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An investigation is made of a transition from resonant tunneling across a disordered 
semiconductor film to hopping charge transport. It is shown that at low temperatures the 
behavior of the conductance G( T) is governed by inelastic tunneling via pairs of localized states 
and the temperature dependence is G( T) cc T4I3. The current-voltage characteristic due to two- 
impurity channels is nonlinear: I (  V) a v7I3. The fluctuation component of the characteristic 
6 I (  V) for samples of small thickness is different for two different voltage scales: A V, - Vand 
A V2 - T / e .  The correlation functions characterizing mesoscopic fluctuations of the current- 
voltage characteristic are determined. An increase in temperature brings into action chains with 
increasing numbers of impurities. This results in a transition to the Pollak-Hauser hopping 
conductionmechanism [M. Pollak and J. J. Hauser, Phys. Rev. Lett. 31,1304 (1973); A. V. 
Tartakovskii, M. V. Fistul', M. E. RaYkh, and I. M. Ruzin, Sov. Phys. Solid State 21,370 ( 1987) 1. 
The transition region considered in the present investigation may be observed in experiments on 
tunnel junctions with an amorphous spacer and also in small metal-insulator-semiconductor 
structures and in heterostructures. 

1. INTRODUCTION 

The electron structure of amorphous materials is char- 
acterized by a high density of localized states, the energies of 
which are distributed over a wide band. In the case of an 
energy spectrum of this type the conductivity u of a sample 
of macroscopic dimensions obeys the Mott law' in a fairly 
wide range of temperatures: 

where To = B /ga3, g is the density of localized states, a is the 
radius of these states, and f i  is a numerical parameter. Low- 
ering of Tincreases the lengths of electron jumps responsible 
for the law ( 1.1 ) and the conductance of a sample begins to 
depend on the longitudinal dimension d. The limiting case is 
represented by tunneling. In this case, as in the case of hop- 
ping conduction, an important role is played by localized 
states since for not-too-low values of d (see Ref. 2)  the pro- 
cesses of resonant tunneling via these states become domi- 
nant. For example, in the case of tunneling across an amor- 
phous silicon layer the resonant processes become dominant 
in the range d > 60 A (Ref. 3) .  This raises the natural ques- 
tion: what is the temperature dependence of the conductance 
at low temperatures? Obviously, the processes of elastic tun- 
neling in the case of an energy-independent density of states 
gmake the conductance G temperature-dependent. Phonon- 
stimulated inelastic resonant tunneling along one-impurity 
channels can only result in a weak G(T)  dependence. The 
corresponding correction SG, ( T )  to the value of G(0) is 
small at temperatures below the Debye value, irrespective of 
the magnitude of the electron-phonon interaction. The rel- 
ative magnitude of the correction GG, (T)/G(O) and its 
characteristic temperature scale of the changes are indepen- 
dent of d. On the other hand, the temperature above which 
the Mott law applies decreases as d increases. Therefore, the 
low-temperature dependence G(T)  should include contri- 
butions whose relative magnitude increases with d. 

We shall show that the processes of inelastic tunneling 
in channels containing pairs of localized states with a scatter 
of the energies of the order of T play a definite role in low- 
temperature conduction. The relative importance of the cor- 
responding contribution G, ( T)/G(O) a exp ( d  /6a) in- 
creases exponentially with d. Moreover, as temperature is 
lowered, the value of G, ( T)  cc T~~~ decreases more slowly 
than 6G, ( T) or the contributions of the channels with a larg- 
er number of impurities. It follows from these considerations 
that in the case of the thicknesses d used in experiments there 
should be a fairly wide range of temperatures when two- 
impurity channels determine the electrical characteristics of 
an amorphous layer. In addition to the unusual temperature 
dependence G, (T) ,  such channels give rise to power-law 
nonlinearities of the current-voltage characteristic: 
I (  V) a v7I3. In contrast to nonresonant tunneling, the val- 
ues of G, ( T )  and I (  V) represent the passage of electrons 
through separate channels separated by large distances. 
Therefore, G, and I are self-averaging only when the cross- 
sectional area S of a sample is sufficiently large. We shall 
show that mesoscopic fluctuations of G, ( T )  are small if 
Sg2a3dT $1. The dependence I( V) is, firstly, due to new 
channels and, secondly, due to a change in the conductance 
of the existing channels because of a change in the voltage V 
across a contact. The characteristic scale of the voltages A V 
in which a new channel is activated is equal to T, whereas the 
scale in which there is a change in the conductance of the 
already existing channel is V. Therefore, for V$ T, fluctu- 
ations of the differential conductance G, ( V), which appear 
in a sample of finite thickness, have two scales. The ampli- 
tude of small-scale fluctuations exceeds considerably the 
amplitude of large-scale fluctuations. Therefore, the vari- 
ance of G, ( V) is governed directly by small-scale fluctu- 
ations and can be found from the current-voltage character- 
istics of one sample. 

Our two-impurity configurations are initial parts of the 
sequences of chains with large numbers of impurities, which 
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become optimal as temperature increases. A mechanism of 
conduction along these chains was proposed by Pollak and 
Hauser4 and investigated in detail by Tartakovskiiet al. 'The 
general description of the transition from resonant tunneling 
to hopping conduction involving long chains is given in the 
section labeled Conclusions. 

2. INELASTIC TUNNELING VIA A PAIR OF IMPURITIES 

We shall consider the contribution of one two-impurity 
configuration to the tunnel current across an amorphous 
film located between two metal edges. The states at the edges 
will be described by quasimomenta k and p and we shall 
assume that the impurity 1 is located closer to the left-hand 
edge, whereas impurity 2 is close to the right-hand edge. In 
the absence of the electron-phonon interaction the tunnel 
Hamiltonian governing the k-p transitions is 

Here, E, and ajt are the energies and operators for creation 
of electrons in appropriate states ( j = k, p, 1 ,2) .  The matrix 
elements T, , , T,, , and TI, depend exponentially on the cor- 
responding distances, so that Eq. (2.1) includes transitions 
from an impurity to the nearest edge. The electron-phonon 
interaction causes essentially all the constants in the Hamil- 
tonian (2.1 ) to depend on the phonon variables. However, as 
pointed out in Ref. 2, inclusion of such a dependence in E, , 
E ~ ,  Tkl , and TPl gives rise to corrections which are small in 
the parameter w,/E, (w, is the Debye frequency, E, is the 
Fermi energy of an electron at  the edges, and f i  = 1 ). We 
shall show later that the phonon corrections to TI, can also 
be ignored. After these simplifications the term due to phon- 
ons in the Hamiltonian becomes 

Here, w, and b ,t are the spectrum and the phonon creation 
operator, the quantities a,, are related to the constants of 
the deformation potential A, of impurities by1'  

wherep is the density of matter in the film, R, is a coordinate 
of an impurity, and n = 1, 2. The Hamiltonian of Eq. (2.2) 
can be diagonalized by the unitary transformation 

exact form 01 the transformed total Hamiltonian 
H = U(H,, + He ,, ) U + is fairly cumbersome and we shall 
not write it down. We shall consider only the case of a weak 
electron-phonon interaction, which allows us to limit the 

Hamiltonian to the terms linear in a,, . Moreover, we shall 
ignore the possibility of phonon-assisted transitions between 
impurities and the edges, because such channels are shunted 
by more effective zero-phonon transitions in the case of low 
values of a .  Bearing all these points in mind, we find that 

where A, = (a,, - a,, )/wq. A characteristic energy which 
occurs in TI, is the depth of the localized state E, - l/ma2 in 
the region of the barrier. I t  follows from Eq. (2.5) and from 
the definitionR, that the phonon renormalization constants 
of TI, dropped from Eq. (2.2) are small compared with 
terms of the type A, T,,a,+ a2b ,+, of order the parameter w, / 
E,- T/E,, which are included in Eq. (2.5). 

Our aim will be to calculate the current via a two-impu- 
rity channel in the nonresonant case, i.e., when the dissipa- 
tion between the levels is large compared with the overlap 
integral: AE = I E ,  - E,/ > TI,. This inequality makes it pos- 
sible to apply the kinetic equation because the states do not 
become hybridized at the impurity centers and the lifetime of 
an electron at  each of them (limited by the interaction with 
phonons) is given by T-~S'/A~AE T i 2  and is known to be 
longer than the time taken for the formation of a state in the 
case of an interimpurity transition l/A&. The system of ki- 
netic equations derived using standard methods based on the 
Hamiltonian of Eq. (2.5) can be written in the form 

In writing down the system of equations (2.6) we are assum- 
ing that E ,  > E ~ ,  which does not limit the generality of the 
treatment2'; Nq = N(w, ) is the equilibrium distribution 
function of phonons; f,, f,, f, ,  and f, are the distribution 
functions of electrons at the edges and at the centers; and 
Tq = Rq TI,. In Eqs. ( 2 . 6 ~ )  and (2.6d) we have included 
only the terms associated with electron transitions from the 
edges to the impurities. The collision integrals resulting in 
relaxation of the distribution function at  the edges will not be 
given. Nevertheless, we shall assume that the relevant relax- 
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ation times are short, so that in solving the tunnel problem 
we can regard the distributions fk and fp as given. The rela- 
tionships ( 2 . 6 ~ )  and (2.6d) determine the tunnel currents 
from the states k and p at the edges. The accuracy of the 
kinetic equation is insufficient to allow for the tunnel widths 
r, and T, of the impurity le~els.~Therefore, f, and f, in the 
system (2.6) should be regarded as smooth functions of en- 
ergies on the scale of T, which in the case of equilibrium 
distributions fk =f, (6, ) and fp = f, (E, ) sets restrictions on 
temperature: T$ TI ,  r,. Under steady-state conditions 
( f - f  , - , - - 0 )  the current flowing via a two-impurity channel 

can be represented with the aid of Eqs. ( 2 . 6 ~ )  and (2.6d) in 
the form 

where 

It follows from Eqs. (2.6a), (2.6b), and (2.7) that 

where 

f c ~ f c ( ~ ~ ) , f r ~ f ~ ( ~ ~ ) ,  N =  N(AE). The value of y deter- 
mines the reciprocal of the electron lifetime in the case of the 
1 + 2 transition for N = 0: 

In the calculation of the current-voltage characteristics for 
voltages eV% T across a contact we need the expression for 
the current in the limit when N = 0,fc = 1, and f, = 0. We 
then have 

The value of the current given by Eq. (2.8) differs by no 
more than a factor of 2e/R. Therefore, the current is in fact 
governed by the sum of the resistances of three links joining 
the opposite edges [see Eq. (2.11 ) 1. Such an estimate is val- 
id for any ratio of eV to T, provided bothf, and f, are not 
exponentially small in the parameter d /a. 

If e V& T, then in the approximation linear in respect of 
e V / T ,  it follows from Eq. (2.8) that 

Equation (2.13) is valid for any sign of the difference 
el - E,; the energies E ,  and E, are measured from the Fermi 
level. 

3. CONDUCTANCE AND CURRENT-VOLTAGE 
CHARACTERISTIC OF A LARGE-AREA JUNCTION 

We shall calculate the conductance of a junction in the 
case which is linear in the voltage when the inequality e V &  T 
is obeyed. This can be done by averaging the conductance for 
one channel over the coordinates and energies of a pair of 
impurities in this channel. Integration with respect to the 
two coordinates of the first impurity (x, y ) gives the contact 
area S and 

< G , ) = S ~ ~  J dsl d.5, dz, dz, d2p9(z1, 22, p, EI, 4, (3.1) 

where z, and z, are the distances from the impurities to the 
corresponding edges, and p is the projection of the vector r , 
- r, on the xy plane. 

Since the denominator of Eq. (2.12) is in the form of a 
sum of three quantities exponentially dependent on z ,  , z,, 
and Ir, - r,l, its extremum is attained at the values of r!" 
and r?' for which these three quantities are equal and we 
have p = 0. Replacing z,  and z, with new coordinates 
11(,) = z ~ ( ~ )  - z;::, and introducing the expansion 

we find that 

The integral with respect to the coordinates can be calculat- 
ed by introducing dimensionless variables. The integral with 
respect to the energies can be found by identifying the depen- 
dence of y on A&. For one pair of impurities it follows from 
Eq. (2.10) 

where s is the velocity of sound. We shall assume that for 
AE- T, we have one of the limiting cases and To oc AE"~.  In 
the first case we can ignore the scatter SA of the values of the 
deformation potential constant and regard A in Eq. (3.3) as 
its characteristic value. In the second limiting case Eq. (3.2) 
makes it possible to carry out additional averaging over the 
values of A. This averaging in all the subsequent expressions, 
replaces A with the characteristic quantity SA. Introduction 
of dimensionless variables into the energy integral in Eq. 
(3.2) gives the average conductance in the leading order in 
a/d: 

where the numerical coefficient is ~ ~ 5 0 .  The main thick- 
ness dependence in Eq. (3.4) is contained in the quantity r, 
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which determines the characteristic width of the impurity 
levels in the channels under discussion: 

r=Eo exp ( -2d/3a) .  ( 3 .5 )  

The limitations of the adopted method have the effect 
that Eq. ( 3 . 4 )  is valid at temperatures T >  I?. At low tem- 
peratures T -  r the processes of inelastic scattering of elec- 
trons are weakened and give rise only to exponentially small 
corrections to the conductance ( G , )  a e2gaSEo exp( - d  / 
a ) ,  which is due to the resonant tunneling p roce~ses .~  

The contribution made to the conductance by inelastic 
two-impurity channels exceeds the contribution of ( G , )  at 
temperatures 

We can naturally expect a further increase in temperature to 
result in activation of the processes of conduction in chains 
consisting of three or more impurities. Estimating the con- 
tribution of three-impurity channels to the average conduc- 
tance by the method described above, we obtain 

( G 3 ) -  (1I2EO/ps5) "ze2g3a5d2ST~~E0 exp ( -d /2a ) .  

The faster rise of ( G , )  with temperature has the effect that 
Eq. ( 3 . 4 )  determines the conductance of a film when 

TG (ga2dEo)-v~(A2E,2/ps~-~i~E0 exp ( -d /7a ) .  ( 3 . 7 )  

Therefore, at low temperatures defined by Eq. (3 .7 )  the 
main contribution to the temperature dependence of the 
conductance of an amorphous film comes from two impurity 
channels. The only exception is the case of exponentially 
small values of the density of states 

when the temperature correction SG, mentioned in Sec. 1 is 
due to inelastic tunneling across single localized states which 
may exceed the contribution of many-impurity configura- 
tions. 

We can find the average current ( I ( V ) )  flowing 
through two-impurity channels provided we average Eq. 
( 2 . 8 )  for the current via one pair of impurities over the co- 
ordinates and energies of these impurities: 

Equation ( 3 . 9 )  can be simplified in the nonlinear limit 
we are interested in, eV% T.  We can use the relationships 
(2.11 ) for x and R and integration with respect to energy in 
Eq. ( 3 . 9 )  can be limited to the range 

The error introduced by these simplifications into ( I (  V )  ) is 
of the order of T  / e  V <  1 .  

Integration with respect to coordinates can be carried 
out in the same way as in the calculation of ( G , ) .  The result 
is that, to leading order in a / d  and T / e  V, the average current 
is 

The validity of Eq. (3 .1  1 ) is governed by the efficiency 
of two-impurity channels. The corresponding limitations on 

V  can be found in the same way as the limitations on T  de- 
rived in an analysis of Eq. ( 3 . 4 ) .  They reduce to the replace- 
ment of T  with e V  in the inequalities used above. In particu- 
lar, the I a  V7" law applies in spite of restrictions on V  
deduced from Eqs. ( 3 . 6 )  and ( 3 . 7 ) .  

4. MESOSCOPIC FLUCTUATIONS OF THE CONDUCTANCE 
AND THE CURRENT-VOLTAGE CHARACTERISTIC 

In the case of a sample of finite thickness S the conduc- 
tance G,  ( T )  and the current-voltage characteristic I (  V )  are 
random quantities. The condition for these quantities to be 
close to their average values, calculated in Sec. 3, is the large 
number of effective two-impurity channels. By an effective 
channel for the quantity G ,  we understand a pair of impuri- 
ties for which 9 ( r , , r * , ~ , , ~ ~ )  is close to the maximum value. 
An analysis of Eq. (2 .12 )  shows that the width of the maxi- 
mum in terms of the coordinates Sz,  and Sz, is -a;  
S p a  ( a d )  ' I 2  and the width of the maximum in respect of the 
energies SE, and SE, is - T .  Therefore, in a sample of cross- 
sectional area S the effective number of the conduction chan- 
nels is 

In  estimating fluctuations of the quantity G ,  we shall first 
find the variance of the conductance: 

where the angular brackets denote averaging for a batch of 
samples. Calculation of the variance ( 4 . 2 )  reduces to aver- 
aging of the square of the conductance in one channel7: 

yielding the result 

According to Eqs. ( 4 . 4 )  and (4 .1  ), the relative rms fluctu- 
ation of the conductance is governed by the number of chan- 
nels: 

The fluctuations are small for N, & 1 ,  i.e., when 

The quantity S, introduced in this way represents the con- 
tact area containing on the average one effective two-impuri- 
ty conduction channel. 

Fluctuations of the conductance about the average val- 
ue are small and it is sufficient to satisfy Eq. ( 4 . 6 ) .  However, 
the true value of the variance of the conductance of a sample 
is not given by the contribution of ( 4 . 4 )  of two-impurity 
channels. Moreover, there are rare but fairly transparent 
configurations of impurities, which determine the variance. 
In the range of areas3' 

the distribution function of the conductance F ( G )  of sam- 
ples is in the form of a Gaussian peak, the position and width 
of which are governed by two-impurity channels. If 
G - ( G , )  %SGr, this peak is shifted to the lower but wide 
wing. I t  determines the variance of G, but in the case of typi- 
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cal samples the scatter of the conductance is described by 
Eq. (4.5).  RaYkh and Ruzin7 pointed out the possibility that 
the magnitude of the conductance fluctuations in typical 
samples can be compared with the value calculated from the 
variance. However, for the class of models investigated in 
Ref. 7 the average value of the conductance and its typical 
fluctuations are governed by channels of a different kind so 
that the distribution function differs greatly from the Gaus- 
sian profile for all regions of variation of G .  

In a study of mesoscopic fluctuations of the current- 
voltage characteristic of a contact we shall also restrict our 
attention to the areas in which only two-impurity channels 
are important: 

Here, S, = [g2a3d(eV)2] is the area of a contact with one 
effective current channel on the average. Fluctuations of the 
random quantity I (  V )  can be described conveniently using 
the correlation function 

To calculate this function it is necessary to average the prod- 
uct J( V ) J (  U )  of the currents of Eq. (2 .8)  via one channel 
with two impurities over the coordinates and energies of 
these impurities. It is also necessary to allow for the changes 
in the energies of the impurities caused by the voltage ap- 
plied to the contact: 

In the calculation of the correlation function of Eq. 
(4.8) at high voltages to leading order in the parameter T /  
e V< 1 we can repeat the simplifications adopted in Sec. 3: we 
can use the relationships in Eq. (2.11 ) and limit the range of 
integration to that given by Eq. (3.10).  The integration can 
then be carried out in terms of elementary functions. We 
shall give here only the principal terms of the asymptote in 
the case of similar voltages, 0 < U - V< V: 

For U = V, Eq. (4.10) gives the variance of the current 

A comparison of Eq. (4.11 ) with the expression (3.11 ) for 
( I (  V ) )  gives the relative magnitude of fluctuations of the 
current: 

An increase in the voltage V increases the conductance 
due to two-impurity channels. The associated characteris- 
tics of such scale in the dependence K y' ( V, U )  is A V ,  - V. 
An attempt to calculate the variance of the differential con- 
ductance by means of Eq. (4.10) leads however to a physi- 
cally unjustified divergence due to the nonanalytic depen- 
dence of K jo' on U - V. The nonanalyticity is due to 
incorrect inclusion in Eq. (4.10) of the contribution of new 
channels activated on increase in the voltage. These chan- 

FIG. 1. Schematic representation of the current-voltage characteristic of a 
sample of finite area. The dashed curve shows the dependence ( I (  V ) ) .  

nels give rise to corrections to Eq. (4.10) which are small in 
absolute amplitude, but which determine an additional 
"small" scale, different from V, of fluctuations AV,- T /  
e < V. Thus, the deviation of the dependence I ( B )  for a given 
sample from the average characteristic of Eq. (3.11 ) has two 
scales: limited small-scale fluctuations are superimposed on 
large but smooth fluctuations of the scale A 6 (~i;. 1 ). Ob- 
viously, the fluctuations with the scale A V,  are more conve- 
niently investigated by considering the voltage dependence 
of the differential conductance G( V ) .  The correlation func- 
tion 

can be calculated with the aid of Eqs. (2 .8)  and (2.9).  To 
leading order in T/e  V, we find that 

Ko(V, U)=KG'O'(V, U)+GKG(V, U ) .  (4.14) 

Two terms in Eq. (4.14) correspond to two types of fluctu- 
ations (Fig. 2 ) .  The large-scale fluctuations correspond to 
the correlation function K $' ( V,U) . For U - V >  T, this 
correlation function determines the behavior of K G  ( V,U) 
and can be found from Eq. (4.10) : 

The small-scale fluctuations of G( V )  are characterized by a 
correlation function SKG ( V, U ) ,  which falls exponentially in 
the range U - V > T: 

but dominates in the range U - V <  Tand  governs the vari- 

FIG. 2. Correlation function KG ( U - V ) .  The dependence shown exhib- 
its small-scale fluctuations in the region U -  V 5  T. 
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ance of the differential conductance 

This makes it possible to determine the variance from mea- 
surements on one sample by the following procedure. We 
introduce a random function 

where the bar denotes averaging in the voltage range A: 
V+A/Z 

and we then determine the quantity v (  V) = 6 2 (  V) . It is 
shown in the Appendix that the quantity v (  V) is self-averag- 
ing and it is identical (apart from quantities small in terms of 
the parameters T/eA and A/V) with the variance of Eq. 
(4.16). 

5. CONCLUSIONS 

It is shown in Sec. 3 that the tunnel mechanism of con- 
duction in an amorphous layer is effective only at  exponen- 
tially low temperatures and when the temperature described 
by Eq. (3.6) is reached, it changes to inelastic tunneling via 
impurity pairs. Further increase in temperature activates in- 
elastic channels characterized by large numbers of impuri- 
ties. The average conductance due to n impurity channels 
can be estimated as in the case when n = 2: 

It is clear from Eq. (5.1 ) that for T >  T,, , where 

then n-impurity chains make a greater contribution to the 
average conductance than (n  - 1 )-impurity chains. The 
average conductance of a film is given by 

In the temperature interval 

the largest value in the sum of Eq. (5.3) contains the term 
(G,,). If n in Eq. (5.4) satisfies the condition n 5 n* = ( d  / 
a )  1 1 3  , the other terms contribute only small corrections to 

the value (G ) = (G,, ). ["Switching" of the main term in 
Eq. (5.3) occurs at the limits of the intervals defined by Eq. 
(5.4).] Therefore, in the range T 5  T,,, we have 

so that at each fixed temperature only the chains with equal 
numbers of impurities can be included in the expression for 
the conductance. At high temperatures ( T$ T,. ) the num- 
ber of terms in Eq. (5.3) governing (G ) is 

FIG. 3. Temperature dependence of the conductance ( G  ) in the region of 
the transition from resonant tunneling to conduction by hopping in long 
chains. 

We can then regard n as a continuous variable and replace 
the sum with an integral with respect to n, as was done in 
Ref. 5. The temperature dependence of (G ) can be readily 
plotted in terms of the coordinates { l n ( ( G ) / ( G , ) ) ,  
A ( T) = In ( l/ga2dT)) (Fig. 3) .  Resonant tunneling at tem- 
peratures T <  T, corresponds to the horizontal region 1 in 
Fig. 3. The temperature ranges T, < T5; T,,, correspond to 
the broken line in which each section represents one term in 
Eq. (5.3). The slope of each step is d l n ( G ) /  
dA = - [ n  - 2/(n + I ) ] ,  where n varies from 2 to n*. At 
temperature T >  T,,. ( to  the left of the dashed vertical line in 
Fig. 3)  the broken curve merges to form a smooth variation 
l n ( G ) -  - 2 [ ( 2 d / a ) ( A ( T )  + l n (a /d ) ) ] ' / '  (see Ref. 5) .  
We investigated the behavior of the conductance at tempera- 
tures corresponding to the initial region 2 of the broken 
curve. 

The conductance of sufficiently thin amorphous films 
at  T = 0 is governed by elastic tunneling of electrons along 
chains containing two or  more resonant i m p ~ r i t i e s , ~  and not 
along single states. Nevertheless, the main dependence of the 
average conductance on the thickness remains the same: 
( G  ) a exp( - d /a), because the improvement in the width 
of the resonance for configurations of this kind is compen- 
sated by the loss in the probability of formation. Conse- 
quently, the condition governing the transition from elastic 
to inelastic tunneling is identical (apart from the preexpon- 
ential factor) with Eq. (3.6).  We can show that the channels 
in which an electron travels partly by resonance tunneling 
and partly due to phonon-activated jumps do not make a 
significant contribution to the conductance at any tempera- 
ture. Therefore, the above description of the transition from 
the resonant to the hopping conduction mechanism remains 
valid also in the case of thick films. 

The conductance in the transition regime can be investi- 
gated, for example, at contacts with an amorphous silicon 
spacer. If d = 250 A, the above characteristic temperatures 
are T, = 2 K and T, = 15 K. Since the number of two-impu- 
rity inelastic channels per unit area is considerably less than 
the number of resonant one-impurity configurations, mesos- 
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copic effects occurring in the range T >  T2 appear in samples 
of relatively large area. In our example when T = T, - T, 
the characteristic area is S,  -5 X lo-"-2.5 X lo-' cm2 (we 
used g = loz0 eV-' ~ r n - ~  and a = 8 A-see Ref. 3).  An- 
other object in which this effect can be observed is a metal- 
insulator-semiconductor transistor with a sufficiently wide 
and short inversion layer. The fabrication of such structures 
has become possible 

The authors are grateful to A. I. Larkin, I. B. Levinson, 
and B. I. Shklovskii for numerous valuable discussions. 

APPENDIX 

In view of the Gaussian statistics of fluctuations of two- 
impurity channels, when the condition (4.7) is satisfied, the 
variance of the quantity of interest to us v (  V) can be esti- 
mated from 

If T/e<A g V, the main contribution to the integral in Eq. 
( A l )  comes from a band I V' - V" / 5 T, because outside it 
the integrand is small. In fact, apart from quantities of the 
order of T/eA, the average value is 

<E(V)t(U)>=Ko(V, U)-Kc(V, U)-K,(V, D)+Kc(V, IT). 

Here a bar above the argument denotes averaging in accor- 
dance with Eq. (4.18) and with respect to this argument. 
This averaging procedure reduces SK, in the U - V 5  T 
case to ( T/A )SK, ( V, V). Therefore, in the range of UV of 

interest to us, we find from Eqs. (4.14) and (A2)  that 

and hence for V = Uwe have ( v  ( V) ) z ( (SG) 2 ) .  Using Eqs. 
( A l ) ,  (A3) ,  and the definition v (V)  = 1 2 ( V ) ,  we find 
that 

The last inequality ensures self-averaging of v( V). 

"Generally speaking the deformation potential constant shows a scatter 
for an amorphous material. 

"In Eqs. (2.6a) and (2.6b) the correlation function (a,' a,a,' a,) is de- 
coupled. We can easily obtain a more rigorous system of kinetic equa- 
tions which do not require this approximation and show that such decou- 
pling does not affect the results given in Secs. 3-5. The problem of the 
feasibility of such decoupling was also considered in Ref. 10. 

"This integral is exponentially large in terms of the parameter d /a under 
the conditions described by Eqs. (3.6) and (3.7). 
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