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We show that the polarization of a light beam passing near a binary star is rotated periodically 
relative to its direction of propagation. Further, we show that for a ray traversing a stationary 
field, the total rotation of the polarization vector vanishes in the weak-field approximation. 

1. It has recently been demonstrated' that galaxies con- 
tain high-power sources of polarized light, the so-called po- 
lars. Here we show that if the light from a polar passes near a 
binary star (or in general, any source of a nonstationary 
field), its polarization vector will be rotated periodically in 
the plane perpendicular to the ray's wave vector. If the rate 
at which the binary star revolves is w,  the polarization of 
light will oscillate at a rate 2w. By measuring this effect, one 
can obtain information about the parameters of the binary 
system. 

2. Below, we discuss the weak-field case and derive an 
expression for the rate of rotation of the polarization vector 
q, in the laboratory coordinate system. The metric tensor is 
assumed to be of the form g,,  = y,, + h l k ,  where y,, 
= diag( I ,  - 1, - 1, - 1 ). In a locally inertial frame of 
reference, there is no rotation, and thus in the laboratory 
frame 4 may be expressed in terms of the first derivatives of 
h,, . We can then write out the total rotation angle in the 
form 

where the A,,, are numeric& constants, hu,,, = ahi, / a x n ,  
and the integration is taken over the trajectory of the optical 
beam. Since the curvature of a ray of light is also of order 
Ih, I, we can, to the precision contemplated, neglect the cur- 
vature of the light beam and integrate along a straight line. 

Let the ray be parallel to the x-axis. The angle q, should 
be invariant both with respect to global rotations in theyz- 
plane, and to arbitrary local gauge transformations that 
leave the asymptotic behavior of hi, unchanged. Two combi- 
nations can be constructed that are pseudoscalars in the yz- 
plane, namely a, = h,,,, - h ,,,, , a ,  = h,,,, - h ,,,, . Consid- 
er the local transformations 

It can then readily be seen that the requirement that q, be 
invariant with respect to rotations in the yz-plane and the 
transformations (2)  determines A,,, up to an overall multi- 

Equation ( 3 )  is in fact the desired expression for the rotation 
angle. 

If the set of objects that creates the field hik is nonrela- 
tivistic, then h ,, - va and hap - v2, a = 1,2,3, where v is the 
speed with which the objects are moving. To first order in v, 
then, only the first two terms survive, and for a ray traveling 
in an arbitrary direction, we have 

@='l2n rot g, (5 

where n is the unit vector in the direction of the ray, and the 
vector g is defined by the relationship (g),  = h ,, . It is well 
established (see Ref. 2, for example) that in the present ap- 
proximation, a =  ( 1/21 V X g is the rate of precession of a 
gyroscope relative to the laboratory frame; since a system 
stabilized by a gyroscope is a locally inertial system, the 
equivalence principle leads directly to Eq. (5 ) . Equation (4)  
has been verified independently3 using a clock-and-measur- 
ing-rod formalism. 

3. We now derive an explicit expression for q, in the field 
due to a number of massive bodies moving within a bounded 
region, in the center-of-mass coordinate system of the field 
source. The standard expression for h,  takes the form 

( k  is the gravitational constant, and the speed of light is 
c = 1). We will assume that the distance to the system of 
masses satisfies L > I, where 1 is a typical dimension of the 
system. A multipole expansion is then appropriate. Putting 
the origin at the center of mass of the gravitating system, we 
call the radius vector of an optical pulse r, and the radius 
vector of a point within the material system p, with p ( p )  
being the matter density. We then have 

where 

plicative factor: 
and where M is the total angular momentum of the system; 

9 = A J (h0a;2-h02,3+hi3,2-hiZ,3) dt.  ( 3 )  derivatives are taken at the observation point (radius vector 
r ) .  Since M is a constant of the motion, in contrast to a 

We can find the constant A by examining the rotation of the magnetic moment, we see from (8)  that 
polarization vector in a coordinate system that rotates at a 
constant angular rate relative to the light ray; we then obtain 

[Mr I g,=2k - 
r3 ' 

(9)  

~ ' / 2  ,fat (~os,2-~02,3+~~3,2-hi2,3~. (4) and the corresponding contribution to 4 is 
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FIG. 1 .  The case m ,  = m, for a general orbit. A is the point at which the 
ray intersects the plane of the orbit, and B is where it intersects the xz- 
plane. 

Obviously, the contribution of ( l o )  to the total rotation an- 
gle q, is zero. In the stationary case, g, = 0, and thus q, = 0. 

The rotation of the plane of polarization in a stationary 
gravitational field has previously been thoroughly ana- 
ly~ed .~-"  Conclusions similar to ours regarding the absence 
of rotation to order k M / ?  are also in the On 
the other hand, a nonzero rotation angle was derived in Refs. 
4,6, 10, and 12. In our opinion, Skrotzkii4 made a mistake in 
the last step of his calculation, since the general formula for 
the rate of rotation of the plane of polarization that he ob- 
tained is easily reduced to the form (10). The sources of 
error in Refs. 6 and 10 were analyzed by Fayos and Llosa." 
Lastly, the result obtained by Gnedin and DymnikovaI2 is 
not entirely clear, since the highest-order term in the expan- 
sion for the rotation angle does not contain the Newtonian 
constant. 

In the nonstationary case, to first order in the velocity of 
the material bodies, we finally obtain 

4. Consider now $&dt for the case of a binary star. Let us 
restrict our attention to circular orbits, and let m ,,R, and 
m,,R2 be the mass and radius of the primary and secondary 
stars; w is the rate of revolution. Choose axes such that the 
light ray is parallel to thex-axis and intersects the yz-plane at 
a point with coordinates y = I cos P,z = I s i a  the z-axis in- 
tersects the orbital plane, and the latter is inclined at an angle 

a to the xz-plane (see Fig. 1 ). Both stars are located in the 
xy-plane at time t = 0, and the light ray intersects the yz- 
plane at time 7. The final expression for q, then takes the 
form 

4ko (mlRlZ+m,R22)  
c P = -  sin 28 sin 2 o ~  I Z  

+ sin a cos 28 cos 2or). ( 12) 

5. It is immediately apparent from ( 12) that the plane 
of optical polarization oscillates at a rate 2w. Note that if the 
ray is perpendicular to the orbital plane, e, - cos 2 ( w ~  - P) ;  
as one might expect, the rotation angle then depends only on 
the difference w~ - P. If the ray lies in the orbital plane 
(a = 0,P = 77/2), the rotation angle goes to zero, as is di- 
rectly evident from ( 1 1 ) . 

To summarize, we note that although the original ap- 
proximation was p < 1, v < 1, the final result actually holds 
even when vl /R 1. To understand why this happens, con- 
sider the case a = a/2. Equation ( 1 1 ) then yields 

cos 2 0  (t+.c) 
p=-3k (mlR,2+rnzRl') o 

, ( lZ+tZ)  
at. 

For wl4 1, the numerator of the integrand can be replaced by 
cos 2wr, which corresponds to ( 12); for wl) 1, calculating 
the integral along the branch cuts of the denominator, we 
find that it is proportional to e - ' " I ,  but in that event q, will 
be determined by the high-order terms in the expansion in v, 
which we have discarded. Thus, our result holds both when 
wl- v l  /R ( 1 and when 14 R /v. Note that if the orbits are 
elliptical, all harmonics of w appear in the oscillations. 

If suitable polar-binary-star pairs were to be found, the 
requisite numerical calculations could be carried out with- 
out assuming v < 1 and without expanding in powers ofp/l. 
The effect that we have considered could also come into play 
when light passes near a star that is shaped like a triaxial 
ellipsoid. 

We thank A. V. Berkov and N. A. Voronov for useful 
remarks, and Ya. A. Smorodinskii for the discussions that 
led to this work. 
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