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Theoretical descriptions of Rochelle salt as a system with a double critical point are developed, 
and it is shown that the phenomenological theory is correct for this crystal over a wide interval of 
pressures, substitution concentrations, and temperatures up to the melting point. A unified 
quantitative description is obtained of the anomalous temperature behavior of the piezoconstants 
and piezomoduli, the elastic pliancy and elasticity, the permittivity and the spontaneous 
polarization, and the absorption of ultrasound and the soft-mode parameters. 

1. INTRODUCTION 

Rochelle salt (RS) is of interest not only as the forerun- 
ner of two broad new classes of substances-ferroelectrics 
and ferroelastics, but also as a unique solid-state physics ex- 
ample of a system, the ordered state of which exists in a 
relatively narrow temperature interval (255 K < T <  297 K )  
between two disordered (nonpolar) phases having the same 
symmetry P 2'2'2. In spite of the large number of experimen- 
tal and theoretical papers over the almost three-hundred 
year history of this ferroelectric, the nature of this unusual 
ordering has still not yet been clarified. Additionally, the 
opinion is widespread that the RS phase transitions are very 
poorly described by the classical Landau-Ginzburg phe- 
nomenological theory. A number of facts, it would seem, 
bear witness to this. Firstly, substantial departures from the 
Curie law for the dielectric permittivity ( E -  IT - Tc I - ') 
are observed in ranges on the order of several degrees K from 
the high (Tcl = 297 K) and low (T,, = 255 K)  Curie 
points, while for all other ferroelectrics it is satisfied in a 
significantly wider temperature interval.' Secondly, at both 
Curie points the heat capacity jumps are anomalously small 
(three orders of magnitude below "normal" values) and the 
behavior of its anomalous part AC, in the ferroelectric 
phase, where it is found to be negative over a significant 
temperature interval,' is unusual. Thirdly, as recent mea- 
surements3 have shown, there is no region in RS crystals 
where the usual linear law for the temperature dependence 
of the critical relaxation frequency ( 1/2.rrr- I T - Tc / ) is 
applicable. Rather it follows, over a wide temperature inter- 
val in the lower paraphase, the cubic law 

where T * coincides not with T,, , but with the center of the 
ferroelectric phase T * =. ( T, , + Tc, )/2. 

Among a number of unintelligible facts, which do not 
fit into any of the presently available phenomenological or 
microscopic theories, is the considerable influence on the RS 
phase transitions of the pressurep in combination with the 
isomorphous substitution of a fraction X of the potassium 
atoms by ammonia molecules. It is found4 that for very small 
concentration of NH, (X>2.4%) the ferroelectric phase 
disappears, then reappears for X >  18%, but at significantly 
lower temperatures (Fig. 1).  In the interval 
2.4% < X <  5.4% the application of pressure restores the 
crystal to the initial ferroelectric state (but now at high tem- 

peratures), while in the interval 6% < X < 18% the ferro- 
electric phase does not materialize for any pressures whatso- 
ever. For X> 18%, the ferroelectric transition reappears. 
However, in contrast to the case of small X, its temperature 
decreases with increasingp (see Ref. 5 and Fig. 2). 

A number of theoretical approaches have been pro- 
posed to explain the anomalous critical properties of RS. 
The presence of two phase transitions in RS had already been 
connected, in an early phenomenological theory of Miiller,6 
with the unusual parabolic temperature dependence of the 
inverse susceptibility of a "clamped" crystal 

which reaches a minimum at T,. Moreover, in a clamped 
crystal (that is, without considering shear deformations) 
,yci I ( T,,, ) > 0 and phase transitions are absent, while in the 
free crystal (taking into account shear deformations) the 
total inverse susceptibility X-'  at T, is negative, as a result 
of which the paraelectric phase loses stability and in some 
temperature interval near' T,, the crystal passes into the 
ferroelectric phase. Ginzburg7 significantly simplified 
Miiller's quite complicated thermodynamic theory and 
pointed out its connection to Landau's general phenomeno- 
logical theory of phase transitions.' Furthermore, the prob- 
lem was posed in Ref. 7 of describing all the RS anomalous 
properties, relying only upon the experimentally known 
temperature dependence of the susceptibility ,y of the free or 
clamped crystal. However, this problem has not yet been 
solved. 

Instead, the theory developed through the formulation 
of various micro- and semimicroscopic models of RS, ex- 
plaining the observed temperature pathx(T), but not giving 
a quantitative explanation of all the available experimental 
facts as a w h ~ l e . ~ . ' ~  So, to interpret those or other data, the 
semimicroscopic model of Mitsui9 is normally called upon. 
However, even this model, which contains a number of free 
phenomenological parameters, yields at best only some basic 
features of the ferroelectric ordering mechanism and can 
hardly be presumed to serve as a complete quantitative de- 
scription of the experimental data in a crystal as complicated 
as RS, containing 112 atoms in an elementary cell. 

Dissatisfaction with the state of the theory of the phase 
transitions in Rochelle salt was reflected in the attempt by 
Levanyuk and Sannikov" to attribute the three observable 
phases of RS to different distortions of the lattice of one and 
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FIG. 1. Phase diagram of mixed RS-ARS crystals under an atmosphere of 
pressure. The points are the data (Ref. 4 ) .  

the same highly symmetric paraphase. Despite a number of 
attractive features (for example, the explanation of the com- 
plicated path X (  T )  by the linear temperature dependence of 
just one phenomenological coefficient in the thermodynam- 
ic potential density), one must acknowledge that this at- 
tempt was unsuccessful, since it follows from Ref. 11 that a 
continuous transition from a high- to a low-temperature 
nonpolar phase, avoiding an intermediate phase of lower or 
higher symmetry, is impossible. Meanwhile, it is well 
k n ~ w n ' . ~ . ~  that in clamped RS crystals or in free crystals 
containing more than 2.4% NH, ions, such a smooth transi- 
tion occurs. 

In this paper we will show that the entire complex of RS 
anomalous physical properties can be fully described using 
the original Landau-Miiller-Ginzburg phenomenological 
theory, accounting suitably for the parabolic temperature 
path of the inverse susceptibility, or, what is the same, ac- 
counting for the proximity of the RS phase transitions to the 
double critical point. 

2. DOUBLE CRITICAL POINT 

The term double critical point (DCP) is encountered in 
the theory of binary fluid  solution^,'^ where it means a point 
in a phase diagram (Fig. 3) at which lines of upper and lower 
critical points of a phase separation unite. The role of the 
variable x, on which the upper and lower critical tempera- 
tures of phase separation depend, can moreover be played by 
the pressure (as this occurs in the case of fi-picoline-H,O 
solutions") or the concentration of modest amounts of a 
third component (for example, a glycerine-guaiacol sys- 

FIG. 2. Phase diagram of mixed RS-ARS crystals under pressure for 
various concentrations X:1-O,2-1,1,3-2,2,4-3,1,5-3,9,6-21,7- 
32%. The points are the data (Ref. 5 ) .  

FIG. 3. Phase diagram (a)  and temperature dependence of the coefficient 
A (b )  in systems with DCP. 

tern',). In Fig. 3a the region under the line of critical points 
Tc (x)  corresponds to the stratified state of solutions. The 
solution is homogeneous throughout this region. Moreover, 
the point ( T, , x, ), corresponding to the maximum on the 
line T, (x) ,  is precisely the DCP. 

It is clear from Fig. 3a that the term DCP characterizes 
not a new type of critical behavior, but a method of approxi- 
mating the line of critical points: along the tangent to the 
indicated line. In particular, if the approximation to the line 
Tc (x)  is not with respect to temperature, but along some 
other direction in the plane ( T,x), then some other point of 
the line of critical points will play the role of DCP.I5-I' Be- 
low, however, we consider that the phase transitions are ap- 
proached by means of temperature change, as usually occurs 
in an experiment. 

In the case of Rochelle salt the analog of the critical 
points is evidently the Curie points. The role of x, on which 
the upper and lower Curie temperatures depend, can be 
played, for example, by the negative hydrostatic pressure, 
the maximum admissible magnitude of shear deformations, 
or the substitution concentration. The most thoroughly 
studied of these is the mixture of ammonia molecules, re- 
placing potassium For pure RS at atmospheric pres- 
sure, a DCP materializes in a clamped crystal, that is, in the 
absence of a linear coupling between the component P, = P 
of the polarization vector along the ferroelectric axis (the 
axis of spontaneous polarization) and the corresponding 
component u, = u of the strain t e n ~ o r . ~  In the same case of 
mixed crystals of ordinary (RS) and ammoniated (ARS) 
Rochelle salt, there are even two DCP's, one of which corre- 
sponds to an ammonia ion concentration X = X,, =2.4%, 
and the second to X = X,, =: 18% (Fig. 1). Moreover, the 
coordinates of the double critical point change in an interest- 
ing manner with pressure (Fig. 2 ) .  

Besides the term DCP, the term "hypercritical point" is 
also applied to binary fluid solutions. However, DCP seems 
to us more apt,' since at a DCP two critical temperatures 
merge at one point and, simultaneously, a number of critical 
exponents double. ' 6 3 ' 7  

Systems with a DCP are also sometimes referred to as 
systems with a recurrent phase or with a recurrent phase 
transition in the disordered state. The last term is used, for 
example, in the case of certain fluid-crystal materials experi- 
encing during a temperature decrease second-order phase 
transitions from a nematic to a smectic A-phase, and conver- 
sely. '' The unstandardized terminology reflects, in our view, 
the fact that although some systems with a DCP have long 
been known, the peculiarities of their critical behavior have 
only recently begun to be intensively analyzed. 
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3. THE LANDAU-GINZBURG THEORY FOR SYSTEMS WITH A 
DOUBLE CRITICAL POINT 

In the neighborhood of a DCP, in contrast to an ordi- 
nary Curie point, the temperature dependence of the inverse 
dielectric susceptibility is described not by a linear, but by a 
quadratic law, 

Moreover, at the DCP itself, the top of the parabola is tan- 
gent to the temperature axis. For x <x, it falls below the 
temperature axis (which is tied to the presence of two phase 
transitions), and for x > x,, the parabola rises above the 
abscissa (Fig. 3b). As a result for x > x, , the nonpolar phase 
does not lose stability at any temperature, but there is a pro- 
nounced maximum for the susceptibility dependence at 
T = T,,, (x) .  The lines of extrema of the susceptibility-the 
maxima in the paraphase and the minima in the ferroelectric 
phase-are shown in Figs. 1 and 2 by the dashed and dot- 
dash lines. 

In the language of the Landau-Ginzburg theory, 
expression ( 2 )  determines the temperature dependence of 
the coefficient A in the expansion of the thermodynamic po- 
tential density in powers of the order parameter P= P, : 

where E-  E, is the component of the electric field along the 
axis of spontaneous polarization. Let us observe that relation 
(2 )  between X-' and A is valid only in the high-symmetry 
(nonpolar) phase, while in the low-symmetry (ferroelec- 
tric) phase 

In all previous papers, expansion ( 3 ) was applied only 
in very narrow temperature intervals near the lower and up- 
per Curie points, where by custom the coefficient A is re- 
garded as linearly dependent on the differences T - T,  , and 
T - Tc2 . Actually though, in the case of Rochelle salt (and, 
in general, systems with a DCP, see Ref. 15) ,  it is advisable 
to expand the coefficients of the thermodynamic potential in 
a series, not in powers of the differences T -  Tc, and 
T - T,, , but in powers of the deviation of T from the tem- 
perature of the minimum ofA, that is to use an expression of 
type (2 )  for the temperature dependence of A( T). 

In this way, as we see below (see also Ref. 19), one can 
successfully describe quantitatively practically all the ther- 
modynamic and dynamic properties of RS crystals in a wide 
temperature region, including all the upper paraphase, the 
ferroelectric phase and a significant part of the lower para- 
phase. 

4. THE THERMODYNAMIC PROPERTIES OF ROCHELLE SALT 

a. Determining the temperature dependence of the 
coefficient A 

For subsequent convenience let us introduce the dimen- 
sionless temperature 

t= (T-T,,) / T o ,  ( 5 )  

measured from the temperature of the minimum of A and 
normed by the mean of the ferroelectric phase 
To = ( Tcl  + T,, )/2 = 276K, andlet us rewriteexpression 
(2 )  for A in the following manner: 

Moreover, if there is not any distinguished energy parameter 
other than To in the problem, one can naturally expect the 
coefficients A,, A,, ... to have identical orders of magnitude, 
and A, to be small moderately close to the DCP, that is, it 
scales with the narrow half-width of the ferroelectric phase 
( T c l  - T,, )/2 in comparison with To. For RS under an 
atmosphere of pressure, the parameter t * = ( T,, - Tc2 ) /  
2T, = 7.61. and, thus, the DCP is actually very close. 
In analyzing experimental data near and between T,, and 
Tc, , in this case we can calculate only the first two terms in 
(6). It is easy to find A, and A,, knowing the half-width of 
the ferroelectric region and the difference of the inverse sus- 
ceptibilities of the free and clamped  crystal^^.^^'.^': 

After this it is possible to make Tm more precise, and to 
improve the coefficient values by means of higher terms of 
the expansion, requiring that they agree as well as possible 
with the temperature dependence o f x  in the lower and upper 
paraphases. Proceeding in the manner indicated, we found 
that in a very wide temperature interval ( IT - T, I < 150"), 
A (  T) can be described by the following expression (Fig. 4):  

In this expansion, which in general lacks a linear term, the 
basic contribution to A ( T)  near Tm is given by a term qua- 
dratic in the temperature. For a significant departure from 
T,,, , higher-degree terms come into play. 

The measurements of the susceptibility x in the ferro- 
electric phase are not considered in the choice of the coeffi- 
cients in ( a ) ,  since there terms of higher order in the free 
energy expansion in powers of Pcan have a substantial influ- 
ence o n x .  For example, if we add CP "6 to ( 3 ) , then expres- 
sion ( 4 )  fo rx  in the ferroelectric phase is modified as follows 

FIG. 4. Temperature dependence of the coefficient A at one atmosphere in 
Rochelle salt crystals. 
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with AC/B241 .  A comparison with experimental data 
shows that even in the center of the ferroelectric phase, the 
valuesx depart from those computed by (4 )  and (8 )  by less 
than 15%. This shows that A,C/B2 is small and that the 
simple expression (3 )  is applicable practically everywhere in 
the ferroelectric phase. 

The values of the Curie constant C * = 4a(dA /dT) - '  
at T,, and T,, , computed by (8 ) ,  are CT = + 2.2. lo3 K 
and C T = - 1.8. lo3 K. These values differ somewhat from 
the values CT = + 2.1.10' K and CT = - 1.5.10' K 
usually presented in the literature (see, for example, Refs. 9 
and 20). In our view, the cause of the discrepancies is that 
the reference data Curie constants are obtained by averaging 
the derivatives dA /dTover some finite temperature interval 
near Tc , and Tc2.  In fact, complete agreement with the ref- 
erence data can be achieved by letting 

Our analysis of the experimental showed 
that, in agreement with ( 7 ) ,  the temperature dependences of 
the inverse susceptibilities of a free and clamped crystal in 
the upper and lower paraphases differ from each other al- 
most precisely by the constant A,,. This means [see (6 )  ] that 
in a clamped crystal, A,, ( T )  dose not intersect the abscissa 
at T,, and T,, , while in a free crystal, it touches it only at 
T,, . In other words, from the viewpoint of high-frequency 
(higher than piezoresonance frequencies) properties, the 
temperature T,, for Rochelle salt crystals is the DCP. 

b. Spontaneous polarization 

Using (3 ) ,  we determine the temperature dependence 
of the spontaneous polarization P, in the ferroelectric phase 
by 

and if CP '/6 is added to (3 ) ,  P, can be found by solving 

Adding to this equation the expression for the inverse sus- 
ceptibility 

and solving ( 11 ) and ( 12) for B and C, we find that they are 
connected with the coefficient A ( T) we have computed from 
measurements in the paraphase [see (8 )  1, and the variables 
P,,,, ( T) and x,,, ( T )  measured in the ferroelectric phase 
through the relations 

Substituting the corresponding experimental values2" in 
( 13) leads to the conclusion that in the entire temperature 
interval between Tcl  and T,, , the coefficients B and Care  
practically constant and equal 

The extent of agreement of ( 1 I ) ,  (8 ) ,  and ( 14) with the 
experimental data is clear from Fig. 5. 

The value of B obtained is close to that found in Ref. 6 

FIG. 5. Temperature dependence of the spontaneous polarization in RS at 
one atmosphere. 

from measurements of RS nonlinear dielectric properties, 
and it has a normal atomic order of magnitude. This proves 
that the RS phase transitions are "good" second-order phase 
transitions far from the tricritical point. As is well known, 
this behavior is unusual among the ferroelectrics, not to 
mention the unique circumstance that the Landau-Miiller 
Ginzburg theory is correct here over the entire ferroelectric 
phase, keeping only the first three terms in P2  in the free 
energy expansion. 

c. Heat capacity 

Figure 6 presents values of the anomalous molar heat 
capacity AC, of a one-domain RS crystal measured by high- 
resolution ~a lo r ime t ry .~  It  is apparent from the figure that 
the magnitudes of the jumps Cp at the Curie points are of the 
order of 1 J/K.mol, or converting to one degree of freedom 
ACp/3n -- R, where R = 8.3 14 J/K.mol is the univer- 
sal gas constant, and n = 28 is the number of atoms in one 
molecule of RS. Let us recall that usually in structure sec- 
ond-order phase transitions, the change of the molar heat 
capacity in a calculation for one degree of freedom, is R. 
Thus, the jumps of the RS heat capacity at  the phase transi- 
tion points are three orders of magnitude weaker than in 
other ferroelectrics. 

The second notable feature of the data shown in Fig. 6 is 
the unusually abrupt temperature dependence of C, in the 
ferroelectric phase, where in a neighborhood of T, the 
anomalous contribution to the heat capacity even becomes 
negative, while in all other ferroelectrics one finds AC, > 0. 

FIG. 6 .  Temperature dependence of the anomalous heat capacity for RS 
at one atmosphere. 
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Both these features of the experimental data2 are easily 
explained by the nearness of the phase transitions in RS to 
the double critical point. Actually, differentiating the free 
energy ( 3  ) twice with respect to T gives 

where M = 282.12 a.e. is the molar mass. One usually con- 
siders that A is linear in a neighborhood of the second-order 
phase transitions. On this basis, the second term in the 
square bracket in (15) is disregarded. However, in the case 
of interest to us in the center of the ferroelectric phase 
A > = 0, and the anomalous contribution to the heat capac- 
ity is determined here precisely by the second term 

where we have used (8)  and (14) for the numerical values. 
The jumps of the heat capacity at the Curie points are 

determined, it is understood, by the first term in (15), 
which, however, is very small compared to the usual case, 
owing to the smallness of ( t  *)' = (7.6.10-2)2 = 5.10V3, 
owing to the proximity of Tc, and Tc, . 

Relation ( 15) is easily generalized, even to the case of 
arbitrary dependence of the free energy density on P (but by 
assumption, only the coefficient A in it depends on the tem- 
perature) : 

The dependence of AC, (T )  computed from this expression 
using (8)  and the experimental dataz0 for P, ( T) andx( T) is 
shown in Fig. 6 .  

The good agreement of the computed curve with the 
experimental data2 is still one more convincing demonstra- 
tion of the correctness of the Landau-Ginzburg theory for 
RS. 

Thus, calculation of the proximity of RS to the DCP 
allows one to explain both the magnitude of the heat capac- 
ity jumps at the transition points, and the unusual character 
of the anomaly AC, ( T) in the ferroelectric phase. 

d. Elastic properties 

To calculate the temperature dependence of the elastic 
modulus, C 5 ( T) the elastic pliancy S f4 ( T) , the electrome- 
chanical coupling coefficient k,, ( T) and the peizomodulus 
d,,(T), we used the well known thermodynamic relation- 
ships6 

and the analytic expressions (2 ) ,  ( 8),  and (9)  for the sus- 
ceptibility X. In (18) the piezoconstant f 7, and the elastic 
modulus C:4 are regarded as temperature-dependent," and 
we set 0 = - A,. The observable elastic anomalies are com- 
pletely describable by the approach used here and do not 
require for their explanation calculations of fluctuation ef- 
fects near the phase transitions. This means that in the case 

p, kbar 

FIG. 7. Phase diagram in pure RS. 

of Rochelle salt crystals, the Landau theory can be used right 
up to Tc, and T,, in complete agreement with the deduc- 
tions of Ref. 23 concerning the dramatic suppression of criti- 
cal fluctuation effects in proper ferroelastics. 

e. Effect of pressure 

The experimental dataz4 on the effect of pressure on the 
RS phase diagram are presented in Fig. 7. It is clear that with 
the growth of the hydrostatic pressure, both Curie points 
T, , and T,, merge on the high temperature side, where the 
ferroelectric region between them widens. To describe the 
effect of the pressure p on RS crystal properties, we use 
expression (8)  and assume (Fig. 8) that in this expression 
T,,, and A, change linearly with the pressure, while, to a first 
approximation, A, and A,  can be considered as independent 
ofp. According to Ref. 24, the displacement of the upper and 
lower Curie points is characterized by the following param- 
eters: dTc, /dp = 3.84 K/kbar and dTc2/dp = 10.93 K/ 
kbar. Differentiating the equation A (p,Tci ) = 0, determin- 
ing the position of the upper and lower branches of the line of 
Curie points for i = 1,2, with respect top,  and solving the 
resulting system of algebraic equations for dA,/dp and 
dT, /dp, we find that the merging of T,,, and A, under the 
action ofp is described by 

Let us note that according to ( 19) the upper and lower Curie 
points must merge at one double critical point for p = - 3 
kbar. 

FIG. 8. Motion of the minimum of the coefficient A ( T )  for various con- 
centrations X. 
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f. The effect of isomorphous substitutions 
The proximity of RS to a double critical point immedi- 

ately becomes apparent in the phase diagram of the mixed 
compound Na [K, (NH,) , -, ] .C4H,06.4H20 (Ref. 4),  
shown in Fig. 1. When part of the K atoms in RS are replaced 
by NH,, the distance between the Curie temperature Tc, 
and Tc2 decreases and, for a NH, concentration equal to just 
2.4%, vanishes (region I ) .  A further increase in the concen- 
tration (region 11) causes the complete disappearance offer- 
roelectric properties. However, a wide indistinct maximum 
remains on the temperature dependence of the dielectric per- 
mittivity. The most interesting aspect of the mixed crystals 
under consideration is this second appearance of ferroelec- 
tric activity at concentrations greater than 18% (region 
111). According to the data of Makita and Takagi,, obtained 
in the interval 80-300 K, this new ferroelectric phase is char- 
acterized by only one Curie point, which, as established in 
Ref. 25, also is a second-order transition. In the concentra- 
tion region IV, the direction of spontaneous polarization in 
the crystal changes by a 90" jump (a  new order parameter 
emerges) and a transition to a new phase occurs, the phys- 
ical properties of which are not discussed here (see, for ex- 
ample, Ref. 1 ). 

Qualitatively, it is possible to explain the behavior of the 
crystals in regions 1-111 in the following manner (Fig. 8). 
With an increase of the concentration X from zero (region 
I ) ,  the minimum on the curve A ( T) monotonically arises 
and touches the temperature axis at the DCP for 
XD , = 2.4% and TD , = - 5.5 "C. The disappearance of the 
ferroelectric phase for X 2 X ,  , is convincingly evidenced by 
the common nature of the two second-order phase transi- 
tions and the identical symmetry of both nonpolar phases in 
pure RS crystals. 

In region I1 the minimum on the curve A ( T) rises above 
the abscissa, reflecting the fact that there are no phase transi- 
tions for X >  X,, in the system, although a more or less 
sharp maximum is preserved on E ( X ,  T), reflecting the para- 
bolic character of the dependence of A ( T) . However, as X 
increases further, the minimum in A ( T) again begins to fall 
andforXD2 z 18% and TW2 = - 100 'C, the system reaches 
a second DCP, with which we, in fact, connect the second 
appearance of ferroelectricity for X 2 XD2 . Thus, in region II 
the motion of the minimum of A( T) occurs along a dome- 
shaped curve (the dashed curve in Fig. 8) with the maxi- 
mum at Xm = 12.5% and Tm = - 43 "C. Further into re- 
gions I11 and IV, the minimum of A(T) continues to fall 
lower and lower, as a result of which this curve again inter- 
sects the temperature axis at two points: Tc, (X) and 
Tc2 (X), where thesecond Curie point Tc2 (X) quitequickly 
goes off to the negative temperature region. Let us note that 
in region IV not even the upper transition for T,, (X) mate- 
rializes, since here there is time for a structural first-order 
phase transition to another crystallographic modification, 
accompanying the rotation of the spontaneous polarization 
axis by 90". 

If one is interested in the dependence ofA on X for fixed 
T, then it is also possible to regard as a DCP an extremum of 
A on the line of phase transitions (that is a point, at which 
simultaneously A(X) = 0 and A ; = O), but now with re- 
spect to X. In Fig. 1 this point is denoted XD3 = 27% and 
TD3 = - 68°C. 

A quantitative description of the phase diagram of the 

mixed crystal of ordinary and ammoniated Rochelle salt 
(shown in Figs. 1 and 2) is given in Ref. 33. 

5. DYNAMiCAL PROPERTIES OF ROCHELLE SALT 

a. Ultraround abrorption 

It was established in the experiments of Yakolev et ~ 1 . ~ ~  
that in the Tc , and Tc2 regions in Rochelle salt, anomalous- 
ly strong absorption of a transverse elastic wave (Fig. 9)  
appears, spreading along the crystallographic axis c and po- 
larized along the b axis. This wave creates a shear deforma- 
tion u, in the crystal, under the action of which a change of 
the equilibrium order parameter (the polarization) occurs 
along the ferroelectric axis a. That, in fact, leads eventually 
to the decay and dispersion of the transverse elastic waves. 

According to the theory of the relaxation mechanism of 
sound absorption near phase transition points,27 developed 
and applied to RS by L a n d a ~ , ' ~  the anomalous part of the 
absorption coefficient ha and the velocity v of the transverse 
acoustic wave are determined by 

where T is the relaxation time of the polarization, y is a con- 
stant rate coefficient, w  = 27rf is the angular frequency of the 
sound wave, andp is the density of the crystal. Taking into 
consideration (7)  and the r e l a t i on~h ip*~ .~~  connecting T 

with the clamped crystal susceptibility x,, : 

it is possible to rewrite the expressions (20) for ha and v in 
the paraelectric phase for or4 1 as 

where the dependence A ( T), as before, is determined by the 
expansion ( 8) ,  and 8 = - A,. 

It is clear from the relationships presented that the 
acoustic subsystem of the crystal by itself does not possess 
properties which change with the temperature in a critical 
fashion (that is, vanish or turn infinite at Curie points). The 

FIG. 9. Temperature dependence of the absorption coefficient of ultra- 
sound in pure RS. 
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behavior of the ferroelectrically active subsystem also is not 
in itself critical. This follows, in particular, from the fact that 
the relaxation time r, according to Ref. 2 1, remains finite at 
Tc, and T,, . However, the parabolic temperature depen- 
dence ofA and the bilinear coupling of deformations with the 
polarization f T4 u,P, gives rise to some "compensation" at 
T,, and Tc2 of the elastic and ferroelectric interactions in 
the free crystal. As a result of this , the transverse sound 
velocity v vanished after A vanishes [see (7 )  1, and the decay 
of this sound turns infinite. Thus, from the viewpoint of lat- 
tice dynamics, one must regard the initial cause of the ap- 
pearance in RS of two phase transitions close in temperature 
as the sharp deceleration of the relaxation velocity of the 
order parameter (polarization), connected with the para- 
bolic temperature dependence A=, . Their immediate cause is 
the softening of the long-wave acoustic phonon. 

With the help of (8),  (22), and relations similar to 
(22), we have succeeded in describing the experimental 
data26 in terms of the absorption of transverse sound (Fig. 
9),  and also of the quasilongitudinal sound2' and the Bril- 
louin scattering by the sound,,' in a substantially wider tem- 
perature region than previously done. 

b. The soft mode in Rochelle salt 

Direct observation of the RS ferroelectric soft mode 
were carried out in terms of the dielectric spectra E* (v,T) in 
the microwave and ~ubmil l imeter~~ bands. This investiga- 
tion showed that there are two characteristic regions in the 
behavior of the soft mode. 

1. In the interval 180-320 K, including the ferroelectric 
phase, the dispersion E*(Y) = E' - i ~ "  resembles a typical 
Debye relaxation. The temperature dependence of its fre- 
quency 1/277r (Fig. 10) is essentially nonlinear and has 
anomalies at T,, and T,, . In the region 180-230 K, the 
relaxation frequency sharply increases and changes with 
temperature following a cubic law, unusual for ferroelectrics 
[see ( 1 ) 1. Moreover, the relaxation oscillator force f '  = AE/ 
277-7- corresponding to the soft mode remains practically con- 
stant. 

2. The cubic law is broken as the temperature decreases 
( T <  180 K)  and the relaxation soft mode, quickly increas- 
ing in frequency, turns into a high-quality (Q- 300) optical 
phonon, stabilizing in the spectrum at v0 = 22 cm-I. In the 
region of transition from the relaxed to the oscillating regime 
( 150 K < T < 180 K) ,  along with the decay of the G mode, its 

v,  GHz 

FIG. 10. Temperature dependence of the frequencies of phonon modes in 
RS at one atmosphere: 17 and 6 are optical phonons, and u an acoustic 
phonon. The points and circles are the data (Refs. 3, 21, and 30). The 
characteristic frequencies of the modes 6 and u lie on the dash-dot line. 

oscillator force f = AEY~ changes noticeably. This means 
that the observed temperature evolution of the soft mode is 
the result of its interaction with another temperature-unsta- 
ble lattice excitation. Therefore, the model of one quasihar- 
monic soft mode does not suffice to interpret the data of 
dynamical high-frequency experiments. 

In Ref. 3 1 we attempted to explain the highly unusual 
behavior of the Rochelle salt soft mode on the basis of a 
simple phenomenological model of two coupled optical 
modes. One of them (f-mode) is a low-intensity "hard" op- 
tical phonon, which is observed in the experiment at low 
temperatures (Fig. lo) ,  and the second (7-mode) is an os- 
cillating optical mode softening in frequency, located in the 
frequency region Y > 30 cm- ' at all temperatures (Fig. 10). 
Considering that the 7- and f-modes in the general case have 
an oscillatory (resonant) dynamic character, let us write the 
equations of motion for 7 and 6 as 

where m, p , ~ l y , , ~ :  = a ,  Jm, v: = az,/,u, b, and bz are the 
effective masses, the decay coefficients, the oscillations char- 
acteristic frequencies and the oscillator forces of { and 7 (in 
the absence of interaction between them), and a , >  is the cou- 
pling coefficient. 

In principle it is also necessary to add an equation of 
motion for the component u, of the elastic strain tensor to 
(23), since this component is also linearly coupled with the 
polarization P, = b,f + b,17 However, in the region of in- 
terest to us, that of the short (submillimeter) wavelengths, 
the characteristic acoustic frequencies are very small. To a 
good approximation it is possible to consider the oscillations 
of 7 and 6 as occurring for a fixed value u,,, that is, in a 
clamped crystal. 

Using the assumption that the frequency of the initial 
(still not experimentally detected) softening 7-mode has a 
temperature dependence determined by (8) ,  but with a sig- 
nificantly larger A,,, and its decay is the usual linear function 
of temperature, we obtain for the parameters of the {-mode 

where A,, = a:, /a, ,  0.5, a,,( T) = b A ( T) . These rela- 
tionships allow one to fully describe the behavior of the Ro- 
chelle salt soft mode in the low-temperature phase. 

Thus, the complete picture of the dynamics of Rochelle 
salt is now the following. For low temperatures at a frequen- 
cy of approximately 100 cm- ', crystal spectra contain a po- 
lar optical 7-phonon softening in frequency (Fig. 10). Pre- 
cisely this phonon is responsible for the anomalous behavior 
of the coefficient A(T) in RS. In the temperature region 
T- 150 K it interacts with the other temperature-indepen- 
dent f-mode ( Y  = 22 cm-I for T = 80 K )  and by transfer- 
ring to it its oscillator strength and decay, converts it near 
Tc, and Tc2 into a relaxation excitation, simultaneously 
softening greatly in frequency. In the absence of a piezoeffect 
(a  clamped crystal) the relaxation {-mode frequency must 
vanish at the DCP T, =: T,, (the dashed curve in Fig. 10). 
However, in the free crystal, due to the piezoeffect, the inter- 
mediate f-mode proves to be coupled with the transverse 
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acoustic u-mode, as a result of which the soft mode then 
becomes the u-mode, which in fact causes the phase transi- 
tions for Tc , and Tc, . 

The linear coupling between the initial softening 7- 
mode and the other modes ( 6  and u )  makes it necessary to 
consider the frequency dispersion of A. In particular, for 
frequencies exceeding the piezoresonance frequency, the in- 
teraction of the intermediate 6-mode with the transverse 
acoustic u-mode ceases to play a role, and the coefficient A is 
renormalized so that the minimum on A( T) rises to the ab- 
scissa. For still higher frequencies ( ~ 2 2 2  cm-')  the interac- 
tion of the &-mode with the temperature-unstable optical 7- 
phonon ceases to be observed. Experimentally, this is 
perceived as a "transformation" of the intermediate relaxed 
soft excitation into the corresponding hard phonon and the 
appearance of temperature dependence in some high-lying 
optical mode. The temperature path of the frequency of this 
mode is determined completely by A(T) ,  but with a still 
further increasing coefficient A, now reaching = 0.5. 

6. CONCLUSION 

The results of this study confirm that Rochelle salt is a 
very striking and at present unique solid-state physics exam- 
ple of a system with a DCP. The materialization in RS at 
once of two DCPs in the Na [K, (NH,) , - , ] C,H40,.4H20 
phase diagram is also an exceptional fact, since a similar 
situation is presently known only for a fluid solution of 0- 
picaline in water (P-Na,S04.H20) under pressure,I3 but is 
has been studied significantly less experimentally. 

The atypical nature of the RS phase transitions appears 
strikingly in their low-frequency dynamics. Here the spec- 
trum of the soft mode consists not of one mode, as was pre- 
viously believed, but at least three strongly interacting low- 
frequency modes. Moreover, in the low-temperature region, 
all three of these modes are well defined resonant modes. 
Their evolution is determined by the temperature depen- 
dence of the frequency of the highest-frequency mode, cou- 
pled in the final analysis, as in the classical conception of the 
soft with the temperature dependence of the in- 
verse static dielectric susceptibility X-'. 

In planning questions for further investigations, along 
with the substitution considered in this paper of K by NH,, 
other types of substitutions could also be of interest, includ- 
ing hydrogen H by deuterium D (DRS) and atoms of K by 
Rb, T1, thiourea (SC(NH2),)  etc. Besides, it would be ad- 
visable to conduct new careful measurements of all the phys- 
ical (and, especially, thermodynamic) variables in a possi- 
bly wider range of temperatures, pressures, and 
concentrations. This would allow one to more reliably verify 
the deductions of the approach laid out here and, possibly, 
bring to it some numerical corrections. This is probable, 
since many of the experimental results for RS were obtained 
in the 1930-50 period and have since not actually been shar- 
pened. In concusion, we would like to emphasize (see also 
Ref. 15) that the study of systems with a DCP, opens excep- 
tionally bright opportunities for the most complete and mul- 
tifaceted verification of the existing theories of critical phe- 

nomena, be they the classical theory of Landau (as in the 
case of phase transitions in RS and, apparently, in certain 
fluid crystalslx) or the fluctuation theory of phase transi- 
tions (as, for example, near the double DCP in fluidsI2-"). 
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