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We calculate the mesoscopic contribution to the thermoelectric coefficients of a sample of small 
size (a microjunction of two bulky samples). We show that this contribution can exceed the 
regular term and can determine by the same token the magnitude of the effect. The thermoelectric 
power can in this case be either positive or negative, and should have an irregular dependence on 
the experimental conditions (on the electron chemical potential and on the magnetic field). We 
calculate the correlation functions of the thermoelectric coefficients and of the thermoelectric 
coefficient and conductivity. 

I. INTRODUCTION 

It has become clear in the last few years that at low 
temperatures the properties of conductors of small size, such 
as microjunctions, are determined to a considerable degree 
by quantum interference effects.'-6 These effects are called 
mesoscopic, to emphasize that they are produced in all small 
samples, but reflect for each sample the individual properties 
that depend on the location of the impurities in the sample. 
This non-averaging of the properties leads, for example, to a 
complicated irregular dependence of the microjunction re- 
sistance R on the chemical potential p of the electrons. If 
e2R /fig 1, the scale of the variations is SR - e2R 2/fi, and the 
characteristic Ap that leads to a change of order R is itself of 
the order of Ap -fi/rf , where T~ is the time of flight of the 
electron through the microjunction. If the microjunction 
takes the form of a bridge of length L between massive 
shores, then T~ -L 2/D, where D is the electron diffusion co- 
efficient. 

To identify the experiments in which mesoscopics is 
most pronounced, it is necessary apparently to bear in mind 
either phenomena that do not occur at all if mesoscopics is 
not taken into account, or are such for which the mesoscopic 
contributions are larger than the regular ones that corre- 
spond to averaging over the impurity locations. The advan- 
tage of mesoscopic contributions over the regular ones is 
that they are greatly altered by a relatively small change of 
the parameters, such as the electron energy or the chemical 
potential. Therefore, if the quantity of interest to us is deter- 
mined by the derivative with respect to energy or by some 
other parameter, the mesoscopic contribution to this quanti- 
ty will be large. An example of how a large derivative with 
respect to a parameter makes the mesoscopic contribution to 
the differential conductance of a microjunction in the non- 

difference AT between the shores. At small U and AT this 
connection is linear8: 

where R is the electric resistance, a the thermoelectric pow- 
er, p= a T / R  by virture of the Onsager relation, and y is 
connected with the thermal resistance R, = ( y  - ~ Z T /  
R )  - I .  Sivan and Imry9 called attention to a possible viola- 
tion of the Onsager relations. We believe that these relations 
are not violated for a two-contact measurement circuit, and 
we have verified this fact within the framework of the princi- 
pal approximation, in the parameter ~ , ~ / f i &  1, which we 
assume in this paper. 

At low temperatures, all the kinetic coefficients in ( 1 ) 
and (2)  are determined by scattering of electrons having an 
energy close the Fermi energy p (Ref. 10, §78),  with 

n2T d In K ( p )  a=- 
3e d,u 

The resistance R depends on p ,  first because the scattering 
cross section and the density of states depends on the energy, 
and second because the interference (mesoscopic) correc- 
tion changes by an amount of order e2R */fi whenp changes 
by W.rf . Therefore 

It is clear from (4)  that the mesoscopic contribution to the 
thermoelectric power 

linear region larger than the regular contribution is given in 1 eLRo [ T.t,lh i f  T t t / A < < l  - - ---- 
Ref. 7 .  e ( T )  ' 4  i f  T ~ , / A > ~  ' 

We examine in the present article thermoelectric effects 
( 5  

for which mesoscopics may turn out to be decisive for the can exceed considerably the regular contribution a - T/ep, 
above reason. To be specific, we consider a microjunction It turns out thus that the thermoelectric power of the micro- 
between two bulky conductors, in the form of a bridge of junction is relatively large and can be positive as well as neg- 
length L and a cross section S ( S <  L 2 ) .  The electric current I ative. The onset of a large thermoelectric power leads to vio- 
and the heat flux Q through the junction are determined by lation of the Wiedemann-Franz law, since the heat flux due 
the voltage U across the junction and by the temperature to the presence of the electric current produced by the tem- 
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perature gradient becomes comparable with the heat flux 
due directly to the temperature difference AT. Violation of 
the Wiedemann-Franz law in the presence of a strong energy 
dependence of the permeability was noted in Ref. 1 1. In anal- 
ogy with the procedure used for the electric resistance R, we 
can investigate the correlation functions for variation of the 
magnetic field H or of the chemical potential''p. In this case 

1 e2R APT, AHLw 
( 6 a ( O l 0 ) 6 a ( ~ p , ~ ~ ) ) = - ( * )  e2 ~ a ( ~ , ~ ) $  

w is the width of the junction, and a, = 2&/e. Thus, a( p)  
or a(H) is a reproducible irregular dependence. How are 
a(  p,H) and R ( p,H) correlated? It turns out that the cross 
correlation function 

APT, AHLw 
(aa(0, o ) ~ R ( A ~ ,  AH) )el($ e R . ) ' F ~ . ( ~  ,- 

0 0 

is such that at Ap = 0 the function Fa, = 0, i.e., the a(H) 
and R(H)  dependences are not correlated for equal p .  For 
Ap - fi/rf , however, the correlator Fa, (H)  is a function of 
H which is of the order of unity at H = 0 and falls to zero at 
large H; consequently, a ( H )  and R(H,Ap) correlate with 
each other. 

By analogy with the electric resistance, one can investi- 
gate the thermoelectric effects also at high temperature 
drops ATor at high junction voltages U. The heat flux Qas a 
function of the voltage Uis an irregular function with a char- 
acteristic correlation length U, -fi/erf . At U) U,, just for 
an electric current,' ISQ I - (UU, )'I2. An increase of AT 
leads not only to an increase of the thermal current I (AT) 
but also to irregular oscillations. The most important non- 
linear effect, in our opinion, is that a(H) and R (H) ,  which 
are not correlated in the linear region, turn out to be corre- 
lated if, for example, the resistance is measured at a finite 
voltage. 

We present below the calculation results which were 
just described qualitatively. In Sec. 2 we derive general equa- 
tions for the correlators of the current I and the heat flux Q; 
these relations are valid both in the linear and nonlinear re- 
gimes. These equations are used in Sec. 3 to calculate the 
correlators for small U and AT. The nonlinear effects are the 
subject of Sec. 4. 

2. EXPRESSIONS FOR THE CORRELATORS 

We are interested in the correlation functions 

KJJ,(T,, 7'2; Ti', T2'; U, U'; 11, p') 
=(J(TlT2, Up) J1(T1'T,', U'p') ) 

where each subscript, J or J', can correspond to one of two 
fluxes, I or Q; T, and T, are the temperatures of the junction 
shores, Uis the voltage, andp is the chemical potential of the 
conduction electrons. The correlator calculation which is 
valid in the nonlinear region is best carried out by the Kel- 
dysh diagram technique, as in Ref. 7. The technique involves 

the retarded, advanced, and Keldysh Green's functions 
Gf(r , r l ) ,  G:(r,rl) and G f(r , r l ) ,  which are connected at 
equilibrium by the relation 

where n (E/T) is the Fermi distribution function. After aver- 
aging over the impurity arrangement," (GR ) and (GA ) as- 
sume the standard forms,12 and (GK ) satisfies the equation 

with boundary conditions 

(GeK(r, r) )Irco, L=2~iv{1-2n[ (e-p*eU/2)/Ti, ). 

(10) 

Here v is the density of states on the Fermi level, D = vf.r/3 
is the diffusion coefficient, and T is the free-path time. The 
electric current I and the heat flux Q can be expressed in 
terms of G f: 

en j- j 
I=-i- d~ dS(V-V')GEX (r, r') Irl-r, (1 1) 

2m -m 

Averaging ( 1 1 ) and ( 12) over the locations of the impurities 
and using (9)  and ( lo),  we obtain expressions for ( I  ) and 
(Q ), the current and heat flux through the junction: 

From ( 13) and ( 14), assuming U and T2 - TI to be small, 
we obtain the equations of the linear transport theory for R, 
R,, a ,  andP  (Ref. 8) .  

The correlation functions KJJ, are determined by the 
contributions of the diagrams shown in Fig. 1. The thick dot 
of each diagram corresponds to a current vertex (ep/m for 
the electric current and ( E  -p)p/m for the heat flux), the 
stubs correspond to the function (GK ( r , r )  ), and the ladders 
to two-particle Green's functions-cooperons P'C' and dif- 
fusion P'D' , which satisfy the relations 

{-i[o+p-pr+ecp (r) -ecp' (r) ] / A - D ~ ~ , , ) P ? ' ~ '  (r, r') 

=2nv6 (r-r') , 

where p ( r )  is the electric potential connected with the vol- 
tage on the junction by the relation p ( L )  - p ( 0 )  = U, 
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We have introduced here the notation 

FIG. 1. 

and A is the vector potential of the magnetic field. On the 
lateral surface of the conducting channel, P'DgC) satisfy the 
conditions 

and for x = 0 and L, the condition 

The sums of the contributions of all the diagrams of Fig. 1 
are 

X (8 -p )  (E ' -p ' )  A n  An', 

x ( E - p )  A n  An'. (20) 

and An' is obtainable from An by making the substitutions 
E-E', p 4 p 1 ,  U- U', -' Ti,,. 

Equations ( 18)-(20) together with ( 11) and (12) de- 
scribe the dependences of the fluxes I and Q on TI, T2, and U. 
Actually, the experiment can be performed with I o r  Q speci- 
fied rather than T,,, and U. Thus, for example, if the shores 
of the microjunction are not shorted by an external circuit, a 
potential difference U is produced between them, given by 
the relation 

Since the function I( U) can be nonmonotonic,' the function 
U( TI, T,) can turn out to be non-single-valued and various 
nonlinear phenomena are possible (hysteresis, relation os- 
cillations of the voltage and temperature, and others). A 
detailed treatment of these phenomena calls for analysis of 
the processes in the external circuit, and will not be dealt 
with here. This possibility, however, must be borne in mind 
when an experiment is planned. 

3. LINEAR THERMOELECTRIC EFFECTS 

For T,,, = T f AT/2, AT( T,andsmall U, thefluxesI 
and Q are linear in Uand AT. The coefficients R, a ,  andoare 
given under these conditions by 

The fluctuations of g and P can be determined by using 
(18)-(20): 

The fluctuations of the conductance ( (Sg)') were calculat- 
ed in Refs. 4 and 6, and Eq. (24) can be rewritten by using 
the relation /3 = gaT, which is valid also without averaging. 
Therefore (SgSa) = 0," and 

A 

( b a  b g ) - .  lim j ( d g 2 / 3 p )  dp/b=O. 
A-+w 

A plot of ( [Sa ( T) '1 ) is shown in Fig. 2. It is clear from (24) 
and (25) that for TgDfi/L and (e2R/fi)(L2/ 
Dfi) > d In R /dp the fluctuation ofa  can become larger than 
( a ) .  

The inequality ( (Sa)') > (a) '  is manifested by the fact 
that the real thermoelectric power can have either sign, and 
is furthermore very sensitive to variation of the magnetic 
field H. The correlation function of such a dependence is 
given in the Appendix for HLw, @,% AHLw: 
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Ka ( H ,  A I l )  =(a (U + A H )  a ( H ) )  - <a ( H  + A f I ) )  (a  ( H ) )  

The functions f ,, and f ,, were determined numerically and 4. NONLINEAR EFFECTS 
are plotted in Fig. 3. The change of the scale of the magnetic 
field on going from low to high temperature was first noted Under real experimental conditions it may be conven- 

in Ref. 13. ient to measure the thermoelectric effects not only for small 

The thermoelectric power a and the conductance g at ATand Ubut also for large ones. Equations ( 15) and ( 18)- 

different H are uncorrelated, as before: (2 1 ) permit in principle to consider mesoscopic effects also 
in the nonlinear region. Let us examine qualitatively the 

The situation is quite different for MIS structures, in which 
the electron chemical potential p can be varied: 

Plots of the functions fa, (x) and fag (x) are shown in Fig. 4. 
Thus, the a (p) dependence has the form of mesoscopic fluc- 
tuations of the same type as the fluctuations of g ( p )  (Ref. 
6 ) ,  but larger in relative amplitude and possibly with the sign 
reversed. In contrast to the fluctuations with change of the 
magnetic field, the functions a(p) andg(p) do not correlate 
when p and p' are equal, but for unequal p and p' a correla- 
tion does appear and is a maximum at Jp - p'J = 0.47?Dfi/ 
L ,. 

main distinctive features that appear in this case. If the junc- 
tion shore temperatures are equal, the correlator of the heat 
fluxes is calculated in the same way as the current-voltage 
characteristic.' At high voltage, therefore, the heat flux Q 
oscillates irregularly as a function of the voltage U, and re- 
verses sign. The "period" of such oscillations is U, -fi/r,-e. 

In another version of the experiment, specified tem- 
peratures T, and T, are maintained on the shores of the 
open-circuited junction. The zero total current I through the 
junction consists in this case of the conduction current U/ 
R,, the thermocurrent - ( a )  (T,  - T,)/R,, and the meso- 
scopic term 61 in which the thermocurrent cannot be sepa- 
rated from the conduction current: 

FIG. 2. Square of the mesoscopic thermoelectric power ( (6a)2) ,  normal- 
ized to ( eR , / f i )2  as a function of the temperature TL for TS/  FIG. 3. The functions f,, (a)  and f,, (b)  calculated for TL '/dm = 3 
dm< 1. ( I ) ,  5 (ZZ), 6(ZZZ). 
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FIG. 4. The functions fa, (a) and f, (b). 

U (a) I = - - -  (Ti-Tz) + 6 I ( U ,  T i ,  T,) a 

Ro Ro (30) 

For U e  U, we have 

The parentheses in the left-hand of (3 1 ) contain R, multi- 
plied by the increment to the differential conductivity of the 
junction. If this product is not small, the difficulties noted at 
the end of Sec. 2 are encountered. If this danger is neglected, 
we get 

U=(CX> (TI-T2)+GU, 

<GU>=O, (GUGU'>=Ro2K~,(TI, Tz, Ti', T2', 0 ,  0) .  (32) 

As noted in the Introduction, the thermoelectric power 
is determined by the derivative d lnR(p)/dp. Under condi- 
tions of a mesoscopic sample it must be borne in mind that 
the result contains R averaged over the energies in a layer of 
thickness T near the Fermi level. With change of tempera- 
ture, the mean value and its derivative fluctuate. Therefore if 
the temperature difference IT, - T,I <f i /~ , -  is fixed and the 
thermoelecric power a is measured as a function of T,, one 
can expect irregular oscillations with a characteristic tem- 
perature period of order fi/rP Finally, we note that if, for 
example, the conductivity is measured in the nonlinear re- 
gion of the voltages (g  = I /Uor g, = 6'1 /6'U), then g (g, ) 
correlates with the thermolectric power a if the magnetic 
field and the chemical potentials are equal: 

This correlation is a maximum at U -  U, . 
The authors thank L. B. Ioffe for helpful discussions. 

We thank also B. L. Al'tshuler and A. G.  Aronov for ac- 
quainting us with Ref. 14 which contains close results. 

APPENDIX 

Let us find expressions for Kg (H,H + AH) and 
K, (H,H + AH) in the case when the junction takes the 
form of a bridge whose length L is much larger than the 
width w(L&w) and the magnetic field is strong (eHw2/ 
di, 1 ), so that the cooperon contribution is suppressed and 
the regular dependence of ( (6a2) (H)  ) on H can be neglect- 
ed. Let also 

Then, using the Landau gauge AA = ( - Hy, 0, O), we can 
write down equations for the diffusion and for its boundary 
conditions, in the form 

Bearing in mind the inequality (A. 1 ) and the boundary con- 
ditions (A.3), we assume thet P',' depends only on x andx'. 
Averaging (A.2) over y, we obtain 

All the equations that follow contain the integral 

which is equal to 

At T < ~ L M / L  each of the terms in the sum of (A.5) can be 
expanded in powers of m2L */D 'r4. Retaining the first two 
terms, we have 

where 
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n8 2 ch2 cp 
K .  (H,  AH) =< l b a ( H .  T )  I?-{--- 32 p* sh4 cp  

The correlator Kg (H,H + AH) is determined by the first ~t high temperatures T ) & ~ / L  the expansion (A.6) is 
term of the expansion (A.6) and is equal to insufficient. If at the same time T,&m/w2, the integral J i s  

2 cthcp nonetheless determined by the sum (A.5), which is equal to n4 
K. = --<&(H, T )  ){- - + - -kL} 

4 q~ c p v z ~ c p  (A.8) 1 = 2 ( ~ ) '  nvSL2 [ 3 S i - 2 ( s ) 2 ~ 2 ] ,  (A.10) 

and the second term of the expansion is important in the 
calculation of K, (H,H + A H ) .  As a result we have where 

1 cos 0/2 sin(2R sin 012) + sin 0 /2  sh(2R cos 012) 
-- - -- - I 

2RS sin 0 ch (2H cos 012) - cos ( 2  sin 812) 2 (cp4+a') 

1 [ ( l l s in  0!2 + sin 3012) sin (2Rsin 8 /2 )  s* = - -- ----- - ----- 
8R7 ch(2R cos 012) - cos (2R sin 0 /2)  
+ ( l l cos  012 - cos 30i2) sh (2R sin 012) ] 
p-pp 

I cos 0 [ l - c h  (2R cos 012) cos(2R sin 0 /2 )  1 
4RB [ch  (2R cos 012) - cos ( 2 H  sin 0 / 2 )  1' 

+ sin 0 sin (2R sin 0 / 2 )  sh (2R cos 0 / 2 )  1 
2(cp"~a~)~ ' (A .  12) 

Here R = (q, $- a4) ' I4  and 8 = arctan(a2/q, 2 ) .  We obtain 'M. Ya. Azbel, ibid. p. 162. 
finally 3Y. Imry, in: Directions in Condensed-Matter Physics, G. Grinstein and 

G. Mazenko, eds., World Sc. Series on Condensed Matter Phvscis. Vol. 

(A. 14) 

The functions f,, (x)  and f,, (x)  were obtained by numeri- 
cally integrating over the energies, and their plots are con- 
tained in the main text. 

"The chemical potential in MIS structures can be varied by varying the 
gate voltage V, . 

2'This equation follows, for example, from the fact that a-dg/dp, and by 
virtue of the periodicity we have 
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