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Metric perturbations of longitudinal type in an isotropic universe filled with a scalar field are 
considered. The action for the perturbations is obtained, and this action is expressed in terms of a 
gauge-invariant variable which completely characterizes the perturbations. A consistent 
quantum theory of such perturbations is constructed. The spectrum of inhomogeneities in 
inflationary models of the evolution of the universe is calculated. 

I. INTRODUCTION 

Many studies (see, for example, Refs. 5-13) have been 
devoted to the spectrum of inhomogeneities generated in in- 
flationary models of the evolution of the universe. l4 How- 
ever a consistent quantum theory of inhomogeneities in in- 
flationary models with scalar field has still not yet been 
constructed. Initially the perturbations in these models at 
the termination of the inflationary stage were estimated by 
qualitative methods.' Subsequently quantitative methods 
for calculating the perturbations were de~e lo~ed ,~ - ' '  but all 
of them, strictly speaking, related to investigation of the be- 
havior of classical perturbations. To find the final spectrum 
of the inhomogeneities, it is necessary to specify certain ini- 
tial (primordial) perturbations. These are usually taken to 
be the minimal quantum fluctuations unavoidably present in 
the universe. Their amplitude is estimated1-'' by quantizing 
the perturbations of the scalar field without allowance for 
the perturbations of the metric. However, the corrections to 
the equations of the scalar field, which are due to the metric 
perturbations that are ignored on quantization, are of the 
same order as the terms retained in the equations. In addi- 
tion, the perturbations Sq, of the scalar field are not gauge- 
invariant quantities and depend (particularly strongly for 
long-wave perturbations) on the choice of the coordinate 
system. Therefore, strictly speaking such theories are not 
consistent, and Sp  cannot be regarded as a variable that must 
be quantized. We note also that in the majority of the quoted 
papers the behavior of the perturbations is analyzed in par- 
ticular gauges. 

The aim of the present paper is to construct a gauge- 
invariant quantum theory of perturbations in an isotropic 
universe filled with a scalar field. The remainder of the paper 
is arranged as follows. In Sec. 2 we review the necessary 
results on the background cosmological model; Sec. 3 is de- 
voted to a gauge-invariant perturbation theory; in Sec. 4, 
expanding the action for the gravitational and scalar fields to 
the second order in the perturbations, we find the action for 
the perturbations and express it in terms of a gauge-invariant 
variable that completely characterizes the perturbations; 
these are quantized in Sec. 5, and in Sec. 6 we calculate the 
inhomogeneity spectrum in inflationary models of the evolu- 
tion of the universe. 

We shall consider the theory with total action 

where the first term corresponds to the usual Einstein ac- 
tion, and the second to the action for the scalar field p with 
potential V(p). Here and in what follows, we have used 
units in which c = f i  = 1, and the signature is ( + , - , - , 
- 1. 

2. BACKGROUND MODEL 

As the background model, we consider a homogeneous 
isotropic Friedmann universe with zero spatial curvature. 
Its metric has the form 

where the Greek indices take values from 1 to 3. The time 
evolution of the background model is completely character- 
ized by the dependence of the scale factor a on the conformal 
time 7. 

The Einstein equations governing this dependence have 
the form 

where the prime denotes the differentiation with respect to 
7, a-al/a, and I:,  = 8rG/3. From (3)  and (4)  we obtain 
the useful relation 

and the equation for the homogeneous field 

The system of equations (3)-(6) admits complete investiga- 
tion on the phase plane.'4 For a large class of potentials 
V(p) there exists for the solutions of these equations an in- 
termediate asymptote behavior corresponding to an infla- 
tionary (quasi-de-Sitter) regime of evolution of the uni- 
verse.3 

a a e x p ( j ~ ( t ) d t ) ,  l t i < l P .  

For example for the potential 

s=-- 1 R (-g) '" d4x where t = .fa ( 7 )dv  is the physical time. The quasi-de-Sitter 
16nG stage is followed by a stage in which the scalar field oscillates 

and is damped. In the theory with V= 1/2m2p2 the scale 
( ) factor during this stage behaves as 
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sin [ 2 m  ( t - to)  1 
a ( t )  a ( t - t ~ ~ *  ( 1  + 

B[m( t - to )  1' 1 7 

i.e., apart from small oscillations it behaves in the same way 
as the scale factor in a universe filled with dust. 

3. GAUGE-INVARIANT PERTURBATIONS 

In the case of perturbations of scalar type, the total met- 
ric of the most general form can be written 

ds2=aZ(q) { ( I + ? @ )  dq2-2B,,dxUdq 

- [ (1-2$) 6as+2H,a~] dxadxR),  ( 9 )  

where 4, +!J, B and H characterize the perturbations of the 
metric Sg,, (the Latin indices take values from 0 to 3 ) .  We 
consider the diffeomorphism generated by the displacement 
of the space-time points x'  by the vector Ag' ( x i + x '  + Ae ) . 
The change in a quantity f ( f may be a scalar, vector, ten 
sor, etc.) as a result of such a transformation has the form 

where LA[ denotes the Lee derivative. The transformation 
( 1 0 )  is called a gauge transformation, and the correspond- 
ing group of diffeomorphisms the gauge group of gravitation 
(see Ref. 1 6 ) .  The most general diffeomorphism associated 
with the scalar perturbations ( 9 )  can be expressed in terms 
of two arbitrary functions Ago and A{: 

q-+q+AEO(q, x a ) ,  ( 1 1 )  

where the subscript following a comma denotes the deriva- 
tive with respect to the corresponding coordinate. It is clear 
that the metric perturbations Sg ,  by themselves, and ac- 
cordingly 4, $, B, H, are not gauge-invariant quantities and 
under the transformation ( 11 ) change in accordance with 
(10) (Sg ,  -*Sgik + Agik ) . ' )  Nevertheless, from the metric 
perturbations one can construct gauge-invariant quantities 
that characterize them completely 15: 

Y =$-a (B-H' ) .  ( 1 3 )  

The perturbations S p  ( p ( x a ,  7 )  = p0 ( 7 )  + S p ( x a ,  7 ) )  of 
the scalar field are also not gauge invariant, since 

under the transformation ( 1 1 ). The gauge-invariant quanti- 
ty corresponding to them has the formI3 

The physical meaning of @ and Y will become clear if we 
choose a definite gauge: B = H = 0 .  Then the metric ( 9 )  
becomes 

and @ = 4 and Y = $, i.e., the gauge-invariant quantities @ 
and Y are identical to the metric perturbations in a confor- 
mally Newtonian coordinate system." 

4. VARIATIONAL PRINCIPLE FOR THE PERTURBATIONS 

To obtain the action for small perturbations, we expand 
the total action ( 1 )  to terms of second order in the perturba- 
tions. For this, it is convenient to represent the part of the 
action associated with the gravitational field in the form 

where the meaning of the coefficients N ,  N ,  , ya8 is deter- 
mined by the form of the metric in the ( 3  + 1 ) formalism: 

The action ( 1 6 )  is simply the Arnowitt-Deser-Misner ac- 
tion," in which for the three-dimensional curvature '3'R we 
have used the expression obtained by Fock [see Eqs. ( B 4 9 )  
and ( B 5 0 )  in Ref. 1 9 )  ] In this action, K is the tensor of the 
extrinsic curvature and 

DL=-2 (y ' "K) '+[2y" (KNa-yaW,o)  

is a term of divergence type that does not contribute to the 
equations of motion. Comparing ( 1 7 )  with ( 9 ) ,  we express 
N ,  N,,  etc., in terms of 4, $, B, H. Further, calculating the 
terms quadratic in the perturbations in the action ( 1 6 )  and 
in the action for the scalar field, and also using Eqs. ( 3 ) - ( 6 )  
for the background model, we obtain the action for the cos- 
mological perturbations of longitudinal type: 

where 

D2=[16nGa2cpO'6cp'(H,,,-@-39) +2c~a ' (H, , ,~~  
+2$H,aa-3$') 1 '4- {aZ [6a2(H,abH,a-H,baH,,) 
-4a (H,77B,a+2H,ab (B-H'),a-2H,,, (B-H ' ) , , )  + (B-Hf),,a(B-H' ) ,a -  (B-H')',aa(B-H'),a+H,ugvH,gv 

-H,vv~H,a~+2 (2a'+a2)  (H,~aH,B-H,pfiH,cr) 
-4a$B,a-1GnGqo'B,a6rp] ) ,, ( 2 0 )  

is a term of divergence type. Variation of the action ( 1 9 )  
with respect to B - H'  leads to the constraint 

It was found that the action for the perturbations can be 
rewritten in such a way that essentially it contains only the 
gauge-invariant quantity2' 
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Indeed, using (21 ) and (22) to express Se, and qh' in the 
action (19) in terms of v, $, and 4, $, B, H, and making 
simple but rather lengthy calculations, we obtain 

where z = aq, ;,,/a and 

is a divergence term. 

5. QUANTIZATION 

The quantization of the dynamical system with the ac- 
tion (23 ) is analogous to quantization of an ordinary scalar 
field v with time-dependent mass m2 = - z"/z. We note 
first of all that the divergence term in (23) can be omitted. In 
quantum theory this corresponds to a certain renormaliza- 
t i ~ n . ~ '  If the momenuum ~ ( 7 ,  X" ) canonically conjugate to 
the field variable v is determined by the relation 

then the corresponding Hamiltonian will be 

the following quantization procedure is standarde20 We re- 
place v and n- by corresponding operators O and 6- and specify 
on the hypersurface 7 = % the commutation relations 

[ j(,,, xa), U(qo, r a ' )  ]=[;(qo, xu), i(qo, xu')  

[u(qo, x"), &q0, xa') ]=is (xu-xa') - (27) 

Varying the operator analog of the action (23) with respect 
to O, we obtain the field equation for the operator O: 

We note that it is equivalent to the Heisenberg equations 

We introduce the operators 2; and 2, of creation and anni- 
hilation of quanta of the field O; they satisfy the standard 
commutation relations 

so that 

Substituting the expansion (30) in (28), we obtain an equa- 

tion for the complex amplitude v, ( 7 ) :  

If the commutation relations (27) and (29) are to be consis- 
tent with each other, the function v k ( 7 )  must satisfy the 
normalization condition 

Equation ( 3 1 ) is analogous to a Schrodinger equation, and 
in a certain sense our problem reduces to studying the pene- 
tration of a wave through the potential barrier U = z"z. We 
define the vacuum state vector 10) at 7 = 7, as an eigenvec- 
tor of the operators 2, corresponding to zero eigenvalues. 
However, this vector is not defined until we have specified v, 
and u; at the time 7,. The normalization condition (32) is 
not sufficient for the unique fixing of the values of v, (7,) 
and v; (7, ). Additional physical arguments are usually em- 
ployed. Therefore, different physically inequivalent defini- 
tions of the vacuum are possible. For example, the require- 
ment of diagonality of the Hamiltonian (26) with respect to 
the operators 2, and ii,+ with allowance for (32) givesZo 

These conditions can be used (and, accordingly, the vacuum 
defined) only ifz"/z(O. In the case of greatest interest for us 
in the inflationary stage of evolution of the universe 
z" /z -- a " / a  > 0, and therefore the above definition of the 
vacuum is invalid. In the de Sitter universe it is frequently 
convenient to introduce the de Sitter-invariant vacuum 
state2' defined at the time ?;lo by the conditions 

It is here important to note that the results for the spectrum 
ot perturbations generated in the inflationary stage will in 
fact be almost independent of the particular choice of the 
vacuum. Indeed, as we shall see, the perturbation spectrum 
in the region of scales in which we are interested is deter- 
mined by the short-wave part of the initial vacuum spec- 
trum, and 1 u, I + k -'/*, I U; 1 + k 'I2 as k - co for any defini- 
tion of the vacuum. Therefore, as the most general initial 
conditions for v, (7, ) we shall use 

where the functions M and Nare such that the normalization 
condition (32) is satisfied and, in addition, IM(k7,) 1 ,  
IN(kv,)l +1  for kqo% 1. 

6. SPECTRUM OF INHOMOGENEITIES 

To calculate the spectrum of the metric perturbations, 
we must express the gauge-invariant quantities Q, and \y, 

which are the amplitudes of the metric perturbations in the 
conformally Newtonian coordinate system, in terms of v. We 
use for this the Einstein equations. We obtain these equa- 
tions from the variational principle. Expressing 4, $, Sq, in 
the action ( 19) in terms of a, Y, S@, B, and H [see ( 12)- 
(14)] and omitting the divergence terms, we find after 
straightforward calculations an action that in fact contains 
only gauge-invariant quantities: 
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Varying the action (36) with respect to @ and Y, we obtain 
the equations 

Instead of the equation for S@, it is convenient to use the 
constraint ( 2  1 ), which in terms of the gauge-invariant quan- 
tities takes the form 

Substituting S@ from (39) in (38), we obtain 

Further, substitution of (39) in (37) with allowance for 
(40) leads to an equation for @: 

In the~uant%m theory, @, Y, etc., acquire the status of oper- 
ators @ and Y, and Eqs. (37)-(41) become the correspond- 
ing equations for the operators. 

We represent the operator @ in the form 

1 rp,' d3k i (q, xa)= T-j - [ u L . ( ~ ) ~ ~ ~ ~ I ~ - + u ~ ( I ~ ) ~ - ~ " ~ , + ] .  
2 a (2n)" 

(42) 

Substituting the expansion (42) in Eq. (41 ), we find that the 
functions u, ( v )  must satisfy the equation 

A h  

We nyw fintthe constraint between @ = Y a2d D. Express- 
ing S@ and Y in Eq. (37) in terms of D and \V by means of 
(39), we obtain 

a i = + 4 n ~  c( G) ' . (44) 
a 

h 

Substituting the expansions of the operators D and @ [see 
(30) and (42) ] in (44), we find a constraint between v, and 

The initial conditions for u ,  (17,) and u; (7,) under which 
the eigenstate of the operators 2, corresponding to zero 
eigenvalue can be interpreted as the vacuum at time 7, cor- 
respond to the conditions (35 ) for v, (v ) ,  and they can be 
readily obtained on the basis of Eq. (45): 

where here and in what follows the superscript 0 denotes the 
values of the corresponding quantities at the time 7 = vO. 

The correlation function of the metric fluctuations in 
the conformally Newtonian coordinate system, which are 
equal to the gauge-invariant quantities @ = Y, for the initial 
vacuum state (specified at 7 = 7,) is equal at an arbitrary 
time 7 to 

where 

characterizes the square of the amplitude of the perturba- 
tions on scales - l/k. To find this amplitude, it is necessary 
to solve Eq. (43) for u, ( 7 )  with the initial conditions (46). 

As an illustration, we calculate the spectrum of the per- 
turbations in a universe that passes through the inflationary 
stage (7)  during its evolution. Specifying at some initial time 
7 = 7, the vacuum spectrum, we find how it is deformed 
with the passage of time. 

Solutions of Eq. (43 ) can be readily found in the asymp- 
totic regions. For short-wave perturbations with k2 
% (l/z)"/(l/z) 

where Ou, = u,  (7, ), Ou; = u; (77, ) in the long-wave region 
[k2<(l/z)"/(l/z)l  

In what follows, we shall be interested in only the part 
of the spectrum for which at the initial time the correspond- 
ing physical wavelengths ('A,, -a,/k) lie within the Hub- 
ble horizon - l/Ho, where H = a/a  is the Hubble constant. 
This is due to the fact that for sufficient duration of the infla- 
tionary stage large ~cales,~A,, > 1/H,, will at the present 
time be far outside the visible horizon. Therefore, the prob- 
lem associated with the ambiguity in the choice of the vacu- 
um state, which is important only for perturbations with 
'A,, > l/Ho (on account of the ambiguity of the coefficients 
M and N in the expression (46) for the corresponding kv,), 
can be ignored in the given case. As the universe expands, a 
perturbation with given comoving wave vector k passes 
through the horizon and then passes from the short-wave to 
the long-wave region. For such perturbations, the asymp- 
totes (49) and (50) must be matched. 

Comparing the asymptotic solutions of Eqs. (3  1) and 
(43) by means of (45), we see that in the interval zV/z> k2 
> (l/z) "/(l/z) (if it exists) both regimes (49) and (50) 
must be simultaneously valid. For the inflationary stage, this 
region is nonvanishing: Ha > k >  V,F:a ( H >  V,'& ). Hence, 
for perturbations with wave vector k satisfying the condition 

we obtain 
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1 UI' where the subscript of the bracket means that its value is a ( q )  = %,cos (kqo) -e s in (kqo)  k ) 
estimated at the time when the perturbation crosses the hori- 

[3 +J a2 dv) '1 -' ~ o n . ~ '  For the initial vacuum state, the coefficients Ou, and 

A-If.  
Ou; in Eqs. (49) and (5 1 ) are given by the expressions (46). 
Substituting (49) and (51 ) in (48), estimating the integral 

( 5  in the brackets in the inflationary stage (7 ) ,  and (5)  taking 
into account, we find the perturbation spectrum at the time t: 

where the subscript k-Ha means that the quantity in the 
corresponding bracket is estimated at the time t(kph ), when 
the perturbation corresponding to the physical scale 
kph -a(t)/k crosses the horizon (H(t(kph ) ) - kpha(t) /  
a ( t (  kph ) ) ); the dot denotes differentiation with respect to 
the physical time t = Jadv. In deriving (52) we have ig- 
nored all terms of higher orders in k and noted that 
I M I - IN I + 1 forkvO ) 1, and we have also used the normali- 
zation condition (32). 

The inflationary stage ends at the time tf, when H2(tf ) - V,, If the evolution of the universe after this is described 
by a law a a t n  (in the model with V =  4 m2p2, n = 2/3), 
then, as follows from (52), in the interval of physical scales 

(or corresponding comoving v,z;a(tf ) > k > Hoa, ) the 
amplitude at times t > tf is 

FIG. 1 .  Amplitude 6(/1,, ) of metric perturbations as a function of the 
physical wavelength A,, -a(t)/k at different times t during the quasi-de- 
Sitter stage of evolution of the universe in the model with potential V = 1 /  
2mZq . Here, to is the initial time at which the vacuum spectrum of the 
perturbations is specified. Up to the time t ,  >to ,  at which a(? ,  ) - (a,ao 
)"',where a, and afare, respectively, the scale factor at the beginning and 
end of the quasi-de-Sitter expansion, the spectrum remains flat to scales -. 2(t)/Ha0. For t > t, a section appears in which the perturbation spec- 
trum increases logarithmically into the region of large wavelengths A,,; 
the length of this section increases exponentially. The analytic depend- 
ence of the amplitude &(A,, ) on the time t and the wavelength A,, in the 
stage of exponential expansion in the model has the form 

6~ (G/371.)"'m 1 + 1 + In - l d , , H  for a(t)/Ha, >A,, ( ( a:))-' 1 

In the given comoving scale l/k, the amplitude of the pertur- 
bations after inflation remains practically constant (it 
changes by a numerical coefficient of order unity only when 
there are changes of the effective equation of state). The 
evolution of the spectrum in the evolutionary stage is shown 
qualitatively in Fig. 1. The spectrum increases slightly in the 
region of small k. This is due to the fact that the smaller k the 
earlier the perturbation crosses the horizon and, according- 
ly, the value of (+H 2 / ~ )  ,-, for it is larger (for example, in 
the model with V = 1/2m2p2 the spectrum increases logar- 
ithmically ( cc In k )  in the region of small k).  

The resulting spectrum at the time at which the infla- 
tionary stage ends [see (53)] agrees with the spectrum ob- 
tained earlier (apart from numerical coefficients).'-lo 
Therefore, all the estimates for theories of the formation of 
galaxies remain practically unchanged. In particular, in the 
theory with V = m2p2 the amplitude of the metric pertur- 
bations on the scales of galaxies for m - lOI3 GeV is - 
a value that is quite sufficient for the formation of the struc- 
ture in the universe. 

On the basis of the formulas given above, it is readily 
seen that in models of the evolution of the universe without a 
prolonged inflationary stage it is not possible to obtain an 
amplitude of the metric perturbations on galactic scales suf- 
ficient for galaxy formation. 

7. CONCLUSIONS 

On the basis of the action for the scalar field and gravi- 
tation, we have constructed a Lagrangian formalism for 
small metric perturbations of longitudinal type and shown 
that their behavior can be completely described by the 
unique gauge-invariant variable v = a (6p  + p ;$/a). The 
action for the perturbations can be expressed completely in 
terms of this quantity, and it is therefore the natural degree 
of freedom to quantize. By themselves, the perturbations Sp  
of the scalar field are not gauge invariant but depend on the 
choice of the coordinate system in which they are described. 
In addition, the total action cannot be expressed solely in 
terms of Sp. Therefore, the method usually employed to 
treat the quantum fluctuations as perturbations of only Sq, is 
not in general correct. Nevertheless, in the short-wave re- 
gion, which is responsible for the formation of the spectrum 
in the inflationary stage, we have in the case of quasiexpon- 
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ential expansion of the universe g, ;$/a <Sp. This partly ex- 
plains why the correct result was "guessed" in the early stud- 
ies. The qualitative picture of the formation of the spectrum 
does not agree with the ideas of some authors. Perturbations 
of the metric do not appear after the decay of the inflationary 
stage but exist always. In the process of inflation their ampli- 
tude grows and simultaneously, because of the exponential 
expansion, a broad spectral region in which the amplitude is 
effectively constant is formed. As we have shown above, the 
result for the flat part of the spectrum does not depend on the 
manner in which the vacuum of the field perturbations is 
defined. 

"Note that the background Friedmann model (2)  is fixed and we consid- 
er small perturbations, for which the quadratic terms of the type SgAg, 
etc., can be ignored. 

"This quantity is the analog of the variable that must be quantized in the 
case of hydrodynamic perturbations. 5.22 

"In the timeduring which& ( k ,  h )  varies from 1/H to l/M, the change in 
the quantity in the square brackets in (51) during the inflationary stage 
is much less than its value. 
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