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The formation by diffusion of a nonlinear resonance in a three-level system with a large Doppler 
broadening is studied. An asymptotic expansion of the work performed by a test field is derived in 
the limit of intense diffusion. The profile of the resonance is found to consist of three components: 
a narrow peak, a broad part of diffusion origin, and Lorentzian wings. It is not possible to separate 
the narrow and broad components by varying the polarization of the fields. 

1. INTRODUCTION 

The diffusive motion of an atom in velocity space is 
known to result in a broadening of nonlinear spectral reson- 
ances.' Spectroscopic manifestations of particle diffusion in 
the field of an intense light wave have recently been studied 
in detail in the particular case of two-level systems.2s3 A top- 
ic of special interest is the diffusion caused by Coulomb ion- 
ion scattering through small  angle^,^ because of a possible 
application of nonlinear spectroscopy in plasma diagnostics. 

To determine the physical nature of the diffusive broad- 
ening we consider the distribution of the difference between 
the populations of two atomic levels in the projection of the 
velocity v onto the wave vector of the light wave, k. A reso- 
nant wave "burns out" a Bennett dip or peak width T/k ( T  
is the homogeneous linewidth) against the background of a 
Maxwellian distribution. The diffusion in velocity space 
with a coefficient D tends to smooth over the nonequilibrium 
structure. This structure spreads out, and the particles move 
out of resonance with the wave. The typical change in the 
velocity of an atom over the lifetime T,- ' in level j is 
(D  /rj  ) 'I2. Since we have D = vE2/2, where v is the trans- 
port collision rate, and E is the average thermal velocitv, the 

this broadening. Furthermore, when the line used as the test 
line was changed, the width of the resonance changed. Such 
unexpected experimental results force us to acknowledge 
that we do not have a clear picture of the basic theory of the 
test-field method. 

Our purpose in the present study was to calculate the 
diffusion lineshape of a nonlinear resonance in a three-level 
system with a large Doppler broadening. In Sec. 2 we present 
a system of kinetic equations for a density matrix. We find 
Green's functions for these equations. In Sec. 3 we derive 
equations for the lineshape of a narrow nonlinear resonance 
in a Raman-scattering arrangement. We derive an asympto- 
tic expansion for the limiting case of intense diffusion. The 
results show that the lineshape of the resonance is made up of 
three parts: a narrow peak, with a profile which is the square 
root of a Lorentzian profile; a broad diffusion part; and Lor- 
entzian wings. Section 4 incorporates the degeneracy of the 
states in angular-momentum projections. It is found that- 
in contrast with the case of a two-level system-the narrow 
and broad components cannot be separated by varying the 
polarizations of the saturating and test fields. In Sec. 5 we 
compare this new theory with experimental data.' - - .  

ratio of the diffusion width to the homogeneous width, 
2. AND GREEN,S 

(v/Tl ) '/'kE/r, contains an "amplifying factor" kTi/r$l 
and can be large even under the condition v/Tl < 1. In addi- We consider a gas of particles which are interacting re- 

tion to acting on the velocity distribution, the diffusion sonantly with an external electromagnetic field. In the 

causes a frequency modulation of the dipole moment; the Wigner representation, which is convenient for a classical 

parameterp = v(kE)z/r3 = 2 0  /r3 as a measure of description of the translational motion of atoms, the equa- 

the role which it plays. tion for the density matrixp(a,al,r,v,t) takes the form's9 

Several experiments have been carried out to measure 
the width of the Lamb dip in the frequency dependenx of 
the output power of argon-ion lasers at various charged-par- 
ticle The results of these measurements agree 
with the qualitative picture drawn here; the diffusion width 
of the dip due to ion-ion collisions has exceeded the homoge- 
neous width by a factor of three to five. 

The test-field method differs from the Lamb-dip meth- 
od in that it allows one to observe ultranarrow resonances 
caused by two-photon transitions or, according to ideas cor- 
responding to resonant conditions, caused by nonlinear in- 
terference effects stemming from a mixing of states by a 
strong field. In these processes, there may be a complete or 
nearly complete cancellation of the Doppler shifts of the 
strong and test waves, with the result that the resonances in 
the spectrum of the test field are particularly narrow. It 
might seem that such resonances should undergo a giant 
broadening due to velocity diffusion, but experiments by Le- 
bedeva et al.' (A = 4880 and 5 145 A, ArII) did not reveal 

(:+ V V , )  p(a, a'; r ,  v, t )  = ~ ( a ,  a') + ~ ( s  a') 

-i I ~ ( a ,  a,; r ,  t )  p (al ,  a'; r, v, t )  

-p (a,  a,; r,  v, t )  V(a,, a'; r, t )  I ,  (2.1) 

where a = a J M  is the set of quantum numbers, J i s  the total 
angular momentum, and M is its projection. The matrix R 
describes a radiative relaxation, and S is a collision iritegral. 
The operator V is the Hamiltonian of the interaction of the 
atom with the electromagnetic field. In Eq. (2.1) we are 
ignoring the effect of the external field on the translational 
degrees of freedom of the atom. 

We first consider a three-level system without degener- 
acy (we will write a = j, the index of the energy level, as a 
subscript). We assume that an atom is interacting with the 
electromagnetic radiation in a Raman-scattering arrange- 
ment through a lower level n (Fig. la) .  The strong field and 
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FIG. 1.  Test-field spectroscopy. a-In an arrangement for Raman scat- 
tering through a lower level; b--through an upper level. a )  Vconfigura- 
tion; b) A configuration. 

the test field are represented by the traveling waves 

E(r, t) =E exp(-iot+ikr) , E,(r, t) =EM exp (-iot+ik,r), 

(2.2) 
which are in resonance with the m-n and I-n transitions. 
The matrix elements of the dipole interaction of the light 
with these transitions are 

V,,,,,=-G exp(-iQt+ikr), G=-Edmn/2ti, Q=m-om,, 

(2.3) 
Vln=-G, exp (-iQ,t+ik,r) , G,=-E,dLn/2h, B,=o,-oln, 

where dj, and w,, are the matrix elements of the dipole-mo- 
ment operator and of the Bohr frequencies of the j-n transi- 
tions ( j = m,l). The I-m transition is forbidden in the dipole 
approximation. We can seek the diagonal elements of the 
density matrix in a time-independent form, and the off-diag- 
onal elements in an oscillatory form (for the forbidden tran- 
sition at the Raman frequency e = R, - R, q = k, - k) :  

pjj=rjj, pmn=rmn exp (-iQt+ikr), pln=rln exp (-i9,t-I- ik,r) , 
pml=rml exp (ist-iqr) . (2.4) 

Substituting (2.4) into (2.1), we find the following steady- 
state system of equations for the amplitudes rC : 

where TC are the relaxation constants of the levels and the 
polarizations, which incorporate both radiative processes 
and collisions which do not involve a change in velocity (the 
relaxation-constant model),'' A,, are Einstein coefficients, 
and g, are the level excitation functions, which we assume to 
be Maxwellian, 

where T, and m are the temperature and mass of the parti- 
cles. Taking the particles to be ions, and assuming that they 
scatter according to a Coulomb law, we assume that the rates 
Y and the kernels A of the collision integrals 

s,, (v) = -V (v) P ,~+  J A (V I v ~ )  pii (v/) avt (2.7) 

do not depend on the states; we assume that the collisions are 
elastic; and we assume that the kernels are of a difference 
form: 

J Su(v) dv=O, A (v(vf)  --A (v-v'), v-const. (2.8) 

We are ignoring the slowing of the particles caused by the 
dynamic friction force. 

We can find a solution of system of the integral equa- 
tions (2.5) by perturbing in the field amplitudes G and G,. 
A perturbation theory is usually constructed with the help of 
Green's functions, which are in turn calculated by means of 
Fourier transforms. The calculations can be shortened 
slightly by changing the order of operations: by first taking 
Fourier transforms of Eqs. (2.5), 

and seeking the Green's functions in the ( representation at 
once. Here @ is any of the functions which figure in (2.5). 
The variable (, which is the conjugate of the velocity v, has 
the meaning of a quantity which is proportional to a differ- 
ence between coordinates, and transformation (2.9) is a 
transition from a Wigner representation to a coordinate rep- 
resentation of the density matrix. The integral equations 
(2.5) with a difference kernel reduce to differential equa- 
tions after Fourier transforms are taken. 

The equations for the diagonal (& ) and off-diagonal 
( A, ,i # j) Green's functions are 

and the complex parameter r and the vector p take on the 
following respective values for the functions f,, , h,, and 
fmn : Tmn + iR, - k; r,, - in,, k,; and rm, - ie, q [see 
Eqs. (2.5) 1. The diagonal Green's function is simply 

while the off-diagonal Green's function takes its simplest 
form in a coordinate system whose z axis runs parallel to the 
vector p: 

1, 5>0 ,  c z = h  a = sign (pn) 
0 (5)  = 

0, ~ , < 0 ,  51=5-n5z  

Here n is a unit vector along the z axis. In the following 
sections of this paper we will be treating the case in which the 
vectors k and k, are parallel, so that we can select a common 
z axis for all of the off-diagonal Green's functions. 

The degeneracy of the states in the angular-momentum 
projections can be dealt with conveniently by expanding Eq. 
(2.1) in irreducible tensor operators (the xq representa- 
tion) : 
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where L(gJM,alJ  'M ') is the matrix element of an arbitrary 
operator L in the kasis of eigenfunctions of the angular-mo- 
mentum operator J. If the collision integral is diagonal in xq 
and does not depend on x or q, the Green's functions are 
again diagonal: 

The diagonal (in x )  functions A,, satisfy the same equations 
as are satisfied by the functions J I ,  in the model of nondegen- 
erate states. 

In the case of interest here, in which the waves are prop- 
agating in the same direction and have approximately equal 
frequencies (k, t fk,  k, -- k), we can ignore the gradient Vc 
in the equation for f,,,; the equation then becomes an alge- 
braic equation, like the equations for the diagonal elements 
f,, . Of the six we are left with only two differential equa- 
tions, for f,,, and for A,, . 

3. SHAPE OFTHE NONLINEAR RESONANCE 

Let us find the profile of a nonlinear resonance in a 
model of nondegenerate states. For this purpose we con- 
struct a perturbation theory in the strength of the optical 
field. In zeroth order, the matrix rU (g) is diagonal, and we 
find the following expressions for the populations: 

Thereafter, in odd orders in the field, polarizations appear 
on the allowed transitions r,, and r,, , while in even orders 
polarizations appear on the forbidden transition r,,, along 
with corrections to the populations rj for the effect of satu- 
ration. The work performed by the field E, on the I-n transi- 
tion is given in the 6 representation by 

The complete expression for the work performed by the 
field, (3.2), reduces, within the first nonvanishing correc- 
tions for the strong field, to the sum of four terms. There is a 
linear term proportional to the intensity of the test wave, 
I G, 1 *, and there are three nonlinear terms which contain the 
product of intensities / G, G 12: 

3 

Here NV = rii - rj is the difference between unperturbed 
populations (3. I ) ,  and the angle brackets indicate integra- 
tion over all of the variables f i  inside the angle brackets. 

The other terms of the nonlinear part of the work per- 
formed by the field correspond to three basic effects of non- 
linear spectroscopy: P F ,  a population term, corresponds to 
the effect of saturation; PF' corresponds to nonlinear inter- 
ference; and P b3' corresponds to field splitting. The last two 
effects are manifested only for copropagating waves, as in 
the collisionless case; the field splitting disappears at k, > k. 

Relations ( 3 . 3 )  hold for arbitrary kernels of the colli- 
sion integrals. In the case of difference kernels, the Green's 
functions4, and&, are given by (2.11) and (2.12). For the 
Coulomb scattering in which we are interested here it is nat- 
ural to adopt the diffusion approximation, in which we have 
p ( f )  = Df2,  where D is a diffusion coefficient (we recall 
that we are not considering dynamic friction). We also as- 
sume that the Doppler width is significantly greater than the 
structure in which we are interested here: kE) Ill 1 ,  Tu, 
(Dk ' / r V  ) ' I 2 .  We can thus replace the Maxwellian distribu- 
tion by a 6-function: 

exp [- (E6) '121 = (2n)"6 ( 6 )  15" 

As a result, expression (3 .3  ) for the work performed by 
the field simplifies substantially. A linear absorption or am- 
plification reduces to the familiar Doppler lineshape 

~,"?=2ho,-1 G,J ' N l n  (0) exp (-8,2/k,2F2). 
k c  

(3.4) 

The nonlinear terms in the work performed by the field can 
be calculated by substituting the Green's functions (2.1 1) 
and (2.12) into expression (3.3). Here are the expressions 
found for the case of copropagating waves (k, t tk ) ,  in 
which the resonance in the "bent" three-level system (Fig. 
1 ) is found to be narrower2': 

P,,(wm Re { IdFexp [ - ( rln-iBp 

k-k, 0 k, k-k, 
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The expression for Pp'  in the case k, < k  is found from the 
expression given hereby interchangingvariables, 5 ' c-t f ",in 
the square brackets. When the waves are propagating in op- 
posite directions ( k ,  t i k )  the nonlinear interference effect 
and the field splitting are not manifested ( P p '  = P F )  = O), 
and in the expression for the population effect P F  we 
should change the sign of the frequency deviation of the 
strong field: R  - - R. 

The factor 1 -Amm / ( T m m  + Dc 2, describes the con- 
tribution of spontaneous m-n transitions. If level m decays 
exclusively to level n (A, ,  = I?,, ), then we have P:)  = 0 
in the absence of diffusion ( D  = 0); i.e., in level n the exter- 
nal field does not produce a nonequilibrium Bennett struc- 
ture. This well-known fact is explained on the basis that all 
the atoms which are put in state m as a result of absorption 
will necessarily return to level n with the same velocity v. If, 
however, the atoms undergo a diffusion in velocity space 
over the lifetime T i ;  in level m, this compensation will be 
disrupted, and a wide nonequilibrium structure of a diffu- 
sion nature will arise in level m. 

A further simplification occurs in the case k, t  tk ,  
k, z k, A,, = 0, in which expressions (3 .5 )  reduce to single 
integrals, and the term responsible for the field splitting van- 
ishes: 

exp [- (I',,+I',,,,-ie) t-Z/,DkZt8] 
P:' a Re I,=Re j 

rnn+Dk2tZ at, 
0 

The two lines are centered at the same frequency, R, = R, 
and are symmetric with respect to E = 0; their shapes, how- 
ever, are different. The dependence P p  (&)  is a monotoni- 
cally decreasing dependence at E > 0, while the function 
P: ' (E)  has two minima in addition to the maximum at 
E = 0. 

The factor (r , ,  + Dk 2t 2 ) - '  at E = 0 obviously de- 
scribes the diffusion during the time spent by the ion in level 
n, while the term ( 2 / 3 ) D k  't  gives the change in the phase 
caused by the same factor. It can be seen from the expression 
for Pp' that only the changes in the phase and the frequency 
on the A-n, m-n, and m-1 transitions are important in the 
term representing the nonlinear interference effect, and 
there is no manifestation of the change in the population 
distribution due to diffusion. In the case k, = k ,  the cancel- 
lation of the Doppler shifts of the absorption and scattering 
of the photons completely eliminates the role played by the 
dips in the populations. From expressions (3 .5 )  we see that 
in the case k, # k  the population dip of width T,,  enters 
with a weight of ( k ,  - k ) ,  as it does in the absence of diffu- 
sion (Ref. 9, for example). For this purpose we need to 
change the integration variable: 5 " -< = < " - < '. The part 
of the argument of the exponential function in P::' which is 
linear in < and 5 ' takes the form 

In the absence of collisions ( D  = 0), expressions (3 .6 )  
reduce to combinations of Lorentzian functions: 

If the condition 

rnn+rm,=rLn+rmn 

also holds, e.g., if the relaxation is purely radiative, then the 
resultant line I  = I ,  + I, reduces to a single Lorentzian line 
of width rm, . There is an interference extinction of the reso- 
nance with a width T,, + T,,  % T m ,  , and we are left with a 
resonance with the width of the forbidden transition, T,, . 
We would like to know whether a corresponding extinction 
occurs when there is a diffusion in velocity space, under the 
assumption that conditions (3 .8 )  hold. 

For a qualitative study of the line I ( & )  we go back to 
expressions ( 3 . 6 ) .  An integration over E shows that the area 
under the line Re I ,  (E)  is nT; I ,  while that under Re I 2 ( & )  
is zero. The integral I ,  behaves in the manner of a Bennett 
dip in a two-level system. The linewidth is given in order of 
magnitude by 

The relaxation terms in the argument of the exponential 
function thus reach values on the order of unity at t -  T ;  '; 
the same is true of the diffusion term at t -  (Dk  ' )  - ' I 3 ;  and 
the same is true of the diffusion term in the denominator at 
t - ( r ,  /Dk ' )  ' I 2 .  Knowing the shortest of these time scales, 
we can estimate the linewidth, noting that the integral I ,  is 
the Fourier transform of the integrand at E = 0. 

In the remote wing of the line ( S ~ E  4 kTi) the integrals 
I ,  and I, are dominated by the region t  5 I/& 4 1/S, so the 
diffusion is inconsequential there, and an asymptotic expres- 
sion can be found from (3 .7 )  : Re I -  Tf/&',  where the width 
of the forbidden transition is Tf = T,, 4 T ,  . 

Near the center of the line ( E  5 rf ) the leading term in I  
is I,. The denominator of the integrand changes more sub- 
stantially than the exponential function at smaller values of 
t .  If, in addition, the diffusion is sufficiently intense, i.e., if 
(Dk  'IZ% T , ,  then we can set t = 0 in the argu- 
ment of the exponential function, and we find Re I  
- R e [ D k 2 ( T f  - i ~ ) ] - ' / ~ .  

In accordance with the qualitative arguments presented 
above, the profile of the nonlinear resonance found by nu- 
merical calculations (Fig. 2a) has a three-scale behavior. 
This conclusion can also be drawn analytically, by con- 
structing an asymptotic expansion of the function I ( & )  as 
p- CG. For this purpose we rewrite ( 3 . 6 )  as double Laplace 
integrals [we can also find (3.5) from them, by setting 
A,, = 0 and k, z k ] :  

The standard version of the multidimensional method of 
steepest descent cannot be applied directly, however, since 
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FIG. 2. Profiles of a nonlinear resonance in the interference direction 
(k, t tk, k,, =:k) for y = 0.1 and (line 1) p = 0, (line 2 )  0.1, or (line 3)  
1-A,"" = @ &Amn = l-",". 

the critical point t = t ' = 0 ofthe phaseS(t,t ') is degenerate. 
The nature of this degeneracy is illustrated by Fig. 3, from 
which we see that as we go from positive to negative values of 
t ' the point t = 0 converts from a local minimum into a maxi- 
mum. 

The asymptotic form of integrals (3.9) is derived in the 
Appendix. The results are 

The expression for Re I, describes the change in the shape of 
a narrow peak at the center of the spectrum. Diffusion acts 
on only the height of this peak, while the half-width at half- 
maximum, x,  /, = y( 3 + 2f i )  ' I 2  = 2.542y, depends only on 
the width I?,, of the forbidden transition. The broad diffu- 
sion part has a width and a height -p-'I2, so the ratio 
of the areas under the narrow and wide parts is - ( y /  
p )  ' I 2  < 1. At large values ofx the line has a Lorentzian 
asymptotic behavior Ia y/x2 ,  so only at the wings of the 
spectrum do we find an interference extinction of the compo- 
nent of width I',, . If spontaneous transitions by the m-n 
mechanism occur (A , ,  #O), this cancellation at the wings 
of the line will be disrupted. The function Re I ( & )  then takes 
on negative values (Fig. 2b). 

The field on the I-n transition (Fig. 1 )  has been as- 
sumed to be weak. Experimentally, however, it is sometimes 
convenient to observe nonlinear interference effects in the 
frequency dependence of the test-field generation power. To 
calculate this dependence, we should retain in the expression 
for the work performed by the field, (3.2), not only (3 .3 )  but 
also terms proportional to the square of the intensity of the 
test field, IG, 1 4 .  Equating the amplification to the loss, we 
find the shape of the resonance in the case in which both 
fields are represented by standing waves: 

where p is the loss, the angle brackets mean a convolution 
over all of the intermediate arguments with a 6-function [as 
in (3.3)], and the Green's functions which correspond to 
waves traveling in the positive and negative directions are 
found from general expression (2.12) : 

In the absence of a strong field, expression (3.1 1) deter- 
mines the shape of the ordinary Lamb dip. The termP intro- 
duces an additional dependence on R,: the resonances at 
R, = + R which were discussed above. 

4. POLARIZATION EFFECTS 

In the model of nondegenerate states, the narrow non- 
linear-interference peak in the work performed by the test 
field and the broad populated resonance coalesce. To obtain 
more-detailed information about the medium, we would like 
to separate resonances which differ in nature. In the case of a 
two-level system this can be done by the methods in polariza- 
tion spectroscopy?*" by choosing the polarizations of the 
strong and test waves in such a way that one effect or another 
in the spectrum is emphasized. We would like to see whether 
it is possible to separate the narrow and broad resonances by 
means of polarization effects. 

We start with an expression for the work performed by 
the field of the test wave in this case in a scheme of Raman 
scattering through the upper level (Fig. Ib),  ignoring radia- 
tive decay by the m-l and m-n mechanisms9: 

FIG. 3. The phaseSof integrals (3.9) versus the variable t at fixed values 
o f t  ' (the curve labels). 
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TABLE I. Polarization coefficients a and a for various combinations of the angular momenta of the 
levels for four polarization states of the strong and test waves. 

Here P, describes the nonlinear interference, and B, de'- 
scribes the saturation effect. The functions Apx (R, 1, and 
A,, (R, ) specify the spectral dependence and the depen- 
dence on x;  the polarization dependences are in the polariza- 
tion tensors J,  I,, and I and in the coefficient as, and a,, . 

In the simplest case, in which the spectral functions Apx 
and A,, do not depend on x, the nonlinear part of the work 
performed by the field is 

Let us check whether the values of a and a are the same for 
each of these simplest polarization states. For this purpose 
we introduce J, = J, and we write all possible combinations 
of the angular momenta (J, , J, ) which are allowed by the 
selection rules for the dipole moment in a three-level system: 
(J- 1, J - 2 ) ,  (J- 1, J- I ) ,  (J- 1, J ) ,  (J,  J-  I ) ,  
(J, J ) ,  and ( J  + 1, J ) .  There are a total of six such indepen- 
dent combinations; other combinations are found through 
the interchange n -1, under which expressions (4.2) are 
symmetric. Direct calculations yield equal values for the co- 
efficients a and a for all possible combinations of angular 
momenta (Table I) .  

It is natural to suggest that the coefficients a and a are 
equal for arbitrary polarizations. To prove this suggestion APW=2fio,N,, Re(aAp(B,)+aAB(Q,)), 

(4.4) we rewrite expression (4.2) for a,,, using Eq. (108.9) from 

a = ~.(xq)l .  (xq)ar, a= ll(xq) lzaBx. Ref. 12: 

K'2 n9 I  X I  
aBx= (-1)'x (-1)'(2j+i)agj{~ ; } . (4.6) 

j * J  
We can write expressions for a and a in the cases of parallel 
( T 7 )  and orthogonal ( t - ) linear polarizations of the satu- Now making use of the relation between the 6j and 3j sym- 
rating and test fields and also for the cases of the same bols [Eq. (108.4)] and the orthogonality condition for the 
( + + ) and the opposite ( + - ) circular polarizations 3j symbols [Eq. ( 106.13) 1, we can show that the relation 
of these fields: a = a holds. 

M=-3j.2 -3/2 -112 112 3/Z 5/2 M=-5/Z -3/2 -1/Z 1/2 3/2 512 
r n m -  

FIG. 4. Transition schemes in a two-level system with J,,, = 5/2 and 
J ,  = 3/2. The strong field (the solid line) has a right-handed circu- 
lar polarization, while the test field (dashed lines) has (a)  a right- 

a b \ handed or (b) left-handed polarization. The quantization axis for the 
angular momenta is chosen along the direction of the wave vector 
k,' t t k. 

n n 
M = - 3 / 2  -112 1/2 3/2 M=-312 -1/2 1/2 3/2 
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The relation between the resultant amplitude of the 
population-associated and nonlinear interference terms is 
thus independent of the polarization of the radiation and 
remains the same as in the model of nondegenerate states. 
The particular state of the polarizations of the strong and 
test fields influences only the common factor (Table I ) ,  in 
contrast with the case of a two-level system, in which the 
shape of a nonlinear resonance may change radically in the 
transition from identically polarized fields to orthogonally 
polarized fields (Chapter 5 in Ref. 9) .  

The physical reason for the difference between the po- 
larization effects in two-level and three-level systems can be 
explained qualitatively in a simple way. When the polariza- 
tions of the fields are the same, a two-level system breaks up 
into a set of two-level subsystems (Fig. 4a), but when the 
polarizations are orthogonal it breaks up into a set of three- 
level subsystems (Fig. 4b). In the three-level subsystems, 
other effects may become substantial; in particular, there 
may be effects of resonances with the width of the forbidden 
transition, whose role in this case is played by a transition 
between magnetic sublevels of the same level. In the case of a 
three-level system in contrast, there is no qualitative change 
in the scheme of transitions when we switch from one state of 
the polarizations to another. The example in Fig. 5 illus- 
trates that when coincident polarizations of the strong and 
test fields are replaced by orthogonal polarizations the only 
changes which occur are in the indices of the working sub- 
levels. 

5. DISCUSSION 

The results derived above, which determine the shape of 
a nonlinear resonance, lead to the conclusion that studying 
the broadening of the central peak is not a good way to study 
diffusion in velocity space. The half-width at half-maximum 

FIG. 5. Scheme of transitions in a three-level system in 
the case of a Raman scattering through the lower level 
with J ,  = 3/2 and J,,, = J, = 5/2. The strong field (solid 
lines) has a left-handed circular polarization, while the 
test field (dashed lines) has (a)  a coincident polarization 
or (b) an orthogonal polarization. 

of such a peak is about 2.5 times the relaxation constant of 
the forbidden transition, r,, , and does not depend on the 
diffusion coefficient D. Information on diffusion can be ex- 
tracted either at the height of the central peak, ~ p - " ~ ,  or 
from the broad diffusion part of the lineshape. 

As an example we consider a low-temperature plasma 
in which the Coulomb scattering of excited ions by ground- 
state ions is associated with a random walk of the excited 
ions in velocity space: 

Here N, , is the density of perturbing ions, with a charge Z 'e; 
Ze is the charge of the radiating ion; m and Ei are the mass 
and thermal velocity of the ions; and L is the Coulomb loga- 
rithm. 

Let us estimate the diffusion parameterp for the plasma 
of an ion laser working in the visible part of the spectrum 
( Z  = Z ' = 1 ) . For this estimate we will need the relaxation 
constants of the levels and the plasma parameters. Table I1 
lists the eight strongest lines in the output of an argon laser, 
which correspond to transitions between the 4p and 4s con- 
figurations of the ArII ions. The radiative-relaxation con- 
stants were taken from the review in Ref. 13; here Tii 
= yi + y. We see from this table that the upper levels 

4p2D :,, and 4p2PK are common, and the following three- 
level systems with a A configuration can be constructed 
(Fig. lb) :  4545/4765 and 4727/4965 A. The low-lying 
states 4s2P3,, and 4s2P,,, are common to several transitions, 
so the lines listed in Table I can be used to construct 13 two- 
level systems with a Vconfiguration (Fig. l a ) .  In particular, 
the strong lines 4880/5 145 A are coupled through the lower 
level. This is the pair of lines which was used in the experi- 
ments by Lebedeva, Odintsov, et ~ 1 . ~  

TABLE 11. Radiative relaxation constants of the levels for the lines in the output of an ArII 
ion laser. 
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A,  A 
I 
1 Upper level m 
I 

Lower level n 

ds2P,12 

4s2p11p 

~ s ~ P , ~ ,  

4s2Palz 

4s2PtiZ 

4s2Paln 

4s2Ptls 

4s2P,l* 

4545 

4579 

C658 

4727 

4765 

4880 

4965 

5145 

4p2PG2 

4p2syl2 

4 ~ ~ p : ~ ~  

4p"k 

4paP:/, 

~ P ~ D ! ~ ~  

~ Y ~ D : ~ ~  

4$DfI, 

v, x 10-'s-' 

6 

7 

6 

6 

6 

6 

6 

8 

v, x s '  
- 

1.25 

1,25 

1,25 

1.25 

1.25 

1.25 

1.25 

1-25 



The electron density in the plasma of an argon laser is 
typically n, - lo4 ~ m - ~ ,  and the average velocity is Ei - lo5 
cm/s. From (5.1) we find v,, - 3 ~  10's-' and D - 4 ~  10" 
cm2/s. Using y, from Table 11, we then find p-  1 ) y - lo-'. Under these conditions one can thus observe a nar- 
row peak against the background of a wide line. Most of the 
diffusion effect is in the square-root dependence of the am- 
plitude of the sharp resonance on the collision rate. 

In Ref. 8 the measured width of the resonance in the 
output, extrapolated to zero values of the density n, and the 
saturating field G, was 67 f 5 MHz, in the case in which the 
test field interacted with the 4p2D &, - 4?P3,, transition; it 
was 130 f 10 MHz when the 4p4D g,, - ~S'P,~,  transition 
was probed. The calculated width of the forbidden transition 
is Av,, z 4 0  MHz; it varies by less than 10% if we use the 
data in Table I1 (calculations by Tang et al.; cited in the 
review in Ref. 13) and the measurements by Bennett et aI.14 
or the calculations by Loginov and Gruzdev.15 The mea- 
sured width is two or three times Av,,; this result can be 
explained in terms of a distortion of the Lorentzian shape of 
the resonance by Coulomb diffusion. The observed depen- 
dence of the width on the electron density may be related to 
either Stark broadening or decay of the m and I levels as a 
result of inelastic collisions of the ion with electrons. Resolv- 
ing these questions will require measurements of the depen- 
dence of the shape of the resonance on the plasma param- 
eters. 

The abundance of possible pairs of convenient adjacent 
transitions, the difference of more than an order of magni- 
tude in the relaxation constants of the upper and lower lev- 
els, the combination of measurements in interference and 
noninterference directions, and the combining of A- and V- 
shaped schemes-all these favorable circumstances qualify 
the plasma of an argon laser as a convenient system for the 
development of methods of nonlinear spectroscopy and their 
application to plasma diagnostics. 

We wish to thank S, A. Babin and A. M. Shalagin for 
useful discussions. 

APPENDIX 

The mathematical theory of the asymptotic form of the 
Laplace integral with a degenerate critical point is set forth 
in detail in Chapter I1 of the book by Arnol'd et al.l6 To 
calculate the expansion coefficients, we borrow a method 
from that book: We assume that the phaseSis one of the new 
variables. The integral then transforms into a Laplace trans- 
form of the integral over the remaining variable (the inte- 
grand in the last integral is called a "Gel'fand-Leray form"). 
The asymptotic form of the Laplace transform is found from 

A difficulty arises in the switch from the variables (t,t ') to 
the variables (s,g): A single-valued transformation cannot 
be made because of the degenerate nature of the critical 
point. It is necessary to construct a resolution of the singu- 
larity. For this purpose we use the u-process (see Sec. 2 in 
Ref. 17), which reduces in the case at hand to a preliminary 
replacement of (t,t) by (t,u) where v = t '/t + 2/3. 

In terms of the new variables we have 

and the integrals J, of the Gel'fand-Leray forms reduce to 

where { = v2I3 and lo = (2/3)'13. Expanding (A2) in a se- 
ries of incomplete r functions, 

and using power series for the r  function^'^ and relation 
(A1 ), we find (3.10) : the leading terms of the real part of the 
asymptotic behavior. The degenerate nature of the critical 
point of the phase is seen in the circumstance that in addition 
to the powers p - "/* (n = 1,2, ... ) the expansion contains 
terms ccp- k'3 (k  = 2,3, ...) and also lnp. For this reason, 
the terms of the series decrease extremely slowly. Compar- 
ing the first term of the expansion with the second, we see 
that the condition under which we can approximate the ex- 
pansion by the leading term is p )  1 for I, and p )  y for I,, In 
the case y 4 1, it is sufficient to restrict the expansion for I ,  to 
the first term, even a tp-  1 (line 3 in Fig. 2) .  

"The collisional shifts AU of the resonant transition frequency can be dealt 
with in Eqs. (2.5)  and below through the replacement rij - TU + iA,, . 

"The expression for Pj;" is the same as that derived by Berman,"' who 
examined that expression alone. 
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