
Second-harmonic generation in two-dimensional systems without inversion 
centers 

V. M. ~del'shtein 

Institute of Solid State Physics, USSR Academy of Sciences 
(Submitted 2 1 December 1988) 
Zh. Eksp. Teor. Fiz. 94,264-270 (July 1988) 

Doubling of the frequency of a light wave on reflection from a two-dimensional electron layer 
without an inversion center is investigated. It is shown that for normal incidence of the radiation 
on the two-dimensional layer, when the wavefront is parallel to the layer and the electric field in 
the layer is uniform, the presence of an external magnetic field H parallel to plane of electron 
motion leads to a finite nonlinear conductivity. The current, quadratic in the incident-field 
amplitude and varying like exp( - 2iwt) is of the form J"'- [ cxH]E2 ,  where c is the vector of 
one of the nonequivalent normals to the layer, and E is the electric field of the wave and varies like 
exp ( - iw t ) .  The proportionality coefficient is obtained for the case of sufficiently high 
frequencies w .  

1. INTRODUCTION have a singled-out definite direction in the layer itself. It will 

One of the basic processes in nonlinear optics of metals be shown below that it suffices for this purpose to apply a 

is the frequency doubling of light reflected from its surface, Constant magnetic field along the layer, in which case the 

or second-harmonic generation. Usually the nonlinear cur- current is directed the cXH.  
rent induced in a metal by a light beam 

J'2'=PE(VE)+&(EV)E+yBE' 
2. EFFECTIVE HAMILTONIAN OF TWO-DIMENSIONAL 

( ) MOTION 

is not only proportional to the square of the wave amplitude 
but contains also derivatives with respect to the coordinates, 
i.e., it is nonlocal.' This is due to the presence of an inversion 
center in the symmetry group of the metal. This current van- 
ishes in the limit of a spatially homogeneous electric field. A 
local limit is naturally imposed on the alternating high-fre- 
quency electric field in the case of heterostructures of var- 
ious kinds, where the carrier motion is two-dimensional 
when the electromagnetic wave is almost normally incident 
on the electron layer. 

Studies 2.' of paramagnetic and cyclotron resonances in 
certain heterostructures based on gallium arsenide have 
shown the carriers to have no degeneracy in spin. This phe- 
nomenon was interpreted as the existence of a spin-orbit in- 
teraction induced by parity violation with respect to reflec- 
tion in the plane of the layer. In Ref. 4  it was proposed to 
describe this situation phenomenologically by adding to the 
carrier-effective-mass Hamiltonian a spin-orbit term, pre- 
viously d e r i ~ e d ~ . ~  from symmetry considerations, to de- 
scribe the electron bands in three-dimensional semiconduc- 
tors without inversion centers: 

where p is the electron (or hole) momentum operator, a are 
Pauli matrices, and c is a unit vector normal to the layer. 

If the number of electrons in such a layer is large 
enough, it can be regarded as a two-dimensional metal 
whose symmetry group has no inversion center. Just the 
same, however, the nonlinear response should still vanish in 
the local limit. Indeed, the fact that one of the normals to the 
layers is singled out leads to a special direction c, but no 
current can flow along c, since an electric field parallel to c 
cannot excite electronic transitions of transverse size-quan- 
tized motion. To obtain a finite local limit it is necessary to 

It seems almost obvious that if the cyclotron frequency 
w, is much lower than the charateristic frequencies E ,  / f i  of 
the motion across the layer, a magnetic field H parallel to the 
layer influences only the motion of the electron spin. To ver- 
ify this we choose a coordinate frame with axis illc and con- 
sider the Hamiltonian of three dimensional motion in a po- 
tential W ( z )  that forms a two-dimensional quantum well: 

( 3  

Let f be a unit vector along the field H. Choice of the gauge 

A,=Hz, A,=A,=O 

permits Z 3 t o  be represented by the sum 

in which the operator U ,  mixes the longitudinal and trans- 
verse motions. If the condition 

6=h[fi,/&,<< 1 ( 5 )  

is met, the Hamiltonian U,  is a perturbation, small in the 
parameter 6, to the transverse motion. The longitudinal-mo- 
tion Hamiltonian is determined primarily by the mean value 
of 27 on the wave function p, (z)  of the ground state in the 
quantum well: 
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FIG. 1. 

(6)  

where it is taken into account that even though 
Z: = (polzlpo)2# (polz21po), the contribution made to Z2 
to the difference of these expressions is independent of the 
dynamic variables of the longitudinal motion and is small in 
6.  The contribution of perturbation theory of second-order 
in U,, which includes virtual transitions to excited states of 
the Hamiltonian X o ,  leads only to a small renormalization, 
in terms of 6, of the scalar and spinor parts of the Hamilto- 
nian R2. The parameter zo in expression ( 6 )  is eliminated 
by the canonical transformation 

Here and below all the vectors are two-dimensional. 
Thus, the effective-Hamiltonian of the longitudinal mo- 

tion takes the form 

3. NONLINEAR CONDUCTIVITY 

The electromagnetic interaction of radiation with a 
two-dimensional gas is of the form 

eZ 
v,=,J dr n  (r)  AZ (r, t) , 

2mc 

where A(r, t )  is the vector potential of the wave field, n ( r )  
the electron-density operator, and v( r )  is the velocity opera- 
tor, which has in this case, besides the usual scalar part, also 
a spin component 

We confine ourselves hereafter to the case of sufficiently 
close incident-radiation frequencies w, when the influence of 
the impurities can be neglected. The corresponding esti- 
mates will be discussed below. 

The expectation value of the current operator 

J  (r. t )=Jo(r)  +JI(r ,  t ) ,  Jo(r) =-ev(r),  
e2 

J , (r , t )=  - - n ( r ) A ( r , t )  (11) 
mc 

at the doubled frequency can be obtained by the method of 
Ref. 7 as the quadratic response to an alternating field. It is 
clear from (9)  and ( 11 ) that to this end it is necessary to find 
the expectation value of the current J, to first order pertur- 
bation theory in V ,  and the expectation value of the current 
J, to second order in V ,  In the limit of a wave field homoge- 
neous in space it is convenient to represent the result in the 
form 

where the expression for the nonlinear conductivity a"' is 
given by a sum of diagrams (see the figure), accurate to a 
factor - e3/w,w, that appears when the vector potential is 
replaced by the electric field E (w ) = (iw/c)A(w). The solid 
lines corresponds to the electron Green's function 

where 

are the energies of the two branches of the energy spectrum, 
and 

are the operators of projection on these branches. In the ver- 
tices are either unit operators or the velocity operators 

The summation over the frequencies < = inT(2n + 1 ) + p 
in the triangular diagrams is carried out with allowance for 
the equality 

where T is the temperature, assumed hereafter to be zero, p 
the chemical potential, and n,(E) the Fermi occupation 
numbers. The energies of the three lines can take on two 
values E, * , (p). From among all the possible combinations, 
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it is necessary to retain only those in which the correspond- 
ing occupation-number differences are not zero. This means, 
in particular, that on circuiting the loop a transition between 
different branches of the spectrum must take place at least in 
one vertex. 

Since the same considerations hold also for diagrams a 
and b, and one of their vertices contains unity, their contri- 
bution vanishes by virtue of the orthogonality of the projec- 
tors n, + ( P I  and n, _, (PI. 

It is necessary next to substitute for the Green's func- 
tions expression ( 13) and calculate the traces. All are ex- 
pressed in terms of two independent variables 

As a result, the expressions for diagram c take the form 

(19) 

where n' =n , [E , , ,  ( P I ] ,  A = E , , , ( p )  - E , + ,  (PI .  
The expression for diagram d is obtained from this by the 
interchange w ,  j++w,k. 

We assume the spin-orbit energy to be small compared 
both with the Fermi energy and with the radiation-photon 
energy: 

In this case the sum of the triangular diagrams reduces at 
a, = w 2  = w to the expression 

It is seen from Eqs. (14) and (15) that the value of this 
integral depends on the ratio of the spin-orbit energy ap,/fi 
to the paramagnetic splitting energy Ziw, = 2gH. We consid- 
er only the case fiw, < ap,/fi, which admits of arbitrarily 
weak fields. Evaluating the integrals in (21 ) , we obtain 

The expression for the current might contain, in principle, 
one more vector combination E(E.cXH).  In principal or- 
der in ap,/fi 2 ~ ,  however, the coefficient of this combina- 
tion is zero. The fact that the current can contain only odd 
powers of the spin-orbit interaction constant a can be under- 
stood for all calculations. The Hamiltonian and the current 
operator do not go over into one another under the inversion 
transformation P: r - - r. If, however, we introduce a gen- 
eralized transformation P that changes in addition the sign 
of the vector c (or, equivalently, the sign of the constant a ), 
the Hamiltonian becomes even in I: and the current oppera- 
tor odd. It follows hence that the expectation value of the 
current contains no even powers of a. 

It can be seen from ( 10) that spin fluxes are capable of 
contributing to an electric current via spin-orbit interaction. 
Moreover, in the case w r s  1 ,  the entire linear current is due 
only to these fluxes. The physical cause of its onset is that, 
notwithstanding the translational invariance of the Hamil- 
tonian ( 8 ) ,  the total-current operator does not commute 
with the Hamiltonian. This means that the quadratic fluctu- 
ation of the current in the ground state does not vanish, in 
analogy with the situation in quantum electrodynamics. The 
nonlinear current is produced as a response of these fluctu- 
ations to an external magetic field and to the electromagnet- 
ic-wave field. 

4. CONCLUSION 

If the incidence of the light wave on the layer is not 
strictly normal, the usual nonlocal current differs from 

where n is the electron density and q,, is the component of the 
wave vector q along the plane. In this case, generally speak- 
ing, the current component perpendicular to the layer also 
differs from zero. 

The nonlocal current is much larger than the local one 
for practically all incidence angles. The ratio of these cur- 
rents can be reduced to the form 

where cis the speed of light. To increase this ratio it is helpful 
to use low frequencies o. We have neglected everywhere in 
the foregoing the influence of the impurities, for which pur- 
pose the condition w r s  l must hold. Although there is as yet 
no complete theory with allowance for impurities, there are 
grounds for assuming that their influence will lead to an 
increase of the local current. 

In a gallium-arsenide structure with electron mobility 
p = lo6 cm-'M/V.s, density n = 0.4. 1012 cm-', and 
a = 2.5.10-lo eV.cm (Ref. 4), at an infrared frequency 
Ziw = 10 meV and a magnetic field H = 20 kOe, we have 
fi/r = 0.14 meV, ap,/fi = 0.4 meV, and g H / h  = 
l.2.lO-', and the factor in the square brackets of (24) is 
equal to 0.8. We obtain thus Jj2'/JL:' = 1.5.10-4 ( q / q l  ) .  
Assume that the incidence can be made normal accurate to 
lop3, and then J ~ / J ! , ~ ' z O . l .  We take next into account the 
following important circumstance: the currents Jj2' and 
J$' have different directions in the plane, so that they emis- 
sions are differently polarized. Thus, by choosing the reflect- 
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ed-light observation direction, for example, to be likewise 
almost normal to the surface and passing the reflected light 
through a polarizer, we can decrease the influence of J$' 
even more. 

In addition, the square of the total current, and hence 
the intensity of the reflected radiation, contain as a term the 
product 

J,(z)J$' - q,, [CHI. (25) 

This addition is odd in the magnetic field direction, the layer 
orientation, and the wave vector. The appearance of this de- 
pendence is typical of systems without inversion centers in a 
magnetic field. Thus, a correction of this type to the energy 
of an elementary excitation was investigated in Refs. 9 and 
10 for excitons in CdS crystals and in Ref. 11 for light scat- 
tering by free carriers in CdS with spin flip. A similar depen- 
dence of the intensity of the spin resonance on electrons was 
observed in InSb (Ref. 12). 

Notice must be taken of the close analogy between the 
considered frequency-doubling phenomenon and the pro- 

cess of light-stimulated direct current (the photovoltaic ef- 
fect13), which can also occur in the described situation. 
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