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We consider seven examples of a special class of problems, the equations for which can be reduced 
to exactly solvable equations of a negative-pressure ideal "gas." 

1. INTRODUCTION ing drops." We present for the latter new results that supple- 
Dubrovin and Novikov' have considered certain gen- ment the previously published v ~ z . ,  a general 

era1 properties of one-dimensional Hamiltonian hydrody- solution (Set. 7 ), a solution of the Cauchy ~ r o b l e m  (Sec. 8 ) ,  

namic-type systems describable by equations of the form and an elementary solution in the form of a single drop (Sec. 
6) .  It can be shown that these results are easily generalized to 

zi,=M,jujf, ( 1.1 ) include an arbitrary quasigas medium from the set cited in 

where 

and the matrix M{ = M{ (u, ,u ,,..., u, ) is independent of t 
andx. It is noted in Ref. 1 that for systems of type ( 1.1 ) there 
is no general integration method like the inverse-scattering- 
problem method applicable to a number of "soliton" equa- 
tions. 

The case with two dependent variables ( i  = 1,2) is con- 
sidered in Ref. 2. The system ( 1.1 ) takes there the form 

and is reduced by the hodograph transformation to a linear 
equation that can likewise not be solved for an arbitrary ma- 
trix M <  ( u ,  ,u,) , although in the case of two dependent vari- 
ables one can, for example, construct a Lax operator pair." 

A definite class of problems such as ( 1.1 ) and ( 1.2), 
which have important physical applications, can nonethe- 
less be completely integrated for arbitrary initial conditions, 
i.e., admits a solution of the general Cauchy problem. This 
class includes, as shown in the present paper, familiar dy- 
namic models that describe bunching of an electron beam in 
a plasma' (see Secs. 3 and 10 below), the Buneman instabil- 
ity of ion and electron motion in a plasma"' (Sec. 11 ), and 
also instability of tangential discontinuities in hydrodyna- 
mics' of various sorts for both bounded (Secs. 4 and 9 )  and 
unbounded (Sec. 2) streams. 

We showed previouslyx-"' that these problems can be 
reduced by algebraic transformation to simpler and integra- 
ble quasigas equations, confirming once more the funda- 
mental character of the latter. Thus, for example, the bunch- 
ing of a beam in a plasma and the dynamics of the instability 
of two bounded liquid streams are described by one and the 
same system of five equations of the form (see Secs. 3 and 4 )  

where a = 1, 2 is the index of the "species" of the system 

Ref. 10. 
The integrability of the dynamic systems considered 

here (we discuss seven examples, but more can be cited) is 
important not only from the standpoint of methodology. 
The exact solutions we have obtained reveal new heretofore 
unnoticed features. For the previously considered' bunching 
problem, in particular, we demonstrate the feasibility of a 
dynamic potential spike and the presence of a beam-density 
threshold that distinguishes different bunching regimes. 

2. NONLINEAR THEORY OF INSTABILITY OF A TANGENTIAL 
DISCONTINUITY IN AN UNBOUNDED LIQUID 

Instability of tangential discontinuities ( ITD)  with ve- 
locity jumps in liquid flows was considered in the linear ap- 
proximation by Helmholz ( 1868) and Kelvin ( 187 1 ), and a 
linear ITD theory is presented, for example, in Ref. 7. This 
phenomenon is the cause, in particular, of flag flapping in a 
wind. 

The nonlinear ITD equation is defined as 

where a = a( t ,x)  is the perturbation of the tangential-dis- 
continuity ( T D )  plane, the subscripts denote derivatives 
with respect to the time t and the coordinate x, and H i s  the 
Hilbert operator 

H! ( r )  =n-' j (xt-z)-:f (z') dxl, (2.2) 

where the integral is taken in the sense of principal value, 
with H 2 =  - 1. 

Since Eq. (2.1) can have also other application , we 
show first that it can be solved for arbitrary initial condi- 
tions, and demonstrate next how it appears in the ITD prob- 
lem. 

To solve (2.1), we introduce T = tu,, and consider the 
two equations 

component. They are equivalent mathematically to the We introduce next two complex functions $ = a + iHa and 
of "breaking" in shallow water: $* = a - iHa, for which we obtain from Eqs. (2.3) an equa- 

tion with a right-hand side 
ti+ (hu),'=O. z;+vv,'=ah,', (1.4) \ .  

* I 2  grf-igi= (1+iH)  R ,  R=a,'HaZ1=i($, -$,")/4, (2.4) 
which not only yields a complete solution but also intro- 
duces, in our opinion, a useful illustrative analogy with "fall- and in view of the relations 
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we obtain (1  + iH)R = - i$:*/2. Introducing now the 
imaginary time T=ir  and the complex "velocity 
V = 4: - 1, we obtain from (2.4) a simple equation with a 
known solution 

v.,.'-t. r7vx'=0, V = P ( X -  v T ) ,  (2.6) 

where the function F i s  arbitrary, so that we have indeed the 
general solution of the problem. 

It is more useful in practice to search for a solution in 
real form. We introduce to this end a new "velocity" 
u = - u,,Ha: and a dimensionless "effective density " 
p = 1 - a:, so that V = - p - iu/u,,. Separating next in 
(2.6) the real and imaginary parts, we obtain the two equa- 
tions 

which describe a gas that is "ideal" but has a negative effec- 
tive pressure 

and it is this which leads to instability. 
We note also the identity 2H( JHf ) = (Hf )' - f '  that 

permits Eqs. (2.7) to be deduced directly from (2.3), by- 
passing the stage (2.6) which can, however, be useful since it 
yields a general solution. 

We show now how Eq. (2.1 ) arises in the problem of the 
nonlinear evolution of a jump with a tangential discontin- 
uity. 

We assume that the T D  is located in the z = 0 plane, 
and the unperturbed velocities of the (identical) liquids are 
respectively u,, = uO> 0 for z >  0 and u,, = - u,, <O for 
z < 0. If z = a( t ,x)  is the perturbation of the T D  plane then, 
recognizing that the two flows are incompressible ( j = 1, 2, 
div v, = 0)  and irrotational, we have approximately the 
boundary conditions 

and hence 

Introducing the convenient notation 

we obtain approximately from (2.9), taking quadratic cor- 
rections into account, 

At the boundary z = a we have the condition that the 
pressures be equal,p, = pz, meaning that, since the flows are 
irrotational, 

( c p l l ' - r p z t ' ) , = , = ( c p l r ' - c p z l ' ) o + 2 v o z a ~ ' = ( v ~ 2  
=2~,,~[Ii(a--afla, '  ),'-aa,,"-a,'a,'-(Ha,') (Ha,') ] (2.12) 

[relations (2.11 ) are taken into account here]. Differentiat- 
ing (2.12) with respect to x and allowing for (2.11 ), we 
obtain an equation that contains only the functions a( t ,x) :  

arr"+axrl'= {(aHa,'),'+(aHa,'),' 

- H [  2aaZ,"+a,'a,'+(Ba,') (Ha,') I),'. (2.13) 

This equation, however, can be simplified by using in the 
right-hand side the linear relations a: = - Ha:, a: = H a :  
that are valid only for the perturbation branch that grows 
like exp(yt) ,  where y = ( k  / uo  is the linear growth rate. The 
right-hand side of (2.13) is then equal to 

and replacing a temporarily by b = a + aa: we get the equa- 
tion 

the left-hand side of which can be approximated by 

b,,"+ b,," =-2H(bZf+Hb,'),'. (2.16) 

Equation (2.15 ) can then be reduced to the form 

(b-bb,') ,'+H (b-bb,'),'=b,'Hb,'. (2.17) 

Returning now to the function a = b - bb: we obtain our 
fundamental nonlinear ITD equation (2.1 ) . 

The quasigas system (2.7) is encountered not only in 
the ITD problem but also, as shown in Ref. 10, in problems 
involving nonlinear long-wave solition perturbations of the 
nonlinear Schrodinger equation (NSE) and two-dimension- 
al ("rational") Kadomtsev-Petviashvili ( K P )  solitions, 
which can consequently also be described by the nonlinear 
ITD equation. Although ITD in unbounded streams is not 
considered in Ref. 10, for the K P  solition, it does contain a 
derivation of the parametric equations 

yt=-Elp, p=sh E/(ch Ef cos q) ,  
yx/v,=q-f, sin q/sh t ,  (2.18) 

integration of which yields the simplest perturbation of the 
tangential-discontinuity-plane which is periodic in x and is a 
solution of (2.1 ) : 

In the limit {% 1 it yields 

2vo 
a (t, x) = - el' sin 

7 

which coincides with the linear ITD theory.' 
It is curious that the nonlinear maxima of the a( t ,x )  

profile are shifted not downstream but upstream relative to 
the maxima of the linear theory (see Fig. I ) ,  and that the 
solution (2.18), (2.19) acquires in this case a singularity, so 
that the equations are not valid for T> - 2. I t  can be as- 
sumed that vortex generation on the interface and a vortex 
street of the Kelvin-Taylor "cat's-eye" type" set in at the 
instant T = - 2. 

We conclude this section by pointing out that surface 
equations with Hilbert operators are encountered also in a 
number of other problems, such as the Benjamin-Ono equa- 
tion. We have also obtained an equation of the form 

which describes, when systematic account is taken of all the 
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FIG. 1 .  Profile, described by Eq. ( 2 . 1 9 ) ,  of the boundary ofthe perturbed 
tangential discontinuity a ( t , x ) .  The numbers on the curve indicate the 
times T <  0. The dashed curve is the sinusoid of the linear theory. A vortex 
street A = ya/v,, sets in at T =  - 2.  

quadratic corrections, the instability of a flame front during 
slow combustion of a gas moving with front velocity u. In the 
linear approximation this problem was first considered by 
Landau, and also by Dardier, and a qualitative picture of the 
nonlinear flame-front stabilization was proposed by Shchel- 
kin and independently by Zel'dovich. We were unable, how- 
ever, to find a general method of solving Eq. (2.20), in con- 
trast to the solution of the ITD equation (2.1 ). 

3. ELECTRON-BEAM BUNCHING IN A PLASMA 

As the next example we consider the problem of bunch- 
ing of an electron beam passing through a plasma. This prob- 
lem was studied earlier in Ref. 3, where certain particular 
solutions were indicated, but the general Cauchy problem 
was not solved. If the ions are regarded as immobile and we 
assume zero temperature, the equations for the electron 
beam (b)  and for the electrons of the plasma proper (e) are 

fib+ (nbvb) z'=O1 i)b+vb (s): =- 1 e 1 Elm, 

f i .+(n,~.)~'=O, zi,+v.(v,),'=-IelElrn, (3.1) 

div E=E1.=4nlel (N-n,-nb). 

Here N = ni = const is the density of the immobile ions. If 
nt and v: are the initial beam density and velocity, and the 
quasineutrality condition is satisfied initially, the system 
(3.1 ) yields in the linear approximation the dispersion rela- 
tion 

where E = n:/N = const, og = 4n-Ne2/m. In the region 

this dispersion relation has two complex roots o = w (k) .  If 
k (k, , ,  we can neglect the 1 in (3.2). This corresponds to 
satisfaction of the quasineutrality condition n, + n, = N 
and yields roots 

in a region far from the growth-rate maximum. 
Thus, only when the initiating perturbations have long 

length (A ) v:/o,) can their subsequent development be de- 
scribed by using the quasineutrality condition 
n,  + n, = N = const in lieu of the last Poisson equation 
div E = 4np in the system (3.1 ). 

Assuming the quasineutrality condition, we rewrite the 
set of equations for the long-wave perturbations in the form 

where a = b and e = 1,2, with the function q, the same for 
both particle "species": a = b = 1, a = e = 2. This is in fact 
that system used as the starting point for the problembf 
electron-beam bunching in a plasma. We shall show below 
however, that the very same equations describe a few other 
interesting problems involving tangential discontinuities of 
the velocity of bounded plasma streams. 

4. LONG-WAVE MODELS OF THE EVOLUTION OF A 
TANGENTIAL DISCONTINUITY IN A BOUNDED STREAM 

Consider a rigid-wall pipe of radius R,  filled with a liq- 
uid of density p,, = const. Part of this liquid, in the form of a 
cylindrical jet, moves in the region 0 < r < a,, with initial ve- 
locity u,,, while in the region a,, < r < A the liquid is initially 
(at t = - co ) at rest, but instabilities of the tangential ve- 
locity discontinuity give rise on the jet boundary r = a,, to 
perturbations that increase with time. If r = a(t,x) is the 
perturbed boundary of the jet, it must be subject to the condi- 
tion (u ,  ) ,= . = a + a: (u , ,  ) = ", where u,,,, are velocities de- 
termined from the continuity equation 

a a 
div v - -rv, + - vX=O, 

r. ar d x  

Assuming potential flow, v = VJI, AJI = 0, and using 
the condition 

and the condition v, = u,  = d$/dr = 0 on the rigid wall at 
r = R, it can be shown that long perturbation waves ( A )  R )  
are subject to the conservation laws 

where S ,  = n-a2 is the cross section of the inner jet, 
S2 = P(R - a2)  is the cross section of the layer outside the 
jet, and the velocities v,,, are equal to 

Finally, in the long-wave approximation the pressure 
p(t,r,x) can be regarded as independent of the radius r and 
the same in the jet ( 0  < r < a )  and in the layer (a  < r < R )  
outside the jet, and the problem of the "constricted" cylin- 
drical jet and the broader tube is described by the equations 
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where a = 1,2. This system is obviously completely analo- 
gous to Eqs. (3.5) for bunching. 

It is easy to verify that were we to consider not a cylin- 
drical but a planar "constricted" jet in a region Izl < a (t ,x),  
flowing in a broader planar gap - L <z  < L, and consider 
only perturbations symmetric in z, we would obtain in the 
long-wave approximation l $ L  precisely the same system 
(4.4). 

The next variant of the tangential-discontinuity prob- 
lem is obtained by introducing in the preceding problem an 
immobile plane z = 0 and considering only the half z > 0 of 
the "constricted" jet described above. This problem is also 
obviously described by the system (4.4). 

One more variant is the problem of two shallow parallel 
brooks with free surfaces located in a gravitational field 
g = - / g / e ,  and flowing with different velocities in a trough 
with rigid vertical walls (or symmetry lines for a periodic 
system) y = 0 and y = L along the x axis above a bottom 
z = 0, with the friction between the latter and the water ne- 
glected. It can be shown that the relations that hold in this 
case are 

where S, = (L  - 6) h, S, = {h are the cross sections of the 
streams, and h  z h ( t , x )  is the depth of the brooks. The insta- 
bility here has a threshold and sets in if 

which differs only by a factor 2"' from the familiar result for 
the short-wave limit.I3 Equations (4.5) can be simplified 
near the threshold, when ( A u l ~  V,,, , or under hard-excita- 
tion conditions, 1 AuJ < V,,,, . In the latter case h ~ h ,  = const 
and Eqs. (4.5) reduces to (4.4). 

Thus, several different problems are described in the 
long-wave perturbation approximation by one and the same 
system of equations (3.5) [or (4.4)] ,  which is partly similar 
to the system (1.2). We shall therefore consider below a 
method of solving the system (3.5), which permits us, in 
particular, to solve the general Cauchy problem also. 

5. REDUCTION TOTHE PROBLEM OF A "FALLING CEILING" 

To be specific, we consider the system (3.6), which we 
rewrite in the form 

The symmetry with respect to the subscripts 1 and 2 suggests 
that it is advantageous here to introduce the differences 

in terms of which the remaining quantities are expressed: 

where q, = Q,,/So is the average velocity of the initial flow. 
The derivatives of the differences (5.2) are respectively 

and are obviously related to the general equation type ( 1.2). 

We assume that for unperturbed motion the values of s 
and u are respectively so and u,, and introduce in place of s 
and u the new variables 

s:-s2 souo-SU (5.5) 

It is then easy to verify that Eqs. (5.4) take the form 

they contain as the initial unperturbed parameters the com- 
binations 

The characteristic velocity c,  determines the growth rate of 
the perturbations during the linear stage, and Vdr #O speci- 
fies the systematic drift. 

The initial variables S, ,  and u, (a = 1,2) with the new 
p and w are related by 

- 
where we put for brevity w = w + V, ,  - V,, and assume, to 
be specific, that u,,> 0. It is particularly easy to determine 
the pressure in the liquid 

in the case of a tangential discontinuity, or the electric-field 
potential 

in the case of beam bunching in a plasma. 
It is remarkable that, apart from the drift that can be 

easily eliminated formally by the substitution x-2  + V , , t ,  
the resultant system (5.6) is equivalent to the system de- 
scribing "falling ceiling" that is artifically free of surface 
tension,' or describing nondiffractive self-focusing of 
light.I4 In the case of "a falling ceiling drop" the effective 
density p is the reduced layer thickness h /h,,: 

Here g is the gravity acceleration, h,, the initial unperturbed 
liquid-layer thickness, and w the longitudinal velocity. This 
analogy is quite useful and illustratively represents the evo- 
lution of the instability in terms of a "falling ceiling," since 
the shape of a dripping water drop (more accurately, of a flat 
clot separated from a homogeneous layer) corresponds di- 
rectly to the profile (5.9) of the pressure or (5.10) of the 
potential. 

6. EXACT SOLUTION IN THE FORM OF A SPONTANEOUS 
DROP 

The system ( 5.1 1 ) is a particular, but quite representa- 
tive in applications, subclass of a number of unstable media 
described by the dynamics equations for a polytropic liquid 
with negative compressibility."' We have obtained"."' for 
such quasi-Chaplygin media the most typical spontaneously 
growing perturbations that are either lengthwise periodic or 
local, in the form of a "pit," "hump," or a "doublet" 
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ject here is a model problem with "long-wave" drops which 
moreover have no surface tension. 

FIG. 2. "Elementary" "falling ceiling." Solid lines-relative thickness of 
water layer, dashed-longitudinal-velocity profiles. In all the figures, the 
parameter of the curves is the time AT= T -  T,, measured from the 
instant of drop separation: 1-AT = + 0.2; 2 - 4 ;  3- - 0.2; 4- - m . 

("pit" + "hump"), and can now be used as examples of ex- 
act solutions for bunching or tangential-discontinuity prob- 
lems. 

These exact solutions are expressed in terms of elliptic 
integrals, but we have recently been able to identify a num- 
ber of explicit solutions containing only elementary func- 
tions. For example, separation of one drop or clot (see Fig. 
2 )  from a homogeneous layer is described by the parametric 
equation 

where T = yt < 0, y > 0 is a free parameter (growth rate) 
that specifies the characteristic time or the perturbation 
length and assumed given by 1 < s < s,,;,, , 
s ,,,, ( 1 - s ,,,, ) '" = I T 1 - ' .  During the linear stage, when 
IT 1 + CO, we obtain from (6.1 ) 

corresponding to two "pits" separated by a "hump." The 
amplitude of the "pits" increases next and the drop is sepa- 
rated from the layer at an instant T = T,, = - 3'12/16 at 
the points X = 9/8 near which 

The drop changes next into a downward-trickling and con- 
tracting "streamline" that as t--0 collapses to the point 
X = 0. The solution (6.1 ) is close here to the self-similar one 
determined in Ref. 9: 

The particular solution (6.1)-(6.4) provides a quite 
simple illustrative picture of the drop (clot) development. It 
is easily transformed with the aid of relations (5.8)-(5.10) 
into the picture of the evolution of tangential discontinuities 
in the cases listed above (Sec. 4 ) ,  or of electron-beam bunch- 
ing, which will be discussed below for specific examples. We 
report beforehand, however, some general results for the 
"falling ceiling" problem. I t  is worth recalling that the sub- 

7. HODOGRAPH TRANSFORMATION AND GENERAL 
SOLUTION OFTHE "FALLING CEILING" PROBLEM 

The solutions noted above and those similar to them can 
be found by using the hodograph transformation. For the 
inverse functions t = t (  p ,  w ) ,  x = x (  p, w) we obtain the 
equations 

which are compatible under the conditionX 

where we have introduced the convenient variables r = p'l', 
z = w/2c0. Using known analogs (see, e.g., Ref. 15 ) , one can 
indicate for this equation a formal general solution 

t = Jdzf R- '[q(zr)  + r ( z t ) ~ ' r - ' I ] ,  (z-zl)~, (7.3) 

where (z') are arbitrary functions. Using next, for exam- 
ple, the second relation of (7.1 ) we obtain also the coordi- 
nate 

Equations (7.3) and (7.4) yield the solution of the Cauchy 
problem for initial conditions r = rO(x) ,  z = zO(x)  specified 
at  t = to. I t  is much more convenient, however to reduce 
(7.2) to a simple Laplace equation,%s will be done below, 
and solve the Cauchy problem by electrostatics methods. 

8. CAUCHY PROBLEM FOR "FALLING CEILING" 

We introduce in addition to the variables r and  z a ficti- 
tious azimuthal angle and regard r, p, and z as cylindrical 
coordinates. Next, putting 

$=rt (r, z )  cos cp, (8.1) 

we obtain from (7.2) 

A$(r, rp, z)=o. (8.2) 

Now, to solve the Cauchy problem for the evolutional initial 
conditions p(t,,, x )  = p,,(x), w ( t O ,  x )  = wO(x) specified at 
t = to < 0, it suffices to use the known relation from electro- 
statics 

where R = r' - r and r is a point outside the azimuth-sym- 
metric toroid of the initial values r = rO(x)  and z = z,,(x). 
Specified on its surface So are a potential 

$=$ o-toru - (x)  C O ~  rp (8.4) 

and the components of its gradient, which can be readily 
shown to be 

$,o'= (to+Jorozu'(x))cos rp, ~ r o ' = - r o J a r o ' ( ~ ) ~ ~ s  cp, (8.5) 

where Jo = - l/cOrO( r;* + z;" is the Jacobian of the hodo- 
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graph transformation. It is assumed that there are no 
"charges" outside the toroid. 

9. COUNTERSTREAMING FLOWS WITH A TRANSITION 
LAYER 

As an example with "constricted" T D  we consider the 
simplest particular case of initially symmetric flow for which 
u, , ,  = - u ~ ~ , = u ~ ,  S I O  = SZO--S0/2. The quasigas variablesp 
and w of such counter streaming flows are given by 

with ci = u; and, furthermore, F,  = V,, = 0, so that there 
is no drift of the perturbations, and Eqs. (5.6) for p and w 
have exactly the same form as Eqs. (5.4) that describe a 
"falling ceiling." The inverse-transition equations are here 

where 6 = {(t,x) is the surface separating the streams and 
2L is the width of the planar channel. 

As shown above, in the quasigas approximation it is 
also possible to exactly solve the more complicated problem 
of instability of two oppositely flowing streams separated by 
a transition zone of finite but small thickness, say 21. The 
simplification that permits solution of this problem is the 
neglect of the influence of this zone, in view of its smallness, 
on the bending of the layer as a whole, so that the layer is 
described as before by Eqs. (5.1 ) . The presence of an inflec- 
tion point leads to modulation of the transition-zone thick- 
ness, and it can be shown that we arrive at a dynamic system 
of the form 

vihere fZ = curl,v= u,,/l,, is the velocity curl in the layer and 
is assumed constant, land Vare the thickness and velocity of 
the flow (meaning approximately the average velocity at the 
center of the layer in the case of a small bend) in the transi- 
tion zone. The first two equations describe the nonlinear 
bending of the layer as a whole, and the last two the flow 
induced by the bend inside the transition zone. 

It is curious that the last equations are no longer of the 
quasigas type, but simply gas equations and have the same 
form as the dynamic equations of ordinary stable flow of a 
one-dimensional gas with an adiabatic exponent y = 3. Its 
flow, however, is excited by an external force (here, by the 
bending) which is determined by the nonlinear system 
(9.3). It is therefore somewhat unexpected that the motion 
induced in a layer by a nonlinear bend can be determined 
accurately and is described by the simple equations 

Thus, knowing how the "falling ceiling" grows, we can 
draw a fairly complete "long-wave" picture of the instability 
dynamics of counterstreaming flows of a nonviscous incom- 
pressible liquid, with a transition layer of finite thickness 
besides. For example, the local drop (6.1 ) generates the flow 
shown in Fig. 3. The initially horizontal layer tends next to 

FIG. 3. Dynamics generated by a drop [Eq. ( 6 . 1 ) ] ,  of the instability of 
counter streaming liquid streams; a-nonlinear bending of the stream 
boundary, b-longitudinal-velocity profiles, c-evolution of transition- 
zone thickness. 

break up and partition off the channel. Its thickness at the 
center is thereby catostrophically increased and the flow is 
choked. 

10. DYNAMIC POTENTIAL SPIKE IN A BUNCHING BEAM 

The analogy between the problem of beam bunching in 
a plasma and the problem of light self-focusing (mathemat- 
ically identical, if diffraction is neglected, with that of the 
"falling ceiling") was first established by Bulanov and Sa- 
sorov, although only for a low-density beam, n, <N.  It is 
clear from the foregoing that the analogy is complete in the 
sense that beam bunching in a plasma reduces exactly, with- 
out any additional assumptions whatever, to the equations 
for the "falling ceiling" with arbitrary initial parameters. 

We write down the final equations of type (5.7) and 
(5.8) as applied to the bunching problem for the particular 
case F,  = 0, when the beam current is neutralized. It is con- 
venient to denote 

In this notation, we obtain for the characteristic velocities 
(5.7) 
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FIG. 4. Bunching, described by the drop (6.1 ), of a 
weak (a, b; E <  1/4) and intense (c, d; E >  1/4) elec- 
tron beam in a plasma; a, c-particle-velocity profiles, 
b, d-density profiles. It isassumed that = l/8 and 
E ' . ~  = 3/8. 

and the parameters of the plasma-beam system are connect- 
"'+" I =  [-!!!I= Isl=</palll<l, (10.5) ed with the parametersp and w for the drops by the relations I N 4neN o, 

It is assumed that = 1 and wO = 0 in the unperturbed 
state. 

We illustrate the instability dynamics by using the exact 
solution of (6.1) for a single dropbunch, assuming that the 
drift has already been substrated, i.e., a coordinate change 
X - + X  - Vdrt. 

With increase of the perturbation, the initially homoge- 
neous beam breaks up into clusters or bunches (Fig. 4 ) .  The 
instant ofbunching corresponds exactly to the time when the 
drop separates from the layer of water, whenp-0. It is cur- 
ious that the character of the bunching for an initial beam 
density E < 1/4 (Fig. 4, a and b )  differs substantially from 
that for E > 1/4 (Fig. 4, c and d ) .  The beam remains contin- 
uous at E > 1/4. If E < 1/4 a discontinuity takes place and a 
bunch breaks away from the beam. 

During the concluding phase of the instability the 
bunch electrons crowd out the plasma electrons completely, 
the bunch tends to take the form of a step, and a catastrophic 
potential spike is produced on its trailing edge: 

It must be recognized, of course, that we are restricted 
to a long-wave approximation governed mainly by the as- 
sumption that the plasma is quasi-neutral (see Sec. 3) .  The 
long-wave picture is valid only under the condition 

where w, = (4.rrNe2/m) 'I2 and relation (5.10) is used. Let 
us estimate now to what extent ( 10.5) is violated at the sin- 
gle points. 

At time t = t,, when the beam breaks we have, accord- 
ing to (6.3), p - ISX 121'-t0 and the condition ( 10.5) is cer- 
tainly violated near the singularity, but over a length 

much shorter than the Debye radius ( - v,,/w,), since it is 
assumed that ygw,,. Here y is a parameter in the solution 
(6.1 ) and determines the characteristic "bare" length 
I,,,, = c,,/y of the perturbation. At the limit of applicability 
we have p- y/w,< 1 and the discontinuity should be dis- 
tinctly traceable. 

In the field-collapse phase, using the self-similar 
asymptotic relation (6.4), we get 

Quasineutrality is violated only when at a time such that 
I yt / = I T I - y/w,,( 1 holds and the length of the collapse re- 
gion, which decreases like 6Xz61 T /'I3, already is shorter 
than the "bare" length 

but is still long compared with the Debye radius 

One can therefore hope that the quasigas approxima- 
tion yields, in general outline, a qualitatively correct picture, 
but must be supplemented by allowance for dispersion ef- 
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fects in the vicinity of the singular points, a task outside the 
scope of the present article. 

11. BUNEMAN INSTABILITY OF A PLASMA 

A situation similar to the dynamic spike of the potential 
takes place during the nonlinear stage of a Buneman instabil- 

For long perturbation waves, this instability is de- 
scribed by the system of equations (Zi is the plasma-ion 
charge) 

which is similar to the bunching system (3.5) above. I t  re- 
duces, however, not to the "falling ceiling," but to the 
simpler dynamics of a Chaplygin "gas" (Refs. 8-10), with 
account taken of the finite mass ratio and for arbitrary Zi. 
This is one more example of exact reduction to a simpler 
integrable system, and we therefore present the derivation. 
This reduction is achieved by a transformation similar to a 
change to center-of-mass coordinates, and we therefore in- 
troduce 

The system ( 11.1 ) yields the current conservation law un 
= u,,nO = const, and for w we obtain by direct calculation 

the equation 

We note next that the continuity equation leads to the rela- 
tion 

Taken together, this yields in fact the equations for the Cha- 
plygin "gas": 

In contrast to Refs. 8-10, we have here w,,#O, but this is not 
of fundamental significance. The weak drift of the perturba- 
tions ( -,u/M) due to the finite inertia of the electrons was 
noted earlier.h 

A more important fact, not noted in those papers, is that 
the exact equation for the potential 

contains a correction - ( p / M )  ' I 2  that leads to a potential 
jump in the perturbation region. For example, taking for the 
Chaplygin "gas" an exact solution"' in the form of a "hump" 

or a "pit" (18 / < n-/2) 

no/~z=u/uo=l* T-I cos2 0, 
w=wo- (co/2T) sin 28, X=yx/co=O*T tg 8, ( 1  1.7) 

where c,, = u O  ( ,u/M) It', T = yt < 0 [ T < - 1 for the ( + ) 
mode], and y is a parameter, we find that in both cases the 
potential jump increases like 

For an arbitrary local structure (such that n - no as 1x1 - cc ) 
we have according to (11.6), in the variables r = no/n, 
z = w/c,,, which for a Chaplygin "gas" are the most natural 
ones, " 

By the same token, the potential jump is proportional to the 
area of the intersection of the surface t = t(r,z) and the plane 

An estimate of the degree to which plasma quasineu- 
trality is violated for a Buneman instability is given in Ref. 6. 

We have thus shown in the present paper that, for cer- 
tain particular cases, systems of the form ( 1.1 ) are complete- 
ly integrable under arbitrary initial conditions. 

"In terms of these variables, the problem of determining the inverse func- 
tions x = x(r ,r)  and t = r(r,z) reduces to the "planar" Laplace equa- 
tionn- 11) r:: + t ;  = o .  
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