 
ple two models of anisotropic gravitating systems possessing 
very different properties-a layer of finite thickness at rest 
and a rotating cylinder of finite radius. In the theory of plas- 
ma instabilities, the analogy between the two mechanisms of 
beam and anisotropic instability of a plasma in a strong mag- 
netic field is well known (see, for example, Ref. 18). As is 
shown in Ref. 5 of the present paper, such a situation is also 
characteristic of a gravitating medium. The mechanism of 
beam instability in a bounded gravitating system, first inves- 
tigated in Ref. 16, is also based on the oscillatory Jeans insta- 
bility. Thus, the detailed analysis of the physics of this insta- 
bility made in the present paper will help to reveal the 
common basis of the mechanisms of the an isotropic and 
beam instabilities in gravitating systems. 

2. QUALITATIVE ANALYSIS OF JEANS INSTABILITIES 

2.1. Why the maximal growth rate of gravitational instabilities 
cannot exceed the Jeans growth rate 

It is well known that the basic "working force" of elec- 
trostatic instabilities of a plasma is the perturbed electric 
field. Therefore, the maximal growth rates of such instabili- 
ties cannot exceed the electron plasma frequency w,,. Simi- 
larly, the maximal growth rates of the instabilities in gravi- 
tating systems due to the perturbed gravitational field 
cannot exceed the Jeans frequency w,. This is a natural re- 
sult; for the minimal time of restructuring of a system as a 
result of gravitational interaction is the time of free fdl  and is 
of the order of w; ' 
2.2. Aperiodic nature of the Jeans instability in a 
homogeneous isotropic medium 

During the more than 70-year history of the Jeans insta- 
bility, its aperiodic nature appeared to be established once 
and for all. Indeed if an arbitrary volume in a gravitating 
medium is slightly compressed, it will either re-expand and 
an acoustic wave will arise, or it will continue to contract. In 
the latter case, one says that the system is gravitationally 
unstable to perturbations with characteristic size corre- 
sponding to the compressed volume. The physics of the in- 
stability is extremely simple-the gravitational force ex- 
ceeds the pressure force. For this, the mass of the body and 
its size at constant density must not be too small; more pre- 
cisely, they must exceed certain critical values. This last fact 
was first pointed out by Jeans, and this is why we speak of the 
"critical Jeans length" R ,. Thus, if the scale of the perturba- 
tion exceeds A,, R > R ,, then an irreversible contraction- 
the Jeans instability-occurs in the gravitating medium. 

2.3. Possibility of acoustic oscillations in a heterogeneous 
isotropic gravitating medium when A >  A, 

Grishchuk and Zel 'do~ich'~ (see also our Ref. 20) 
pointed out a qualitative change in the nature of perturba- 
tions with R > A, in a heterogeneous medium, i.e., a medium 
consisting of several subsystems. Suppose that a perturba- 
tion with R > A, arises in the simplest two-component sys- 
tem. Then besides the classical Jeans instability there will 

also arise in the system characteristic oscillations which we 
called in Ref. 20 asynphase (analogous, for example, to 
Langmuir oscillations in a plasma or optical vibrations of a 
crystal lattice). Oscillating in antiphase, the density maxima 
of one subsystem are compensated by the minima of the oth- 
er in the same spatial regions, so that the total density of the 
system is hardly changed. It is this that explains the possible 
existence of such oscillations with a wavelength appreciably 
exceeding the Jeans value. 

In the quoted Refs. 19 and 20 it was shown that in an n- 
component gravitating system there exist n - 1 asynphase 
oscillations and one synphase oscillation, this leading to 
Jeans instability when R >A, . We shall see that each type of 
characteristic perturbation leads either to collapse or to os- 
cillations. A mixed process-the participation of one and the 
same characteristic perturbation simultaneously in the oscil- 
latory and collapsing regimes--does not, on the basis of the 
classical results of Jeans2' and the recent studies of Refs. 19 
and 20, appear to be possible. 

2.4. Oscillatory Jeans instability in anisotropic systems 

The greater complexity of the considered systems, in- 
troduced to make them more realistic models, must lead to a 
greater complexity of the spectrum of natural oscillations. In 
this paper, we shall show that a minimal extension of the 
framework of the investigated models-the consideration of 
anisotropic systems-already leads to a new physical phe- 
nomenon: the oscillatory Jeans instability. A spectrum of 
complex eigenfrequencies was first obtained, but without a 
discussion of the physics of the process, by WuI3 in an inves- 
tigation of anisotropic gravitational instability and by Mik- 
hailovskii and FridmanI6 in an investigation of the gravita- 
tional beam instability. 

With a view to bringing out the diverse physical charac- 
teristics of the phenomenon, we investigated in the present 
paper in two opposite limiting cases: a flat gravitating layer 
of finite thickness at rest and an infinitely long rotating cyl- 
inder of radius R. In both cases, we find exact solutions of the 
problem. Before we turn to the description of the finding of 
these solutions in Secs. 3 and 4, we shall attempt to present 
the basic results at the qualitative level. We begin with the 
flat anisotropic gravitating layer. 

2.4.1. Gravitating anisotropic layer 

We take the layer to lie in the xy plane. Its thickness 
(along the z axis) is determined by its "transverse" (at right 
angles to the plane of the layer) "temperature" T,: 

T,=T, - J fiv; a ~ ,  
where f, is the distribution function of the particles in the 
six-dimensional phase space. We consider the case when the 
wave vector of the perturbations Iies mainly in the plane of 
the layer, but its transverse component is not small; specifi- 
cally, we shall assume that in the direction of the z axis the 
eigenfunctions have n nodes. Then if T, ) TI[, i.e., the system 
along the plane is so cold that the longitudinal wavelength 
satisfies A l l  >A,, Jeans instability will develop. Two funda- 
mentally new properties distinguish this instability from the 
classical Jeans instability (see Sec. 3) : 1 ) Each characteristic 
perturbation, oscillating along the z axis, simultaneously 
collapses in the transverse direction along the plane of the 
layer. 2) The oscillation mode with n nodes along the z axis. 
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has an instability growth rate smaller than the Jeans growth 
rate by n1'2 times. The first property follows directly from 
what we have said above, but the second is also obvious. 
Indeed, assuming the density along z to be homogeneous, we 
can obtain eigenfunctions with n nodes along the z axis by, 
for example, compressing an elementary layer of thickness 
h /n (h is the total thickness of the layer) of the coldest parti- 
cles next to the plane z = 0. From the condition of equilibri- 
um of the particles with respect to z-u,/w,, where w, 

(4rGNm) ' I 2  is the Jeans frequency (Nis the total number 
of particles in unit volume, and m is the mass of each particle 
) it follows that such particles have a velocity dispersion n 
times less than u, -hw,, and, therefore, their volume den- 
sity N'-N/n is 

ur/n 

The same estimate is also obtained for the distribution func- 
tion (2 )  used below in Sec. 3. Therefore, the Jeans frequency 
wi of such particles is n"2 times less than the Jeans frequen- 
cy of the total layer, and this is what we wanted to show. 

2.4.2, Rotating cylinder 

We now consider a cylindrical system of collisionless 
particles rotating with angular velocity R. Suppose that 
along the generator z the dispersion velocity u, is zero, while 
in the plane of rotation it is - u,. For simplicity, we consider 
in this paper perturbations with short wavelength along z, k, 
R )  1 (k  is the wave vector). The time of acceleration of the 
velocity component u, from 0 to u, is the characteristic time 
r of the anisotropic instability, for it is in this time that the 
velocity dispersions of the particles in the different direc- 
tions are equalized. We obtain this time r from the zth equa- 
tion of motion. The instability growth rate y - r - ' is esti- 
mated as 

Here, we have used the zth equation of motion and a depend- 
ence of the perturbated gravitational potential @ on z in the 
form -exp(ik,z). Setting k, - 1/R and @ - u:, and also as- 
suming that during the time of the instability u, reaches a 
value v,, we obtain -u,/R for the extreme right-hand 
expression in ( 1 ) . It is just such a growth rate, y- u,/R, that 
is obtained in the rigorous derivation in Sec. 4. 

3. FLAT ANISOTROPIC LAYER 

For simplicity, we consider short-wave (k, h) 1 ) per- 
turbations in a strongly anisotropic (a= uTx /u, 4 1 ) flat 
layer with a distribution function 

(O(x) is the Heaviside unit step function). For perturba- 
tions with k, /k, <a - ' we can ignore on the right-hand side 
of the perturbed kinetic equation the term (a@, /dz) (df, 
/du, ) compared with (a@, /ax) (df, /dux ), while the de- 
pendence of the perturbed potential on z can be chosen, as in 
the case of perpendicular oscillations (see Refs. 1 and 2), in 
the form of polynomials in powers of z (moreover, to obtain 
the characteristic equation for the eigenfrequencies it is suf- 

ficient to retain in the calculations only the term with the 
leading power of z) . 

In the given case, however, it is easy not only to derive 
the characteristic equation but also to establish the explicit 
form of the eigenfunctions. Namely, we shall show that they 
have the form 

where @IN' is the perturbation of the gravitational potential, 
and PN is a Legendre polynomial. Putting cP, 
a exp(ikx - iwt)  and solving the equation for the displace- 
ments lx of the particles along x, 

we obtain 

0 

\,=ik J dte-fwt P, ( z  cos t+u. sin t )  . 

Here and in what follows, we assume that z and u, are nor- 
malized, respectively, by h and w,h. In the given case, the 
density perturbation 

( E  is the displacement vector averaged in accordance with 
( 2 ) )  is 

Similarly, neglecting 8 2@l /dz2 in Poisson's equation 
compared with d *@, /ax2 = - k 2@,, we find 

1 
p ,  ( i)  = - I fe- dt  - I Pn ( z  cos t+u, sin t )  

0, 
(Xa-U;)1i8 * - m 27 - x  

where f~.= ( 1 - z2) 'I2. It only remains to make the substitu- 
tion u, = x sin p and use the addition theorem 

P X [ z  cos t +  (1-z2)"' sin t sincp] =PN(z)PN(cos t )  

( N - k )  ! +2z rn PNh ( z )  Pnk (cos t )  C O S ( 7  - kcp ) . 
k- 1 

(5 
At the same time, only the first term in (5)  contributes to the 
inner integral in (4),  which after the substitution reduces to 

n /2  

1 drpP, [ z  cos t+ (4-2') '" sin t sin rp] , 
-n/Z 

and the integral is simply transformed into rP, (z) P ,  (cos 
t ) .  This completes the proof of (3),  and we obtain a charac- 
teristic equation for the perturbations of the considered type 
(k, /k, )a) in the form 

0 

I+ dtte-zwlPn (cos t )  =O. 
- w  (6) 

The characteristic equation for the perpendicular oscilla- 
tions of the layer can be expressed by the similar formula2 
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I+ dt  sin ts-iYtPN (cos t )  =O. 
- m 

One can show that Eq. (6)  is equivalent to 

where 

where the summation in (7)  is from - N to N, and the prime 
on the summation sign means that I has the same parity as N. 

If the velocities of the particles along x are distributed in 
accordance with the function f, (v, ), then instead of (7) we 
shall have the equation 

Characteristic equations in the form (7)  and (9)  are 
"expansions with respect to resonances" like the ones widely 
used, for example, in the theory of plasma instabilities in a 
magnetic field. These equations can be obtained directly in 
such a form if one uses the method proposed in Ref. 22. We 
denote x, = v,, x, = z and introduce the three-dimensional 
space (x, , x, , x, ) with thex, axis perpendicular to the plane 
(x, , x2 ). Further, in the space (x, , x,, x, ) we take a sphere 
of unit radius and consider the motion of the layer particles, 
not on the phase plane (z, v, ) = (x,  , x, ), but in the projec- 
tion onto the surface of this sphere (the projection is made 
parallel to the x, axis). 

After specifying the potential in the form (3),  it is nec- 
essary to find the perturbation of the distribution function by 
solving the linearized kinetic equation. For the considered 
perturbations, this equation has on its right-hand side 

where Y,, is a spherical harmonic, and 9 ' and q, ' are spheri- 
cal angles for a polar axis along the axis x, = z. Since the left- 
hand side of the kinetic equation is ( - i 23 + d /dq,)J; where 
- 
w -0 - kv,, and 9 and q, are spherical angles for the posi- 
tion of the polar axis along the x, axis, it is natural to make 
the transformation 

m 

i.e., expand the eigenfunctions of the one representation of 
the group SO(3) with respect to the eigenfunctions of the 
other representation of this group. The expansion (10) in 
the given case is a representation bf the potential 

PN [z= (2E) '" cos zo] 

(I = E and w are action-angle variables, E = (z2 + $)/2 
being the energy of a particle) in the form of a superposition 
of angular harmonics: 

The matrix elements a ,  of this transformation can be found 
in terms of the Eulerian angles of the direction of the polar 
axis ofthe primed system (8 ', q, ' ) in the unprimed system (8, 
q , ) ;  in the given case, they can be expressed, as is readily seen, 
in terms of the values of the associated Legendre functions 
P { (0) (see, for example, Ref. 23). Then the solution of the 
kinetic equation is found in the form 

The next step must be to calculate the density perturbation, 
i.e., the integral 

Rut in the given case 
2 x  

j du, (l-2'-v,') - lh- j d q l ,  
0 

so that it is convenient to make the inverse transformation 

and in the result there remain only the ahm', which must also 
be expressed in terms of P; (0).  Using Poisson's equation 
with 

we obtain the characteristic equation in the form (9) .  
We first investigate Eqs. (7) and (9) for perturbations 

having short wavelength with respect toz; N% 1. We find the 
asymptotic behavior of a , ,  introducing first the notation 
N + 1 = 2 p , N -  1 =2m. Forsmalll. wehavep>l ,  mS1.  
We can therefore use Stirling's formula, and we then obtain 
a, =: 2/7~N. In the case of large I, we have 2p - 2N, 2m -0. 
Then in accordance with (8)  we have a ,  -- (TN) - I / ' .  

Therefore, if N is large, a,  < 1, and a ,  does not depend on I. 
Therefore, only the resonance frequencies @,--I will make 
the main contribution to Eq. (7 )  (as in a plasma; see, for 
example, Ref. 18). Thus, for each of the resonances we have 
the equation 

TABLE I 
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TABLE 11. 

whence for the unstable root 

where y ~ a : ' ~  is the instability growth rate. It can be seen 
that for matter cold in the (x, y)  plane all short-wave pertur- 
bations are unstable. It also follows from ( 12) that the maxi- 
mum of the growth rate of the anisotropic instability (at the 
limit of applicability of the approximation, i.e., as a+ 1) is 
equal to the Jeans value w,. 

In the case of even N, Eq. (7)  reduces to an algebraic 
equation of degree N + 1 in the variable z=w2. One of the 
roots (z) is found to be real (and negative); it corresponds to 
the Jeans mode of the considered scale. In Table I we give the 
exact (z) and approximate (z,, calculated in accordance 
with ( 1 1 ) for 1 = 0)  values of this root. It can be seen that the 
approximate formula gives a good representation of the root 
even at small N. 

The remaining roots of Eq. (7)  are N/2 complex-conju- 
gate pairs, so that the corresponding instabilities are oscilla- 
tory. Table I1 gives the real and imaginary parts ofzas deter- 
mined numerically from (7)  and also as found in accordance 
with the approximate formula ( 1 1 ). Here too it is found that 
the approximate estimate is in fact sufficiently good already 
for N = 2. 

We now consider the dispersion relation with allowance 
for the thermal motion of the particles. For uTx#O, the dis- 
persion relation for each of the resonances has the form 

8 

8 

-- 

N l 2  I 6 

where Sw-w - k, ISwl<l, Sw = Sw, + iSw2. For a Max- 
well ion distribution in the plane (x, y),  we obtain from ( 13) 

1 
Re20 - 
Imzo 
Rez - 
Imz 

In particular, for the critical wave number kc separat- 
ing the stable and unstable perturbations, we obtain from 
(14) 

the perturbations with k < k c  being unstable. 

2.449 
3.608 
2.354 

4. ANISOTROPIC CYLINDER OF FINITE RADIUS 

We consider the very simple example of a cylinder of 
homogeneous density with a particle distribution function in 
the ( x ,  y)  

Po fo = - 6 [ ( 1 - p 2 )  (1-r2)-v2-v ,"]  (17 1 G I ) ,  
n 

(15) 
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where the cylinder radius R and the angular velocity no of 
the particles in the circular orbits are set equal to unity. Re- 
stricting ourselves, as in the case of a homogeneous layer, to 
short-wave (k,R % 1 ) perturbations of a strongly anisotrop- 
ic (a =uTZ/uTl 9 1 ) cylinder, we can set 

1.581 
3.865 
1.502 

@ , m c  exp ( - iot+ik,z)  r2" ( r  exp(irp))". (16) 

2 2 4 2  
4 4 1 6 4  ---- 

4.183 
15.698 ----- 
4.078 

We write down the characteristic equation obtained here for 
the case of radial oscillations (m = 0)4' 

6 
36 - 

5.700 
35.742 - 
5.587 

1.281 
3.906 
1.237 

where 

4 
16 - 

2.806 
15.897 
2.691 

In particular, from ( 17) and (17') we obtain for a cylinder 
cold in the z direction, when f, (u, ) = S(u, ), and for the 
value n = 1 

while for n = 2 we have 

For any n, the characteristic equation has a form similar to 
that of ( 18) and ( 19) and can be reduced to an algebraic 
equation of degree (2n + 1) in z=w2. One of the roots, the 
Jeans one, is always real and negative, while the remainder 
form n complex-conjugate pairs. The dependence of the real 
and imaginary parts of z on the parameter 'ly for Eqs. ( 18) 
and ( 19) is given in Fig. 1. For a system with circular orbits 
('ly= l ) ,Eq .  (18)gives: l ) w 2 =  -2(=w~) ,whichcor re -  
sponds to the Jeans instability, and 2)  w2 = 4, which gives 
roots that correspond to a rotational mode of  oscillation^'^ 
and are real in the considered limit. However, the case 7 = 1 
is degenerate, and the rotational oscillations become unsta- 
ble for y# 1, i.e., in the presence of a thermal spread of the 
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particle velocities in the plane of rotation. Indeed, suppose 
1 - =E#O although E 4 1.Then from Eq. ( 18) we obtain 
in addition to the root corresponding to the Jeans instability 
two other unstable roots: 

~ e w :  1m wZ :E$07z 
0 

-2 -2 

The obtained solution describes an instability in the colli- 
sionless cylinder ( 15) analogous to the instability of a plane 
layer considered in Sec. 3. This last obviously corresponds 
most closely to the instability of a cylinder at rest (7 = O), 
for which 

02=3*i115. (21 

4 
\ 

\ \ FIG. 1 .  Real parts Re oZ (continuous curves), and imagi- 

'Ii \2 \ I 
nary parts, Im o2 (broken curves), of the square w2 of the 
eigenfrequency for perturbations of the cylindrical model: a )  

/- -.-,.< the mode n = 1, m = 0, b )  the mode n = 2, m = 0; curves 0 
/ represent the anisotropic Jeans instability, and curves 1 and 2 

/ the oscillatory instabilities. 

0 L  

- 

Dispersion relations analogous to ( 18 ) and ( 19 ) are also 
obtained for the modes with m #O. For example, for m = 1, 
n = 0 we have instead of ( 17) 

a b 

and instead of ( 18) in the case of a cold system 

The results of (23) are also analogous to those described 
above for the simplest radial mode. For 7 = 1 - E,  E 4 1 the 
anisotropic instability has a growth rate Im w -- ( 2 ~ / 3 )  
(and a frequency Re w z 1 + 7) ;  for 7 = 0, w z 1 i21'2. 
The described instability is stabilized by the velocity disper- 
sion of the particles along z, and the critical values of the 
degree of anisotropy, (uTZ/uTL ),,, are readily found in the 
same way as in the case of a flat layer. 

5. CONCLUSIONS 

Thus, we have described above numerous manifesta- 
tions of the anisotropic instability of two very simple colli- 
sionless systems-the layer and the cylinder. To be specific, 
let us now consider the layer. For each given scale specified 
by the number N, the eigenfrequencies are complex and de- 
scribe oscillatory instabilities. At the same time, the real 
parts of the eigenfrequencies are close to resonance values: 
Re w z Iw, . In the special case I = 0, we obtain an aperiodic 
instability, which in the limit of a layer cold in its plane 
corresponds to the unique negative z=w2 in Table I. We 
have obtained characteristic equations for perturbations 
with k, >k, in the case of a layer. The opposite case ( k ,  
4 k, ) can also be investigated analytically, but is more cum- 

bersome. The limiting case k ,  = 0, which describes perpen- 
dicular oscillations of the layer, was investigated by An- 
t o n ~ ~ ~ ~  (see also Refs. 1 and 2). In this limit, there is a finite 
set of oscillation frequencies for each scale (N),  and with 
decreasing scale of the perturbation (with increase in N) all 
frequencies approach the resonance values. Each of the fre- 
quencies in the spectrum of perpendicular oscillations found 
in Ref. 25 is a limit point toward which a corresponding 
individual branch is "attached" at k ,  #O. The behavior of 
these branches in the asymptotic limit k ,  > k ,  is determined 
from the characteristic equation (9). 

The aperiodic modes stand on their own. In the k ,  = 0 
limits they correspond to displacements that are not along z, 
as for all the remaining modes, but to indifferent-equilibri- 
um displacements of different E = const layers along the x 
direction (see Fig. 2).  For k ,  = 0, a frequency w = 0 obvi- 
ously corresponds to all such perturbations. It is natural to 
call these modes interchange-Jeans modes (they have a 
small scale for N% 1 ). For N = 0, we have the simplest inter- 
change Jeans mode, which does not have nodes along z and 
in the limit k,  = 0 is transformed into horizontal (along x )  
displacement of the layer as a whole. This structure of the 
characteristic mode is also characteristic of a gaseous or a 
collisionless isotropic layer. However, in this case it is 
unique-neither small-scale Jeans modes nor, a fortiori, os- 
cillatory instabilities exist for such systems. 

The frequencies of the perpendicular small-scale oscil- 
lations of the collisionless layer are close to the resonance 

FIG. 2. Horizontal displacements of layers, E, = const, in the inter- 
change-Jeans modes (in the figure, there is a relative displacement of the 
inner cylinder along the heavy arrows) and the outer shell (along the thin 
arrows). 
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values because of the weak influence of the self-gravitation 
on the corresponding interchange modes that exist without 
allowance for self-gravitation (their frequencies are exactly 
equal to integral multiples of wo ) . The self-gravitation of a 
wave with k, $0 leads in the case of a cold system to the 
occurrence of an instability, although the real part of the 
frequency for small-scale perturbations is still close to the 
resonance value. If the perturbation of the potential (2)  is 
represented in the form of the superposition of harmonics 
(lo'), then one can say that for N% 1 each individual har- 
monic evolves independently. In particular, in the case of a 
cold layer a corresponding characteristic equation ( 1 1 ) is 
obtained for each harmonic. It obviously describes the insta- 
bility of Jeans type due to the part of the total perturbation 
( 10') that corresponds to the given harmonic ( - exp ( i lw)  ). 
Accordingly, the instability growth rate is the (a,) "* frac- 
tion of the ordinary Jeans growth rate wo = (47~G<,)"* 
( = 1, in the chosen units) and the effect is the same as 
would be produced by an effective decrease of the density po 
by the factor a, :po  - a lpo .  

We also note an analogy which suggests itself, namely, 
Eq. (7)  is more similar to the dispersion relation of Ref. 20: 

N 

which describes perturbations in a homogeneous gravitating 
medium with a corresponding number of cold ( c ,  = O j  
moving subsystems-streams (with velocities V, , velocities of 
sound c,, and densities pol, oil =47.rGp0,); Eq. (24) goes 
over into (7) under the substitutions oil -a, ,  kV,-+l .  For 
sufficiently large velocity differences, Eq. (24) obviously de- 
scribes Jeans contractions taking place in each of the subsys- 
tems in the comoving frames of reference. If the velocity 
differences of the streams are small, they cannot be treated 
independently, and the perturbations in them are coupled. 
The nature of the interaction of the subsystems is even more 
complicated in the case of hot subsystems, when the velocity 
of sound c becomes of order V. In Ref. 20, we described the 
instability that arises when V >  c as a beam instability; when 
the difference V - c is increased, it obviously goes over into 
the Jeans instability in each of the streams, so that in general 
it would be more correct to describe this instability as a 
beam-Jeans instability. 

What was said above applies to the hydrodynamic beam 
instability. 

With this, we conclude the discussion of the instabilities 
of the anisotropic flat layer. The interpretation of the insta- 
bilities in an anisotropic cylinder (Sec. 4 )  is analogous, espe- 
cially, of course, in the absence of rotation, i.e., in the case 
that is the most important from the point of view of applica- 
tions. The case of rapid rotation ( 1 - f < 1 ) is of interest 
above all because of the existence of a close, at least at first 
sight, analogy with the traditional treatment of anisotropic 
instability of plasmas. ls  Indeed, the dispersion relation that 
describes long-wave (k,p, 9 1, wherep, is the electron Lar- 
mor radius) perturbations of a strongly anisotropic (Tl, 
)TI. ) plasma corresponds to a system of two streams: 

where w,,, and a,, are, respectively, the plasma and Larmor 
frequencies. The equations obtained from ( 18) and ( 19) for 
perturbations of a strongly anisotropic gravitating cylinder 
when ( 1 - v )  < 1 can also be represented in the two-stream 
form 

where a, = 1 for n = 1 and a, = 3 for n = 2 (obviously, a,, 
plays the part of k: in (25)).  The quantities that occur in 
(25 ) and (26) have completely analogous significances 
(with allowance for the way in which they have been made 
dimensionless). A difference is in the opposite signs of the 
terms in (25) and (26). However, this difference has a deci- 
sive importance, reflecting a fundamental difference be- 
tween electric and gravitational forces. The former lead to 
repulsion of identical charges, the latter to attraction. For- 
mally, this is manifested in the opposite signs of the right- 
hand sides of Poisson's equation for these two cases, and this 
leads in the present case to the noted difference between Eqs. 
(25) and (26). 

We recall (see Ref. 18) that if a beam propagates along 
a magnetic field in a plasma a beam instability arises. If the 
magnetic pressure is much greater than the plasma pressure, 
the oscillations which arise as a result of the instability can 
be regarded as potential (electrostatic) perturbations. The 
oscillations grow because of the presence of two types of 
resonance in the plasma-beam system: Cherenkov and cy- 
clotron. The first, the purely beam resonance, arises when 
the phase velocity of the wave is equal to the velocity of the 
beam. The second is due to the anisotropy of the distribution 
function in the magnetic field. Therefore, the dispersion re- 
lation for an anisotropic plasma in a magnetic field is analo- 
gous to the dispersion relation of a plasma-beam system in a 
magnetic field. Comparing Eqs. (7 )  and (24), we see that 
the same conclusions are valid for the two types of gravitat- 
ing systems characterized by the presence of a stream and 
anisotropy, respectively. 

"The same applies to the elements of the cellular structure of the universe 
considered in modern cosmology ("pancakes" and "filaments," consist- 
ing of neutrinos or other coll~sionless particles). 

"No solution of the dispersion relation in quadratures was obtained in 
Ref. 14. 

"Allowance for finiteness of the radius of the rotating system leads to an 
important connection between k ,  and k ,  , I b  and also to a definite equilib- 
rium condition. The absence of the factors mentioned above in unbound- 
ed systems gives rise to imaginary effects, which were cr~ttcized in Ref. 
17 

4)For m#O, the characteristic equation for perturbations of the consid- 
ered type is obtained without any additional complications (compared 
with m = 0) ;  however, we shall not require it. 
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