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A self-similar drop model is proposed for a randomly inhomogeneous medium representing a 
mixture of a perfect conductor, broken up into finite clusters, and a conductor with a finite 
resistance. A renormalization group procedure is u ~ e d  to calculate the critical exponent of the 
conductivity in the two-dimensional case. 

We shall consider the behavior of the effective conduc- 
tivity of a randomly homogeneous medium near the mobility 
threshold. It is assumed that the medium consists of two 
phases, one highly conducting (metallic) with the conduc- 
tivity o,, and the other poorly conducting (insulating) with 
o, . According to percolation theory, if the concentration 
of the metal p is higher than the critical value p,, i.e., if an 
infinite metallic cluster exists in a medium, the effective con- 
ductivity depends in the following way on the concentration 

where t is the critical exponent depending on the dimension- 
ality of space. 

Equation ( 1 ) is derived in the zeroth approximation 
with respect to h = u,/u, and the same approximation is 
used to allow for the flow of the current only along the highly 
conducting phase. One can use also higher approximations, 
which are important in the description of thermoelectric ef- 
fects3 and in some other  case^.^.^ 

The first model used to describe the flow of the current 
in a medium characterized by p >p, was that of Skal and 
Shklovskii, proposed in Ref. 5 (see also Ref. 6 ) .  The main 
assumption of this model is that the current flows only along 
single-strand percolation channels forming the skeleton of 
an infinite cluster (Fig. 1 ). In the Skal-Shklovskii model the 
exponent { governing the concentration dependence of the 
length of the percolation channel Y a (p, - p )  - is inde- 
pendent of the dimensionality of space and is exactly equal to 
unity. The critical exponent of Eq. ( 1 ) deduced on the basis 
of the same model is 

where d is the dimensionality of space and v is the critical 
exponent characterizing the behavior of the correlation 
length { cc (p, - p) - ". 

In the two-dimensional case we have v z  1.33 and the 
ratio Y/(  approaches zero in the limit p-p,, i.e., the dis- 

In thep  <p, case the conductivity rises on approach to 
the mobility edge: 

where q is the critical exponent of the conductivity in the 
case whenp <p,. The flow of the current in the medium with 
p <p, differs from that in the case whenp >p, because in the 
absence of an infinite metallic cluster the current flow along 
the fragments of a cluster (with characteristic dimensions of 
6) must partly take place also through the poorly conduct- 
ing phase. 

The simplest model of a medium near the percolation 
edge in the rangep <p, is that proposed in Ref. 8. This model 
was subsequently used to describe thermogalvanomagnetic 
 effect^.^.'^ The problem of thermogalvanomagnetic effects 
was solved exactly for the two-dimensional case in Ref. 11. 
The results of Ref. 9 agreed with the conclusions of Ref. 1 1. 

In the two-dimensional case the geometry of the model 
for thep  <pc case follows directly from the geometry of the 
model forp >p,: all that is necessary is to transpose the high- 
ly and poorly conducting phases (Fig. 1 ). The possibility of 
such a transposition is due to the geometrically equivalent 
distributions of the phases near the mobility edge of two- 
dimensional randomly inhomogeneous phases" (see also 
Ref. 13). It should be noted that the reciprocity relation- 
ship,I2 which is satisfied rigorously in the two-dimensional 
case 

tance between the sites in the network of an infinite cluster 1 2  7/ a b 
(Fig' lb)  rises faster than the length of a FIG, 1, Simplest model of a two-dimensional medium near the percola- 
and this filament "breaks." Therefore, in the two-dimen- tion edge. a )  Case w h e n p > p < :  1) poorly conducting phase (insulator); 
sional case it is necessarv to allow for the more c o m ~ l e x  2)  metallic filament of thickness a,, forming a part of a skeleton of an 

components of the struc;ure for dimensions smaller ;ban infinite cluster; 3 )  dead ends. The &rent flows from A to B. The correla- 
tion length is &a ( p - p, ) " and the length of the metallic filament is 

and of the order of (. A drop structure of an infinite cluster y a ( ) -5 case ) highly conducting phase (metal); 2 )  
was considered in Ref. 7 and this eliminated the contradic- insulator layer in which the main voltage drop occilrs. The current flows 
tion (breaking of a filament) and made it possible to calcu- from C to D. The correlation length is 4 a ( p, - p )  ". The length of the 

insulating layer is Y a ( p, - p )  " The dashed path is one of the dou- late the exponent of the using the re- bling bonds (p>p, )  or layers ( p < p , )  which are ignored in the simplest 
normalization group approach. model. b )  Casep>p,. Network of the skeleton of an infinite cluster. 
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G'(P < PC) o * ( p  > p,)  
= 1, 

=', urn 

has its approximate three-dimensional analog 

In the two-dimensional case we have t = q and Eq. (4 )  re- 
duces to the exact equality of Eq. ( 3 ). 

We shall generalize the treatment of Ref. 5 (see also 
Ref. 1 ) to the case when p <p, and we shall find the length 
2 of a layer in the two-dimensional case. Let us assume that 
p is the relative number of complete, i.e., conducting, bonds 
(concentration of the metal) and 1 - p  is the relative num- 
ber of broken (insulating) bonds. We shall reconnect each 
broken bond (or, which is equivalent, we shall break down 
the insulator converting it into a highly conducting phase) 
with the probability P = (p, - p ) / (  1 - p ) .  Then, the frac- 
tion of the broken bonds becomes equal to ( 1 - p )  ( 1 - P) 
and the fraction of the unbroken bonds is 

I- ( I - p )  ( I - P )  = P C .  ( 5  

In view of the single-strand nature of the layer, its break- 
down can be ensured simply by rejoining one of its broken 
(insulating) bonds. Therefore, we can ensure breakdown of 
the whole medium, i.e., that medium reaches the percolation 
edge, by joining a certain fraction of layers y,: 

Hence, using the expression for P, we obtain 

In the three-dimensional case a similar analysis gives 
-5" a (p, -p)-'", i .e . , f=0.5.  

Knowing the dependence of Y on the concentration of 
the metallic phase, we can easily estimate the critical expo- 
nent q. Equating the resistance of the medium over distances 
of the order o f f  (Fig. I ) ,  given by R = p , l / S  ( l = a , ,  
S = Y H ,  H is the thickness of the medium), to the effective 
resistance Re =p'f/f ' ,  we obtain the expression uC 
a a ,  -(?/a,, a 7 - I ,  i.e., we find that q, = 1, which (bearing in 
mind the simplicity of the model) is in reasonable agreement 
with the value q z  1.3. In the three-dimensional case a simi- 
lar estimate gives q , z v  - 2f z 1.1, whereas numerical 
methods yield q,=0.98. 

It follows from Eq. ( 7 )  that in the limit p-p, we have 
Y/fa (pc -PI' '-  and since v > 1, it follows that a single- 
strand model of a layer is strictly speaking invalid, because 
an important role is played by doubling, which occurs not 
only in the case of thin (of thickness a,) oscillating layers 
but also in the case of bubbles of an insulator of dimensions 
much less than a, through which there is practically no flow 
of the current. 

DROP-BUBBLE MODELOFA MEDIUM WITHp<p, 

We shall assume that over distances less than the corre- 
lation length f the structure of a medium is self-similar and 
represents a set of layers, bubbles, and drops. Drops then 
have a complex structure and a more detailed analysis (go- 
ing over to a scale with a higher resolution) shows that it 
consists of layers, bubbles, and drops (Fig. 2c). The length 
of a layer on the scale of b is selected to be bA, whereas its 

FIG. 2. Drop-bubble model of a medium near the percolation edge when 
p <p,,  a)  Electrical substitution circuit for the drop (a and P are the 
conductivities). b)  Schematic representation of the medium: 1 ) layer; 2)  
drop; 3 )  insulator bubble; 4 )  metal. c )  Fractal law of the growth of a drop. 
A drop of size b (Fig. 2b) consists of three drops (Fig. 2c) of dimensions 
b /3"2. Here, 5 is a "dead" layer that makes no contribution to the voltage 
drop. 

conductivity is up ( 6 )  cc bA . We shall show later that the nu- 
merical value of il need not be specified. 

I t  becomes immediately clear that a layer is no longer 
"drawn" through the whole correlation volume and T/ 
f a  ( p, - p)" -  ' does not lead to a contradiction in the lim- 
it p-p,. In a real situation we must allow for structures of 
more than three drops. However, we shall select the simplest 
hierarchical structure (simpler than that selected in Ref. 7 
for the casep >p, ) since the main task is to avoid the contra- 
dictions of the simplest hierarchical medium in the limit 
p-p,. The calculation of the exponent k with a sufficient 
accuracy represents a formidable problem but the proposed 
approach to the problem presents no fundamental difficul- 
ties. The subsequent calculations are analogous to those re- 
ported in Ref. 7. 

Denoting the conductivity of a drop along A-B (Fig. 
2b) by ua ( b )  and along A-C by us ( b ) ,  we find from the 
substitution scheme (Fig. 2a) that 

The conductivity u, (zb) of a drop on a scale ofzb (z = 3 ' I 2 )  

can be calculated by determining the value of ul"(zb),  
which is the conductivity of a drop in the ith configuration. 
All these configurations are obtained from that shown in 
Fig. 2b if we bear in mind that each layer (except for the dead 
one) may break down with a probability 0.5. Figure 3 shows 
different configurations: the first row corresponds to u, (zb) 
and the second to u, (zb).  By way of example, we shall give 
an expression for the conductivity u12'(zb), representing the 
second configuration in the first row of Fig. 3: 

wheref(b) = u(b) /up ( 6 )  and \V(b) = a (b ) /B(b) .  
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FIG. 4. General form of a specific configuration with nine drops. 

FIG. 3. Set of configurations used in the calculation of the conductivities. 
The first row shows the conductivities o, (zb) between the points A and B 
and the second between A and C. The configurations, which have the 
values of the conductivity coinciding with one of those mentioned in the 
text, are not given. The number of configurations with the same conduc- 
tivity is shown below for each case. Their total number is 16. In the second 
configuration in the second row we are showing the paths along which the 
current flows from the point A to B. 

Averaging over all the configurations, we obtain the 
following functional equations for us (zb) and u, (zb) : 

Using the notation f(b) and Y (b),  and bearing in mind that 
up (b)  ccbA, ua (6)  = u(b)/2, and a, = a ( b ) / [ l  + Y(b)]  
(Fig. 2a), we find from specific expressions for ~ : ~ ' ( z b )  and 

(zb) that Eqs. (10) and ( 11) can be rewritten in the 
form 

f(zb)=2z-'f(b)G(f, Y ,  b), 
(12) 

where 
G(f, Y ) =  [(3+f) (2+ 4Y+f+fY)2(3+3f+6Y+2fY)-i 

x(ll-2Y) -' (2+2f+8Y+8YZ+2Yzf+5Yf) -2]'f@, 
( 1 3 )  

L(f, Y )  =[ (1+4f+6Y+2fY+fZ)(I+ZY +f)(2+4Y+fY+f) 
x(1+2Y) -'(3f+fY +4Y+2)-i(3+12Y+18fY+8f+12Y2 

+6Y2f+3f2+ZYf )-l (1+2Y+2f)-i]'18. 

Assuming that the procedure of going over to increas- 
ing scales (z2, z3, ... times greater) results in convergence and 
linearizing Eq. ( 12) near the stable points f * and Y* of the 
system ( 12), which are equal f * = Y* = 0, we obtain 

The self-similar solution of the functional equation ( 14) is 

We consider the last over the correlation distance (we 
recall that f = u/up ), and we obtain u ( f )  a {ln4'ln3 and 
hence allowing for fa: ( p, - p )  - ' , we find that 

It follows that the critical exponent q considered within 
the framework of the proposed model is 

which allowing for the adopted approximation (when each 
drop consists of three) is in satisfactory agreement with the 
familiar value found by numerical methods: q =: 1.3. 

If we select a more complex structure of the medium, 
for example that shown in Fig. 4, we find that the critical 
exponent decreases from 1.68 to 1.39. 

It should be noted that if p > p , ,  then the geometric 
structure of the medium is the same for the two- and three- 
dimensional cases: the percolation channel is a metallic fila- 
ment, whereas in the case when p  < p ,  the transition to the 
three-dimensional case converts an insulating layer (Fig. 
l a )  into a surface of thickness a,. 

In conclusion it should be pointed out that there is one 
further approach to the description of the transport effects in 
macroscopically inhomogeneous media near the mobility 
edge, which is related to an explicit introduction of fractaI 
percolation structures both for p > p ,  (Ref. 14) and for 
p < p ,  (Refs. 15-17). 

The authors are deeply grateful to A.M. Dykhne and to 
B.I. Shklovskiy for valuable discussions. 
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