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The nonlinear Schrodinger equation is used to show that one-dimensional solitons are unstable 
against transverse modulations in media with a defocusing nonlinearity. This instability is similar 
to the Kadomtsev-Petviashvili instability of acoustic solitons in media with a weak positive 
dispersion. It is shown that the nonlinear stage of the development of this instability represents 
collapse at low soliton amplitudes. An integral criterion of the collapse is obtained. 

INTRODUCTION 

The problems of soliton stability have already been in- 
vestigated thoroughly using universal models based on the 
Korteweg-de Vries (KdV) equation and on the nonlinear 
Schrodinger equation with attraction, and with various gen- 
eralizations of these models in plasma physics, nonlinear op- 
tics, and hydrodynamics.' An analysis of the stability is 
usually followed by an investigation of nonlinear dynamics 
of solitons and here the greatest progress has been made in 
integrable (usually one-dimensional) models which admit 
exact solutions describing soliton scattering2 and the nonlin- 
ear dynamics of soliton annihilation. x4 The situation is more 
complex in nonintegrable models: the problem of the nonlin- 
ear stage of the development of an instability can frequently 
be understood only qualitatively. In typical situations an 
allowance for nonlinear effects results in collapse, i.e., cre- 
ation of a field singularity, in a finite time. Self-similar solu- 
tions can be derived near a singularity in models of this kind. 
Among these models the best known is based on the nonlin- 
ear Schrodinger equation with attraction, which is used 
widely in various branches of physics. This equation demon- 
strates different types of nonlinear behavior, depending on 
the dimensionality. In the one-dimensional case the nonlin- 
ear Schrodinger equation applies to integrable models with 
stable  soliton^,^ but when the number of dimensions is in- 
creased, solitons become unstableh and the nonlinear stage 
terminates-depending on the initial perturbations-either 
by complete decay or ~ o l l a p s e . ~ ~ ~  

We shall report new results on the instability and col- 
lapse of solitons described by the nonlinear Schrodinger 
equation with repulsion 

This equation is obtained in a description of the propagation 
of a packet of electromagnetic waves in media with a defo- 
cusing nonlinearity. In this case the quantity $ represents 
the amplitude of the electric field, while - I $ l  in Eq. ( 1 ) is 
a nonlinear negative correction to the refractive index. 
Equation ( 1 ) was first derived by Gross and Pitaevskii" to 
describe oscillations of a condensate of a slightly nonideal 
Bose gas [so that frequently Eq. ( 1 )  is called the Gross- 
Pitaevskii equation]. In the latter case the symbol $ denotes 
the wave function of the condensate and Eq. ( I )  is the 
Schrodinger equation with a potential U = $ 1 "  If we repre- 
sent the function $ in the form $ = n'12e'*, we can regard 
Eq. ( 1 ) as one of the gasdynamic models with dispersion": 

where the pressure is p = n2/2. The positive nature of the 
pressure or, in other words, the repulsion occurring in Eq. 
( I )  is the reason why there are no bound states for finite 
distributions in Eqs. ( 1 ) and (2 ) .  The localized solutions in 
the form of solitons appear only for a gas, i.e., superposed on 
a constant density no (to be specific, we shall consider the 
case when n,, = 1 ). The simplest of these solutions are one- 
dimensional solitons: 

In the case of a Bose gas they represent wells of density 
1 $ , , 1 '  = 1 - u2/cosh2u(x - xt - x0) moving at a velocity 
K < 1 that decreases as the amplitude v increases. In the case 
of electromagnetic waves in a defocusing medium a soliton 
of Eq. (2 )  corresponds to the region of lower light intensity, 
i.e., to the shadow region. Observation of solitons of this type 
and a study of their interaction were recently reported in 
Ref. 11. 

We shall show that solitons described by Eq. ( 2 )  are 
unstable in the presence of transverse perturbations. This 
instability is analogous to the instability of acoustic solitons 
in media with a weak positive dispersion, discovered by Ka- 
domtsev and Petviashvili (KP) . I2  In the final analysis this 
instability is entirely due to the positive nature of the disper- 
sion of the spectrum of small oscillations. It follows from this 
that, firstly, one-dimensional solitons represent moving den- 
sity wells and, secondly, that the velocity of these wells is less 
than the velocity of sound and that it decreases as the soliton 
amplitude increases. Therefore, for a soliton modulated 
weakly in the transverse direction, regions with small ampli- 
tude overtake those with large amplitude. This gives rise to 
an instability of the self-focusing type (Ref. 13 ). ' ' 

We shall show that the analogy with the K P  instability 
is in fact deeper: it applies not only to qualitative aspects, but 
also to the equations. It is known that for Eq. ( 1)  the spec- 
trum of small oscillations superposed on a constant density 
no = 1, 

is characterized by positive dispersion and becomes acoustic 
at  long wavelengths. It therefore follows directly that the 
three-dimensional K P  equation can be used to describe 
small-amplitude solitons ( v <  1 ) and their stability. This em- 
bedding of the K P  equation into the nonlinear Schrodinger 
equation is important not only for linear stability, but also in 
studies of nonlinear dynamics. One should add that, as 

n,+div nVO=O, Dl+'/?( VO)'+n-l=An"~/2n'i1, (2 )  shown in Refs. 15 and 16 and in contrast to the two-dimen- 
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sional case, the three-dimensional KP equation can describe 
the phenomenon of collapse which can be regarded as a non- 
linear stage of the development of an instability of one-di- 
m e n ~ i o n a l ' ~ , ' ~  or two-dimensional'' solitons. 

The present paper is organized as follows. We shall first 
(Sec. 1 )  consider general properties of the linear stability 
problem for solitons with an arbitrary amplitude v in the 
presence of transverse perturbations. We shall use the results 
of this analysis to determine the limit of the bound state 
spectrum in which the frequency of small oscillations van- 
ishes. In the second section we shall use perturbation theory 
to find the instability growth rate in the long-wavelength 
limit. The third section deals with an analysis of the stability 
of the particular equation ( 2 )  in the form of a "domain wall" 
4, = tanh x,  which describes the behavior of a condensate 
near a solid boundary, where 4, = 0. In the concluding sec- 
tion we shall use the Whitham method to study the nonlinear 
stage of the instability of one-dimensional solitons in the 
presence of long-wavelength perturbations. We shall also es- 
tablish the relationship with the collapse of sound in media 
with a positive dispersion. 

1. STABILITY PROBLEM 

We shall consider the problem of stability of solitons 
described by Eq. (3 )  in the presence of small perturbations 
in more than one dimension. Adopting a coordinate system 
moving at a velocity x and describing a perturbation by 

we can find the spectrum n ( k )  by solving the following 
problem: 

where 

In addition to the representation by Eq. ( 5 ) ,  we shall de- 
scribe this spectral problem also by another representation 
which is obtained by rotating the eigenfunctions q, ,,, = f, 
+I&: 

1 
b!o,ii - - k2u"+f;u"=0, 

2 

where 

The last form is remarkable because for x = 0, i.e., in the 
case of a domain wall ( 4 ,  = tanh x ) ,  the operator f, be- 
comes diagonal. The spectral problem of Eq. ( 6 )  then sim- 
plifies greatly: 

where 

It is clear from Eqs. ( 5 )  and ( 6 )  that the main informa- 
tion on the spectrum n ( k )  is provided by the properties of 
the operator z. Since the operator 2 is Hermitian, its spec- 
trum is purely real: 

To find the eigenfunctions of we start by making the fol- 
lowing substitutions in Eq. ( 8 ) :  

we then seek the solution in the form 

fl=el""gl ( x )  , fz=eir lxgz(x)  , ( 10) 

where at this stageg, ( x )  andg, ( x )  are unknown functions, 
which are finite in the limit 1x1 -. cc . Considering the asymp- 
totic behavior of Eq. ( 8 )  in the limit 1x1 - UJ , we can find the 
relationship betweenp2 and q2 making the substitutions giv- 
en by Eq. ( 9 ) :  

Since Eq. ( 6 )  contains only the powers of tanh x,  we have to 
find g ,  and g, in the form of a series in powers of tanh x .  
After substitution it is quite readily found that such series 
terminate at the second and third terms. We thus obtain 

It is clear from Eqs. ( 1 1  ) and ( 12) that the continuous spec- 
trum of the operator 2 consists of two branches: 
4 (  1 + x 2 )  <p:  < ~ C I  , 0 < p 2  < oo . The corresponding ei- 
genfunctions are given by the expressions in the system ( 12 ) .  
In addition to a continuous spectrum, the operator f, con- 
tains also a discrete spectrum: 

q=i,  p t 2 = 2 ~ 2 + 1 * 2 ( ~ 4 + ~ 2 + 1 ) ' h ,  (13) 
3 t h x  

f 1 = -  
3+p2 1  f 2 = - - .  

c h x  ' 2% c h x  ' 
9 4 %  ph2=0, f ,=3 / ch2  x ,  f,=O. ( 1 4 )  

The second eigenfunction of the discrete spectrum has a sim- 
ple meaning: in Eq. ( 5 )  or ( 6 )  it corresponds to a mode 
characterized by a neutral stability ( n  = k  = 0 )  and a shift 
of the soliton as a whole: 

For the first eigenfunction in the discrete spectrum of the 
operator f,, we find that in the spectral problem of Eq. ( 5 )  it 
corresponds to a second bound state with R = 0 :  

or in units of v [see Eq. (9)  ] 
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The points = 0, k = 0 and = 0, k = kc, determine, as 
shown below, the limit of the spectrum of bound states. 
From the point of view of stability only the bound states are 
of interest. This is because an unstable mode must be local- 
ized. It cannot belong to functions of the continuous spec- 
trum, which have exactly the same asymptotes at infinity as 
the condensate and are therefore stable. 

2. SOLITION INSTABILITY 

We shall now calculate directly the spectrum a ( k )  of 
bound states. We shall consider the long-wavelength limit 
k-0 and we shall seek the solution of Eq. (5)  in the form of a 
series in powers of k: 

We shall assume that u, is a neutrally stable function of Eq. 
( 15), for which we have 

In the next order of perturbation theory, we find that 

To find u ,  we consider the stationary form of the equation 
for a soliton, Eq. ( 8 : 

We can readily see that differentiation in Eq. ( 18) and of the 
complex conjugate of this equation with respect to x gives 

which differs from Eq. ( 17) only by the factor iS1. Hence, we 
obtain 

It should be pointed out that this solution is, firstly, the par- 
ticular solution of Eq. ( 17) determined to within zeroth ei- 
genfunctions of the operator L - u, and to within the func- 
tion of the continuous spectrum of Eq. ( 12) characterized2' 
by q = 0 andp = 0; secondly, and this is most important, u ,  
tends to a constant in the limit 1x1 - m and, therefore, it can 
be formally regarded as one of the functions in the contin- 
uous spectrum which, as pointed out already, describe stable 
modes. These two paradoxes can be resolved because the 
function ui described by Eq. (19) is simply an intermediate 
asymptote of the exact solution in the range v- S x < k - I .  If 
kx 2 1, then the eigenfunction exhibits weak damping with 
are exponent - k. We can introduce this damping by supple- 
menting the operator L of Eq. ( 17) with the term - k2/2: 

If k < k 2, it follows from Eqs. ( 1 I)-( 14) that the operator 
L - k2 /2 is invertible. The existence of ( L  - k2/2) - ' lifts 
directly the indeterminacy of the solution and ensures, as is 
easily confirmed, that the eigenfunction damps proportional 
toexp( - k ( x ( / v ) .  Wecan demonstrate this by matching the 
solutions obtained in the regions v- ' < 1x1 <v/k. If x is posi- 
tive, then in this region we can simplify Eq. (20) by dropping 

the right-hand side so that the left-hand side is converted 
into a system with constant coefficients: 

The solutions of this system are proportional to e - P x ,  where 
in accordance with Eq. ( 1 1 ), the exponent P is described in 
the limit k-0 by 

It is obvious that among the required solutions we need to 
retain only one with the exponent p, and all the others can 
be dropped because they are growing or have already been 
damped out too. 

The relationship between the components p, and p2 is 
easiest to find if we make a number of substitutions: 

Then, the functions w and u are accurately described by 

Hence, it follows that w = w, exp( - kx/v), lul& I wl,  or 
X, z - x2. If we now consider the asymptote of Eq. ( 19) in 
the range vx) 1, we find that it matches the solution of the 
system (21 ) found earlier: 

The matching at negative values ofx is carried out similarly. 
The second order of perturbation theory for the range 

xv 5 1 gives 

The solubility condition on Eq. (22) is the orthogonality of 
its left-hand side to the zeroth eigenfunction u, of the opera- 
tor L. Since the function u, decays rapidly over distances 
x -Y-  I, a11 the scalar products are finite and terminate at the 
same distance. When we allow for Eq. ( 19), we find that the 
instability is described by 

As explained in the Introduction, the reason for this instabil- 
ity is a reduction in soliton velocity described by Eq. (3) on 
increase of its amplitude. 

We shall show that the instability of Eq. (24) represents 
a continuation of the KP instability to the case of large am- 
plitudes. We can easily show that in the case of low ampli- 
tudes the KP equation is contained in the nonlinear Schro- 
dinger equation ( 1 ). 

Following Ref. 18, we shall introduce slow coordinates 
and a slow time: 
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and we shall seek then the solution of the system (2)  in the 
form of a series in powers of a small parameter E:  

This is equivalent to going over to small-amplitude waves 
propagating within a narrow cone of angles. In third order 
( -2) we obtain the KP equation with a positive dispersion: 

where A, = d */dy2 + d 2/dz2 and the primes are omitted. 
Then the one-dimensional ( 1-D) soliton Eq. (3 )  in the non- 
linear Schrodinger equation of Eq. ( 1 ) transforms into a ( 1- 
D)  soliton of Eq. (25) : 

Its velocity in a coordinate system moving at the velocity of 
sound is negative, i.e., it decreases with increasing ampli- 
tude. As is well known, the solution (26) is unstable in the 
presence of transverse perturbations with a growth rate'' 

At low values of k, Eq. (27) for = kv/3'I2 is the same as 
Eq. (24).  Then the instability limit k. = (3'I2/2)v2 is iden- 
tical with kc, of Eq. ( 16) in the limit of small values of v. 

We shall conclude this section by noting that the exact 
solution of the problem obtained by Zakharov16 for the KP 
equation, like that for the nonlinear Schrodinger equation, 
demonstrates slow exponential decay -exp( - kx/v). 
Therefore, the instability of Eq. (24) is a direct continuation 
of the KP instability. 

Figure 1 shows computer-generated traces of the 
growth rate y plotted as a function of k for different values of 
v, including v = 1. 

3. STABILITY OF A "DOMAIN WALL" 

We shall now consider the stability of the solution of 
Eq. ( 1 ) in the form of q0 = tanh x, describing the behavior 
of the wave function of the condensate near a solid wall at 
x = 0. In this case the stability problem is described by Eqs. 
(7 ) ,  which can be reduced to one equation for f, (or f,): 

FIG. 1. 
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subject to an additional boundary condition that the wave 
function vanishes at the wall: 

The operators Lo and L ,  in Eq. (28) are the Schrodinger 
operators for one- and two-soliton potentials, respectively. 
The operator Lo has only one discrete level with Eo 
= - 1/2, which corresponds to the eigenfunction go 
= l/cosh x: 

The operator L,  has two bound states: 

By virtue of the boundary conditions and since the operators 
Lo and L ,  exhibit even behavior when x goes into - x, all 
the eigenfunctions of the spectral problem of Eq. (28) are 
odd. For this class of functions the operator Lo + k2/2 is 
reversible and positive for all x. In order to ensure stability 
we need thus to show simply that R2, defined as the lower 
limit of the functional 

Q2 = min 
(f 1 L,+kZ/2 1 f) 

<f 1 (Lo+kV2)-' 1 f) ' 

is positive. The proof of this is obvious: the operator L , + k2  
/2 is positive definite in the class of odd functions and this 
follows from Eqs. ( 3  1 ) and (32).  

We can thus see that the imposition of the boundary 
condition of Eq. (29) ensures the stability of the solution 
near a solid wall in spite of the fact that the "domain wall" is 
essentially unstable. It should be pointed out that the insta- 
bility of a "domain wall" follows also from analysis of the 
variational problem (33), as first demonstrated in Ref. 19. 
The expression for the growth rate was found in the long- 
wavelength limit in Ref. 22. 

4. NONLINEAR STAGE OF THE INSTABILITY OF ONE- 
DIMENSIONAL SOLITONS 

In this section we shall consider the role of nonlinear 
effects in the development of the instability of one-dimen- 
sional solitons. We shall employ an adiabatic approach fre- 
quently called the Whitham method, which is based on aver- 
aging of the solutions over the fast motion. When applied to 
the problem in hand, this method allows us to describe the 
nonlinear stage of the instability at the long-wavelength lim- 
it. It should be pointed out that the application of this meth- 
od to such problems was discussed in detail recently in a 
review of Trubnikov and Zhdan~v .~ 'We shall therefore omit 
many details and give only the principal features of this ap- 
proach. 

We shall begin with an expression for the action in Eq. 
(1 ) :  

and average over x the soliton-type solutions 
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with the parameters x and xo dependent only on y, z, and t .  
The adiabaticity of changes in these parameters means that 
bends in the soliton front are slow and long-wavelength, 
namely 

After integration with respect to x and subject to Eq. ( 3 5 ) ,  
we find that S is given by 

Variation of this expression with respect to v and x ,  gives 

We can easily show that the system of equations (36) 
describes the instability of Eq. ( 2 4 )  in the long-wavelength 
limit. It is sufficient to consider linearized equations of the 
system ( 3 6 )  superposed on the exact solution x = x,,, 
x,  = xot. For low values of v, when the KP approximation is 
valid, the system ( 3 6 )  is converted into gasdynamic equa- 
tions with a negative pressure (compare with Refs. 18 and 
20 

wherep = g, p = r - x,. These equations have self-similar 
solutions describing strong collapse of a wave in which a 
finite energy falls into a singularity7.'': 

where A is an arbitrary positive parameter and a ( t )  obeys 
Newton's law 

a 
a,, = - - U ( a )  a a 

for the impact of a particle on the center in the potential 
U(a) = - $A '/a4'". As we approach the singularity, t- to, 
we find that a a (to - r ) 3 / 5  (Ref. 20) and the longitudinal 
size of a soliton obeys Y - '  a (to - t)2'5, SO that the ratio of 
the longitudinal to the transverse size v-'/a increases as ( t o  
- t ) - l i 5 .  This means that the criteria of adiabaticity given 

by Eq. ( 3 5 )  are quite rapidly disobeyed and in the subse- 
quent analysis we have to turn either directly to Eq. ( 1 ) or to 
the system of equations ( 3 6 ) ,  depending on the initial data. 

We shall now show that within the framework of Eq. 
(1)  a density well can not disappear as a result of soliton 
instability. 

We recall first that Eq. ( 1 ), like the whole system ( 2  ) , is 
of the Hamiltonian type: 

where 

In addition to H, Eqs. ( 1 ) and ( 2 )  conserve the momentum 
p = J ( n  - 1 ) VQdr and the number of particles 
N = J  ( n -  1)dr .  

We shall consider the integral in the Hamiltonian of Eq. 
( 4 0 )  : 

Applying the mean-value theorem, we find that 

(vm)2)'dr, H,., 2 rnin n J- 
r 2 

Substitution of the above inequality in Eq. ( 4 0 )  gives 

The first two terms on the right-hand side of Eq. (41  ) can be 
estimated in terms of the momentum p: 

Combining this with Eq. ( 4 1 ) ,  we find that the minimum 
value of the density is bounded above by the conserved quan- 
tity 

min nGH2/ I p 1 '. 
r' 

Therefore, a density well can exist ( n  < 1 ) if we satisfy the 
condition H - p' < 0. This quantity is kept negative only by 
the nonlinear interaction, which is described by the term 
Hi,, in the Hamiltonian. In the case of small-amplitude 
waves, when we can ignore H,,, , this criterion is always posi- 
tive: H - p2 > 0 .  If we assume that H andp  in Eq. ( 4 2 )  are 
their values for the soliton solution of Eq. ( 3 ) ,  we find that 
the ratio 

represents the upper permissible limit for min,n for the de- 
velopment of the instability of Eq. ( 2 4 ) .  The ratio ( 4 3 )  var- 
ies smoothly from 1 for v = 0 to ( 16/9)  .n2 for v = 1. There- 
fore, the initial density well cannot disappear and its depth 
given by Eq. ( 4 3 )  is always less than the average level n,, 
- - 1 .  

In the case of a narrow distribution of small-amplitude 
waves, when the KP equation is valid, the criterion of Eq. 
( 4 2 )  can be rewritten in the form'" 

min n , G H K , , / p K , .  

where 

is the Hamiltonian for the KP equation [Eq. ( 2 5 ) ] ,  and 
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is the corresponding projection of the momentum along the 
x axis. 

The relationship (44), like Eq. (42), is valid for an arbi- 
trary region. It is the relationship (44) that is the central 
criterion of collapse in the three-dimensional K P  equation. '" 

We now consider briefly the reasons for collapse. We 
assume first of all that they are related to the infinite value of 
H ,, whenp,, is conserved as a result ofthe nonlinear inter- 
action. Consequently, collapse should be regarded as the 
process of impact of a particle in an unbounded potential 
[compare with Eq. ( 3 7 )  1 ,  where the role of the friction is 
played by the emission of small-amplitude waves. Such emis- 
sion of waves results, at first sight quite naturally, in accel- 
eration of the collapse itself. If we consider a certain region 
with a lower density characterized by HKp < 0, then obvi- 
ously we find that small-amplitude waves emitted from this 
region carry away positive portions of H , ,  and p,, . The 
ratio H , ,  /p , ,  , taken in the region HK, < 0, becomes even 
more negative and eventually tends to - W .  I t  follows from 
Eq. (44) that this reduces also min,n,. It is known as a weak 
collapse regime.'." In this process the singularity formally 
receives, in contrast to a strong collapse, zero energy. Nu- 
merical experiments '"~'~emonstrate that the K P  equation 
leads to a weak collapse with maximum emission corre- 
sponding to the self-similar solution. In the process of col- 
lapse a density well decreases and reaches a value of order 
unity with a considerable reduction in the longitudinal and 
transverse dimensions. It should be pointed out that this 
stage of the collapse is valid in a fairly wide range, because 
the KP approximation applies for vZ< 1, i.e., that a satisfac- 
tory description by means of the K P  equation is available 
even for solitons with Y- 1/2. Since the physical reasons for 
the instability are valid for arbitrary soliton amplitudes and 
the characteristic growth rates grow, it follows that during 
the next stage the tendency to collapse will be retained. This 
process represents cavitation. At present we do not know 
whether a density wave reaches a minimum value n = 0 or 
how its compression proceeds subsequently. In our opinion, 
such information can be obtained from numerical experi- 
ments. 

The authors are grateful to E. G.  Shapiro for calculat- 
ing the instability spectrum numerically. 

"The exact s o l ~ t i o n ' ~  shows that such a mobility picture, which is based 
on simple kinematic considerations, describes fairly long-wavelength 
transverse perturbations but not the most dangerous short-wavelength 
perturbations or the instability limit. 

"This function is a linear combination of u, and a function which appears 
because of the gradient invariance of Eq. ( 1 ): $- $ele'". 
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