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In the classical approximation, we examine the problem of radiation by channeled positrons in the 
field of a longitudinal ultrasonic wave when the condition of parametric resonance is satisfied. We 
show that in the case of planar channeling the intensity ofthe spectral distribution of the radiation 
can be several times larger than when the resonance condition is not satisfied. 

1. Usually in the calculation of the radiation from a 
particle in planar channeling one uses the averaged potential 
of the atomic planes. Under certain conditions, however, the 
traveling particle may "feel" the separation d ,  between the 
atomic chains forming the planes. These conditions can be 
realized, in particular, at large amplitudes of transverse os- 
cillations of the particle in situations approaching dechan- 
neling. Then, the approximation of constant potentials on 
the atomic planes is inadequate and it is necessary to allow 
for the influence of discrete atomic chains. This allowance 
was made in Ref. 1 [see also Ref. 2, Sec. 1.141 by expanding 
the real potentials of the atomic in Fourier series and consid- 
ering the motion of the particle in such a potential as classi- 
cal. In particular, for the case when the atomic chains form- 
ing the planar channel lie in both planes without shifting, the 
Mathieu equation was obtained for the motion in the xz 
plane, transverse to the direction of the entry of the particle 
into the crystal (z axis); this describes the so-called reso- 
nance dechanneling of particles, which arises under certain 
conditions. There are also experiments confirming the possi- 
bility of resonance dechanneling [see, for example, the liter- 
ature cited in Ref. 2, Sec. 1.141. 

The classical theory of radiation by channeled particles 
in presence of an external field periodically perturbing the 
crystal was first given in Ref. 3. The quantum theory of the 
effect is expanded in Refs. 4 and 5. 

We note that if the angle of planar channeling is much 
larger than the Bragg angle, as is well known, we can give a 
classical description of the motion of the particle in the chan- 
nel, which besides its relative simplicity, allows an analogy 
with well-studied cases of parametric resonance. 

In Refs. 6 and 7, in further development of Ref. 1, the 
classical approximation is used to study radiation from an 
ultrarelativistic positron entering a planar channel of a crys- 
tal with initial velocity vo z c  at an angle 9,, less than the 
critical angle for scattering, in the presence of an external 
sound wave. It is supposed that the sound wave (hypersound 
or ultrasound) has the form of a standing wave in the direc- 
tion of the z axis, along which the channeled particle enters 
the crystal. In the case where the sound wave is longitudinal, 
there is a new periodic structure with period equal to the 
sound wavelength A, which is greater than the separation 
between atomic chains, A, > d,. Since the wavelength can be 
varied, the realization of this resonance condition is facilitat- 
ed. Assuming that the external sound wave weakly perturbs 
the uniform potential of the atomic planes, the potential en- 
ergy of a positron in the channel in the field of the external 
longitudinal sound wave can be described, in the harmonic 
approximation and in the first order of the displacement of 

the atomic lattice in the field of the wave, in the following 
form.'s6.' 

U ( x ,  z )  = A  cos (?.nz/h,) + V o  [ 1 - p  cos (2nz/h,) ]x2 .  ( 1 ) 

Herex is measured from the median plane, Vo = 4 U, /dZ, Uo 
is the maximum value of the potential energy of the positron 
in the channel, d is the width of the channel, A is a constant; 
p is a small parameter related to the power I, of the sound- 
wave: I, - &us (po,d, ); p is the matter density in g/cm3, and 
u, and w, are the velocity and frequency of the sound wave. 
In ( 1 ) the time dependence of the potential is neglected; this 
is valid provided that o ,  3-9 1, where r is the time of flight of 
the channeled positron across the crystal. 

Since the angle 9, of the entry of the particle into the 
crystal is small enough (9,g 1 ), the transverse velocity of 
the particle in the planar channel satisfies the condition 
u, u, 9 , & v, zz u, . Taking account of this condition, we 
can write the equation of motion of the ultrarelativistic posi- 
tron in the potential ( 1 ) in the form 

d2x x=O, 

dt' 

where u, = (2  V, /m, y )  ' 1 2 ,  m, is the rest mass of the posi- 
tron, y = ( 1 - pZ) - ' I 2 ,  p = u /c. Replacing z in (2)  by E 
t, where E, is the velocity of the particle averaged over the 

period of the crystal, we obtain for the motion of the particle 
in the transverse direction the Mathieu equation 

dZx 
- + coo2 (1-p cos Qt)  x=O, 

r!L2 

where R = 2.irvZ/A,. Assuming that the parameter p is small 
( & 1 ), it is possible even in the first approximation to ob- 
serve~.z36.7 in ' the oscillatory system described by (4)  a para- 
metric resonance at o, = a /2 ,  which has very great practi- 
cal interest. For a particle with energy 5 GeV and U,  = 22.8 
eV, d = 1.26 A, and wo = 4.5 x 1014s-I the sound wave- 
length determined by the resonance condition @,,--R/2 is 
2.4 A, which corresponds to a frequency w, zz 109s-'. The 
transit time 3-< 1/w, = lo-.' S; meaning apparently that a 
crystal of thickness I = c/w, & 30 cm, that is, no more than a 
few centimeters, can be used. We shall see below, however, 
that the presence of other, more stringent conditions signifi- 
cantly reduces the allowable thickness of the crystal. 

In Refs. 6 and 7, with the assumption p 4 1, Eq. (4)  
was solved by the method of successive approximations. In 
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the first nonvanishing approximation they found the trajec- 
tory and speed of the particle, and the maximum frequency 
of the radiation and its intensity for the first few harmonics. 
The results ~btained,~. '  however, are valid far from reso- 
nance, when R/2 is not too close to w,: 1 R/2 - w, I )pwo and 
the expression for the intensity of radiation is not fundamen- 
tally different from the corresponding expression obtained 
in Ref. 8 with the assumption of a harmonic potential for the 
atomic planes, U ( x )  = Vox2.  It  is interesting to consider a 
solution of Eq. 4 in the immediate neighborhood of reso- 
nance, w, z R / 2 .  The amplitude of the transverse oscilla- 
tions of the trajectory of the particle grows in this case, 
which may lead under specific conditions to a more notable 
increase in the intensity of the radiation by the channeled 
particle in the resonance regime. 

2. Assuming that p 4 1, we can consider for Eq. (4)  in 
first-order approximation only the resonance appearing at 
wo = R/2, and construct an approximate solution of this 
equation by following the asymptotic method of Bogolyubov 
and Mitropolskii (Ref. 9, Chap. 111). The solution of Eq. 
(4) ,  satisfying the condition x = 0 at t = 0 can be written in 
the form 

x ( t )  =a,,ea.' sir1 (Bt/2), v,(t) =2-'"u,eAt cos (62212). ( 5 )  

where 

u, zu,9-,, is the initial transverse velocity of the positron, 
andA is real and positive and is determined by the following 
expression 

The condition of reality of A is to first order in p 

Thus, if the frequency of the external perturbation is in the 
interval 

then in the system there appears the principal parametric 
(demultiplicative) resonance, at which the amplitude of the 
transverse vibrations grows exponentially in time r. The in- 
equality (8) determines the region ofinstability inside which 
the equilibrium position x = 0 is unstable and oscillations 
arise spontaneously in the system, and lead under certain 
conditions to resonance dechanneling. The longitudinal 
component of velocity u, is determined by the condition that 
the total velocity u: + US = u i  be constant under the condi- 
tion v: <v; -c2,  and is equal to 

From the requirement v:/u: 4 1 it follows that 0 Si l t  5 1. We 
note that ifilt) 1, the formulas obtained are inapplicable; at 
such flight times dechanneling of the particles takes place. 
The time r of the flight of the particle across the crystal, in 
the course of which we can use the formulas obtained above, 
is bounded by the conditions r< 1/A = 4/pw, and w,sr< 1. 
The resulting condition 4/pwo < l/w, means u, /c <p/8 < 1, 
that is, the intensity of the sound wave must be greater than 

the limit determined above. The velocity of sound in solids 
(quartz) is v, z 6 X  lo5 cm/s, that is v,/cz2 X and 
consequentlyp) We pickp = 0.1. Then for a positron 
with energy E, - 5 GeV and for w, = 22.8 eV, d = 1.26 A, 
we have w, = 4.5X 10'4s-', the thickness of the crystal 
I S  CT = 4c/pwo = 3 X cm, and the power of the ultra- 
sound wave I, ~ 0 .  12w/cm2. 

The period T of the oscillation of the particle in the 
crystal is 2n/wo = 4n/R and the distance traveled in one 
period is lo = c T  = 2.nc/wo = 4?rc/n; consequently 
I = (2/np)10 and in its entire passage through the crystal 
the particle succeeds in making a great number of oscilla- 
tions; during this timeilt can grow to a magnitude of about 1. 
Thus, for the whole time of flight across the crystal, the fac- 
tor d ' t  slowly and monotonically changes from 1 to 3 and on 
averaging over time it is possible to neglect the change in this 
factor, replacing exp(/it) in the formulas ( 5 )  by exp(At *), 
where t * is an effective time of fiight of the particle across the 
crystal. For this case, we have 

Q V~ 7,t- Q 
.z ( t )  =x,eht" sin - t ,  u,(t) = --c cos - t ,  

2 1 2  2 

where 

and Su, is the oscillatory part of the longitudinal velocity, 
equal to 

It is easy to verify that the solutions (5 )  and ( 10) satisfy Eq. 
( 3 )  with accuracy to higher order than (x,,o,,/u,,) 2. 

3. For the calculation of the intensity of radiation when 
the condition w0 - R/2 is fulfilled, we use formulas obtained 
in Ref. 10 for the spectral and angular distribution of the 
intensity of the k  th harmonic of the radiation, replacing x,, 
these formulas with x, = x,,exp(/Zr * )  (x,, is the initial am- 
plitude corresponding to the harmonic potential). In the di- 
pole approximation, when the condition x,w,/c( l /y  is 
satisfied, it radiates mainly the first harmonic k = 1, the 
maximum frequency of the radiation is w, z2w,,y2 and 
hardly differs from that in the absence of resonance. For the 
spectral distribution of the radiation in the dipole approxi- 
mation ( k  = 1 ) we have 

ForAt * 5 1, we haveexp(2il *t) 5 10and theintensity ofthe 
radiation increases by several times. We note that the analo- 
gous result for a sound wave transverse to the direction of 
motion was obtained in Ref. 4 (neglecting absorption). The 
use of the classical approach is limited by the condition that 
the energy of the radiated photons be small compared to the 
energy of the positron: fim/mc2y< I. On fulfilment of the 
condition for the dipole character, this limit leads to the fol- 
lowing inequality: A, ) 2nA, y, where A, is the wavelength of 
the ultrasound, and A, = W m c  = 2 . 4 6 ~  10 - '' crn is the 
Compton wavelength of the positron. As is clear from this 
inequality, for A ,  = 2.4X cm the value of y can vary in 
a fairly wide range: from 10 to lo4. If the dipole condition is 
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not satisfied, l/y <<x,w,/c<< 1, the maximum radiation fre- l /y  5:xowo/c, only the odd harmonics are radiated, the an- 
quency of the harmonics in the case considered is gular distribution of intensity dl, /do decreases by roughly 

exp( - 4At *), and the spectral distribution of intensity of 
o k , n ~ 4 a o k ( x o ~ o / ~ ) - 2  radiation dl, /dm is practically unchanged. 

In the general case (9<xowo/c),  the dependence of the and are decreased by a factor exp( - 2At *) compared to the 
intensity of radiation on the amplitude x, of oscillation is 

nonresonant case. The condition for the validity of the classi- 
quite complicated and a numerical estimate of the spectral cal method is 
and angular dependence of the radiation is necessary. From 

In the relativistic case (y, 1 ) and in the range of radi- 
ation angles o<< 1, where the bulk of the radiated intensity is 
concentrated, the intensity of the radiation in the different 
harmonics k> 1 can be represented in the form" 

where 

X {Si- (kSiS2S2) [ 1-t- ( 6 y ) Z + ' l ~ ( ~ 0 0 0 ~ / ~ ) 2 1 / 4 k  ( f l y ) '  cosZ c p ) ,  

I-koolo ti, 
f l k  = arccos , PI=--. 

C 
(13) 

P. 

From these formulas it is apparent that when the angle of 
radiation 9 is less than the angle of entry of the particle into 
the crystal: 8<xowo/c, and the dipole condition is violated: 

the results of numerical calculations of the spectral distribu- 
tions for the first ten harmonics for different values of the 
amplitude x0,l0 we can assert that the spectral intensity of 
the radiation is increased severalfold with growth of the am- 
plitude of the transverse oscillation x, (upon the satisfaction 
of the conditions indicated above); at the same time the 
share of the radiation in the higher harmonics increases mar- 
kedly. We recall, in particular, that the formulas obtained 
above are valid for crystals of thickness 15 4c/,uwo, which in 
the example we considered comes out as we see to -- 3 X lo-" 
cm. 

Analogous considerations can be made also for the case 
of axial dechanneling of electrons. 
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