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It is shown that, in the temperature region between the frequency of quasilocal oscillations of 
heavy isotopic defects of a harmonic crystal and the Debye frequency, the main concentration 
correction to the thermal conductivity is due to interference processes in phonon scattering by 
defects and is analogous to the weak localization of electrons in disordered media. 

1. INTRODUCTION 

The problem of the anomalous behavior of the density 
of states, of the heat capacity, and of the thermal conductiv- 
ity of disordered dielectric systems has recently been dis- 
cussed intensely in the literature. I-' The concept of fractons 
was p r~posed ' .~  to explain these anomalies; these are local- 
ized vibrations on fractals (structures with fractional di- 
mensionality). 

The existence of such vibrations was showns,' in a mod- 
el of a harmonic lattice with random broken bonds which 
have the properties of a fractal at intermediate distances. It is 
natural then to use the assumption of the existence of 
broken, and not weak, but limited bonds. 

In our view, the occurrence of localized vibrations in 
disordered harmonic systems is due in the first place to inter- 
ference processes in the scattering of phonons by defects and 
not by a possible fractal structure of these systems. We em- 
phasize that, unlike the localized and quasilocalized modes 
first d i scus~ed , '~~  associated with isolated impurities, the 
question is now about normal vibrations encompassing a 
cluster with a large number of defects. 

We study below, using as an example the model of a 
harmonic lattice with heavy isotopic i m p ~ r i t i e s , ~  the influ- 
ence of interference effects on the thermal conductivity of 
crystals, which is analogous to weak localization of electrons 
in disordered systems." We note that the frequency region 
w 5 w,, ( 0 ,  is the quasilocalized frequency) was considered 
in detail by Kagan.x We will be interested in the frequency 
region wo 9 w < w, (w, is the Debye frequency), where the 
corrections associated with coherent scattering of phonons 
by defects becomes considerable. It turns out that for such 
frequencies the defect mass can be considered infinite when 
evaluating the Green's function of the phonons. In percola- 
tion theory this corresponds to the problem of broken sites, 
the properties of which are close to the problem of broken 
bonds."' In this way the results obtained in the present work 
can be taken over for the model of a harmonic lattice with 
random broken bonds. 

General expressions for the thermal conductivity of a 
crystal with isotopic defects are obtained in $2. The Green's 
function for phonons is evaluated in $3 in the frequency re- 
gion w,, g w  < w D  , taking account of interference corrections. 
The self-energy is then determined in an approximation qua- 
dratic in the concentration. The two-phonon Green's func- 
tion is evaluated in $4. In the last section the thermal con- 
ductivity of a crystal is evaluated in the temperature region 

T<wD. 

We use a system of units in which Planck's constant and 
the main parameters of the unperturbed matrix (lattice con- 
stant, atomic mass, and velocity of sound) are equal to unity. 
For simplicity a scalar model of the vibration is taken.' 

2. GENERAL EXPRESSIONS FOR THE THERMAL 
CONDUCTIVITY OF A CRYSTAL WITH ISOTOPIC DEFECTS 

The Hamiltonian of a harmonic lattice with isotopic 
defects has, in the scalar model, the form 

Here i is the number of the site of a simple cubic lattice, ui 
and pi are the one-component coordinate and momentum 
operators, AU are the force constants, M is the mass of a 
defect, c, = 1 if the corresponding site is occupied by a defect 
and ci  = 0 in the opposite case. 

In order to determine the thermal conductivity we start 
from the expression" 

B - 

herep  ' and Vare the temperature and volume of system, 
j, ( t )  is the energy current operator in the Heisenberg repre- 
sentation. This expression can be written in the form 

1 d 
x = lim pV-' --((jH I jH))*, 

2-0 L d z  
( 2 )  

where ( (..I ... ) ), is the retarded Green's function. 
The energy current operator j,, has, in model ( I ) ,  the 

form" 

where m ,  ' = 1 + C, ( M  - ' - 1 ), R,, is the radius vector 
between the corresponding sites. For an ideal lattice (c, -0) 
Eq. ( 3 )  goes over into the well-known expression for the 
phonon energy current. l 4  

Substituting Eq. ( 3 )  into Eq. ( 2 ) ,  we find 

with K ( z )  = ( ( u ,  pi Iu,. p,. )).. In a way similar to what one 
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does in the theory of electrical conductivity (see, for exam- 
ple, Ref. 15), the function K(z)  can be written in the form 

K ( z )  =- (2xi)-lS d o f  ( o )  
~ { [ ~ u , ( u ~ ~ > ~ + , o - ( ~ l ~ j ~ u , . ~ w - , o l ~ ~ ~ ~ l  Pt>o-z 
+ [ ~ P , ~ ~ P i > o + i o - ( ( p ~ ~  (~~))~-iol((ujI~~~'))w+z 

+[cC~~l~i~))o+,o-(u~lpi . ) )~- io  l((u,,I pz))o-* 
+[((~~~I~t))o+io-~~j~I~i~~-ial((~jl~i~))o+*}~ (5 )  

where f (w) = [exp( Do)  - 1 ] - ' is the Planck function. 
The Green's functions which appear in Eq. (5  ) are related to 
one another by the exact relations 

~p i lp j ) )=-mi6 , j+mimJo2~ui l~ , ) ) ,  

Substituting Eqs. (6 )  and (5 )  into Eq. ( 4 )  we obtain 
0, 

where G,, (w + i 0 )  = ((uiluj)),,. ,,. We shall proceed to 
the momentum representation in Eq. (7 ) ,  expressing then 
the force constants in terms of the unperturbed frequencies 
w, , which in the Debye model are determined by the relation 
w, = lpl ( p i s  the quasimomentum). In addition, averaging 
over the position of the defects must be carried out in Eq. 
( 7 ) .  We obtain as a result 

where 

Kpf * ( a )  = - j a3q pqt~ . .  (o-tio) G-.-, (a*io) >, ( 9 )  
(2n )  

while brackets (...) denote the operation of averaging over 
the position of the defects. 

An approximate expression similar to Eq. ( 7 )  was ob- 
tained by Flicker and LeathIh with the help of the decoupling 
of the Green's function K(z ) .  The form of expression ( 8 ) for 
the thermal conductivity allows results from the theory of 
the residual resistance of a normal metal with impurities to 
be used. It is therefore convenient to describe below the dia- 
gram technique with symbols similar to Abrikosov et a/." 

3. ONE-PHONON GREEN'S FUNCTION 

The following graphical breakdown can be obtained by 
using standard quantum field theory methods for the 
Green's function G, (w) in the coordinate representation, 
using the Hamiltonian of Eq. ( 1 ) : 

,--. 
- = ? Y + - + i  
L J  $ J  b j 

(10) 
where 

/-, ,-\ ,-, 
+ &.*.*.--Sc + . - 

n n n n  9 
is the exact single-site T operator and the thick and thin 
continuous lines correspond, representively, to the total 
G, (w) and free GO, (w) Green's functions; expression 
( (p" lp" ) ),o = ( - 1 + w'G t, ( w ) ) corresponds to the dot- 
dash lines; the corresponding constant ( M  - ' - 1 ) is set at 
each cross; the dashed line connects corresponding to one 
and the same defect. We note that in obtaining Eqs. ( 10) and 
( 1 1 ) we have used Eq. (6 ) .  

In this section we will be interested in the averaging of 
the Green's function over the position of the defects 

(G,, ( o f  i0) >=6,-,G,(o+iO), 

here Z, (w + i 0 )  = A, (w)  - iT, (w)  is the self energy. I t  
can be shown that in the coordinate representation the 
Green's function of Eq. ( 12) takes on the form 

I - & exp (ikl?), kDR > 1 

here k ,  = ( 6 r 2 )  'I2, k = (a2 - 2 ( w  + i 0 )  ) 'I2. To  first or- 
der, when evaluating Z(w + i 0) ,  we shall omit in Eq. ( 10) 
diagrams with intersecting dashed lines and we shall ignore 
correlations in the position of defects. It then turns out that 
the self energy is independent of momentum and satisfies the 
self-consistent equation 

when n is the defect concentration. The quasilocalized fre- 
quency corresponds to the pole of Eq. ( 14) w,, - M - ' I 2 .  For 
w 5 w,, the Green's function ( 12) describes acoustic vibra- 
tions while Eq. ( 14) describes the renormalized velocity of 
sound and the Rayleigh attenuation of phonons (7 -  ' - w4). 
In the case which interests us, w$w,,, we have from Eq. 
(14) .  

Z(o+iO)=n -+i- . I- '  [z 4n 

Equation (15) is independent of the mass M and corre- 
sponds formally to the model of an infinitely heavy defect. 

In its form (if one abstracts the factor n ) ,  Eq. (15) 
corresponds to the expression for the T-operator for the scat- 
tering of particles by a potential of zero radius. This is ex- 
plained by the fact that an infinitely heavy defect represents 
a center of force for phonon scattering. 
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For small values of n and k the self-consistent Eq. ( 15 ) 
has a solution 

where k ' = (w2 - ) I", = 2r2n/kD. Equation ( 16) is 
obtained by ignoring the fact that no pair ofdefects can occu- 
py one and the same site. Correlation corrections of this type 
have been considered by many authors (see, for example, 
Refs. 19 and 20). In our case in the approximation of being 
quadratic in concentration these corrections to the self ener- 
gy are determined by the diagrams 

Here the shaded circles correspond to the factor 
T ( w + i O )  = Z ( w + i O ) / n  [seeEq. (16)], thedoubleline 
is the Green's function ( 13) with the self energy of Eq. ( 16) 
and the wavy line is the factor ( - S,, ) . On calculating these 
diagrams to the same accuracy as in Eq. ( 16) we obtain 

Like expression ( 16) 2' (w + i 0 )  is independent of momen- 
tum. 

We now go over to the evaluation of the interference 
corrections to the self energy, quadratic in concentration, 
determined by the diagrams 

[the symbols are the same as in the diagrams ( 17) 1.  In de- 
generate electron systems these diagrams are small" be- 
cause of the existence of the Fermi surface. The necessity of 
taking account of diagrams of the type of (19) in the low- 
density electron gas (Boltzmann statistics) has been pointed 
out by Iakubov and Polischuk." 

Summing separately in ( 19) the diagrams with an even 
and odd number of vertices, we obtain 

We will evaluate the corrections of Eq. (20) bearing in mind 
that the value of 2; ( w  + i 0 )  for p = k '$ n enters into the 
thermal conductivity. It is convenient to carry out the sum- 
mation in Eq. (20) separately for small and large R [in the 
sense of the inequality of Eq. ( 13 ) 1, where for large R it is 
convenient to use the following expression from Eqs. ( 13) 
and (16) 

e 7 k ' R e - R / 2 1  G,(o+iO) = - - 
4x2R (21) 

We note that in Eq. (21) the phonon mean free path 
I = k i / r 3 n  is independent of frequency. We give the final 
expression, corresponding to diagrams ( 19) for k ' I >  1 : 

here R * is a parameter satisfying the condition k 6 ' 
< R * < ( k  ' ) - ' [for R - R * the Green's function 
GR (W + i 0 )  is equally well described by any of the repre- 
sentations (13) l ;  

C i s  the Euler constant. 
For such concentration n that / nln(k 'R * )  1 & 1 and 

(k  ')' g n  < k ', the nonlinear terms in the real part of expres- 
sions ( 16),  ( 18) and (22) can be neglected. Taking account 
of these inequalities, which contain the main nonlinear cor- 
rection to the total imaginary part of the self energy, we 
obtain 

The following expression is thus obtained for the Green's 
function ( 12): 

and forp  = k ', r, (w + i 0 )  is given by Eq. (23).  
With the help of Eq. (13) we obtain an expression for 

the density of states: 

It follows from Eq. (25) ,  in accord with Shklovskii and 
~ f r o s , '  ' that a range w < w, exists within which the density 
of states goes to zero if w,, < w, . As regards the heat capacity, 
taking the acoustic part of the spectrum (w < w,,) into ac- 
count, it increases with increase in temperature according to 
a T law ( T < w,,), later reaches a plateau (w,, < T < w, ) and 
then again increases as T 3  ( T> w* ) . It can be shown that the 
corrections to the density of states and to the heat capacity 
associated with the non-linear terms in the self energy, Eqs. 
( 16), ( 18) and (22) are small ( - n') and in the sense the 
defects behave as isolated defects. 

4. TWO-PHONON GREEN'S FUNCTION 

The diagram technique described above is genealized 
directly for evaluating the functions of Eq. ( 9 ) .  It can be 
shown (in a way similar to that used, for example, by 
Neal") that these functions satisfy the integral equations 
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K,** ( o )  = G, ( o i i 0 )  G, (o*iO) 
k n  

from the vertex to the correction is the same as from taking 
account o f  interference effects in the Green's function ( 2 4 ) .  

and the function w; ' ( w )  is expressed through the irredu- 
cible vertex W* ' (p,,p,,p,,p,,w) with the help o f  the rela- 
tion 

The method o f  solving Eq. ( 2 4 )  for K ,+ ( w )  is well known 
(see, for example, Refs. 22-24). W e  give below, omitting the 
details o f  the calculation, the final result: 

= G p  ( o f  id) G p  ( a - i ~ )  [-p'--pk' 
r :(o) 

r h r  (6))-rhr' ( o )  I 
with 

kn 

rk. (01 rpr ( o )  = - J d q  q3ru2- ( o )  G,(o+iO) G, (a-iO) . 
0 

T o  the same accuracy with which the solution ( 2 8 )  and ( 2 9 )  
was obtained, the integral term in Eq. ( 2 6 )  for K ++ and 
K - ,  small in the parameter n, can be omitted. 

In this way the problem reduces to the determination o f  
w; - ( w ) .  

In the approximation quadratic in concentration the 
vertex in which we are interested is determined by the dia- 
grams 

In a similar way to diagram ( 19),  when evaluating ( 3 0 )  
the leading contribution comes from the region R % ( k  ' )  I 

and then the two latter diagrams in the case which interests 
us, p = q = k ', exactly cancel one another, while the first 
gives zero after carrying out the integration in Eq. ( 2 5 ) .  
Evaluating the fan-shaped diagram in ( 3 0 ) ,  we obtain 

W e  note that Eq. ( 3  1 ) indicates a large value for the back- 
scattering probability. Substituting Eq. ( 3 1 )  into Eq. ( 2 7 )  
we obtain 

From Eqs. ( 2 3 ) ,  ( 2 9 )  and ( 3 2 )  we obtain the following 
expressions for the magnitude o f  T; ( w )  and the "transport" 
damping TIr ( w )  = T,. ( w )  - T i .  ( w ) :  

It can be seen that in order o f  magnitude the contribution 

5. DISCUSSION OFTHE RESULTS 

The results obtained allow us to carry out an exact inte- 
gration over momentum inEq. ( 18).  Since for p -  CO, 

w s  ' ( 0 )  -0, T p  ( w )  'const  while the quantity 

integration over p can then tend to infinity. As a result, we 
obtain for the thermal conductivity in the case when phonon 
scattering by impurities is dominant, 

where r" ( w )  is determined by Eq. ( 3 3 ) .  
Since for w < w, the Green's function K + , K + ' and 

K p p  are real and coincide, the integration in Eq. ( 3 4 )  starts 
from a,  (this is indirectly connected with the density o f  
states going to zero for (II < o, ) .  

It follows from Eq. ( 3 4 )  that for T >  w , ,  :c is indepen- 
dent o f  T .  However, in this temperature region scattering o f  
phonons by one another becomes appreciable and the total 
conductivity ?r- '  - T.  In the temperature region w, 
< T < w, , in the absence o f  interference effects, the thermal 
conductivity o f  Eq. ( 3 4 )  :(- T '. W e  note that such a tem- 
perature dependence holds when the scattering o f  phonons 
by the boundaries o f  the specimen is dominant. This is con- 
nected with the fact that for T>o, ,  phonons are scattered by 
defects as by immobile centers ( M -  ) .  I f  w,, < T < w, the 
thermal conductivity, determined by phonons with ro > co,, 
falls exponentially as exp( - w, /T)  and becomes an essen- 
tially constant contribution to the thermal conductivity as- 
sociated with heat transport by acoustic phonons with 
w < 0,) .  For T <  w,, Eq. ( 3 4 )  is unjustified. In this region heat 
is transported by acoustic phonons which undergo Rayleigh 
scattering ( r -  ' -a4) and correspondingly " ;r - T I. 

W e  now pass to a consideration o f  the interference cor- 
rection. It follows from Eqs. ( 3 3 )  and ( 3 4 )  that the relative 
contribution o f  this correction to the thermal conductivity 
for w,  < T<w,  is equal to 

where A,. = ( f i / T )  is the thermal phonon wavelength and I 
is the phonon mean free path (see 93) .  W e  note that the 
correction in Eq. ( 3 5 )  is the main one and is due to intefer- 
ence effects ( the  others, associated for example, with corre- 
lations in the position o f  the defects, are small in the param- 
eter T / w D  ) .  W e  also point out the quantum nature o f  this 
correction [the explicit dependence o f  Eq. ( 35 ) on f i ]  . As for 
electrical conductivity, the interference scattering o f  phon- 
ons by defects leads to a reduction in thermal conductivity, 
associated with the increase in the probability o f  back scat- 
tering." 

W e  note that in the limit o f  very low temperatures (un-  
like electrons) the interference correction to the thermal 
conductivity is insignificant, since heat is transported by 
phonons which undergo weak Rayleigh scattering for which 
the probability o f  back scattering is vanishing small. 

The authors thank A. Y a .  Polishchuk for many valu- 
able discussions. 
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