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We investigate the influence of dissipation on the regular and chaotic dynamics of charged 
particles in the field of a wave packet that propagates across an external magnetic field. We obtain 
the conditions for randomization of the motion and find the upper bound of the energy for 
stochastic acceleration of the particles. The importance of particle trapping for their acceleration 
and heating is determined in the limit of a single-mode wave packet. For the limiting case of an 
infinitely broad packet, the equations of motion are reduced to a Poincare mapping. The 
stochastic attractors resulting from the randomization of the particle motion are investigated 
analytically and numerically. 

1. INTRODUCTION 

Resonant interaction between particles and waves in a 
plasma located in an external magnetic field has numerous 
applications, mainly for plasma heating. ' The latter is of par- 
ticular interest when the wave propagates perpendicularly to 
the magnetic field. Such waves can be damped not only by 
collisionless cyclotron resonance and by dissipation due to 
particle collisions, but also by more complicated nonlinear 
processes involving, in particular, randomization of the 
charged-particle trajectories. This internal chaos of the par- 
ticle motion can occur even when the plasma wave is planar 
and mono chroma ti^,^-^ has an electric-field strength 

E,=Eo sin (k,x-at), E,=E,=O, 

and propagates across an external magnetic field B, parallel 
to the z axis. The problem reduces formally to an investiga- 
tion of stochastic dynamics of particles whose equations of 
motion have the simple form 

x+ o,2x=~ sin (k,x-ot) (1.2) 

and describe linear-oscillator motion induced by a plane har- 
monic wave. By m, is meant here the cyclotron frequency 
(w ,  = eBo/mc), while the parameter E = eEo/m is propor- 
tional to the amplitude Eo of the potential-wave field 
strength. The seeming simplicity of Eq. ( 1.2) is illusory, and 
it has already been the subject of many analytic and numeri- 
cal investigations. References 2 and 3 deal with the case of 
strong magnetic fields, when the particle passes through the 
resonance region twice in each cyclotron period and collides 
briefly with the wave. It has been shown3 that increasing the 
wave amplitude randomizes the motion if 

The opposite case of a weak magnetic field is considered in 
Refs. 4 and 5. The dynamics here is stochastic. An important 
roleis played by the trapped particles: it is they which govern 
the absorption of the plasma waves. 

Stochastic acceleration of particles by a wave of fre- 
quency equal to one of the cyclotron harmonics 

interesting feature of the nonlinear dynamics of the particles 
in this situation is the formation of a stochastic web on the 
(x,x) phase plane, with unbounded stochastic acceleration 
in the web channels for arbitrarily low amplitude of the 
wave's electric field ~ t r eng th .~  The unbounded stochastic 
web in ( 1.2) is due to the degeneracy of this equation when 
there is no perturbation ( E  = O), i.e., to the independence of 
the cyclotron frequency of the oscillation amplitude or of the 
Larmor radius. In nondegenerate systems, a similar stochas- 
tic acceleration (Arnol'd diffusion) is produced when the 
number of degrees of freedom is larger. 

We investigate here the influence of dissipation on sto- 
chastic acceleration of particles. Dissipation is always pres- 
ent in a real situation and has various physical causes, such 
as particle collisions, emission processes, and others. The 
influence of dissipation is investigated in Sec. 2 using as an 
example the model equation 

x + y i + o H 2 ~ = ~  sin (kox-ot), (1.5) 

which has, in contrast to Eq. ( 1.2), the dissipative term yx in 
the left-hand side. An important property of ( 1.5) is that it 
remains degenerate for E = 0 in the absence of a perturba- 
tion. We shall show that dissipation always restricts the sto- 
chastic acceleration of particles. A certain limiting invariant 
set is then produced in phase space and attracts all the trajec- 
tories. If the nonlinearity is weak, such a set contains as a 
rule a limited number of attracting points, and an averaging 
method is used to describe typical bifurcations of the particle 
phase trajectories. When the electrostatic wave amplitude is 
increased, the motion becomes random and tends to the 
strange attractor. A physical interpretation is given for the 
particle-motion picture revealed by the numerical calcula- 
tions. These topics are the subject of Sec. 3 of the paper. 

In the next two sections (Secs. 4 and 5)  we consider the 
dissipative dynamics of charged particles in a magnetic field 
and in a wave-packet field, when the electrostatic field in the 
right-hand side of ( 1.5) comprises a set of plane waves with 
different amplitudes E,  , frequencies o, and wave numbers 
k ,  : 

where N is an integer, was considered in Refs. 2 and 6. An We shall assume that the wave packet in ( 1.6) is fairly broad 
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and homogeneous. It is possible then to change over from the 
differential equation ( 1.6) to the corresponding Poincark 
mapping. In the limit of zero magnetic field (o, = 0)  this 
mapping corresponds to the nondegenerate case and reduces 
to the Zaslavskii mapping7 studied in detail in a number of 
papers. The corresponding mapping for y = 0 was investi- 
gated in Refs. 8 and 9, which revealed the many remarkable 
properties brought about by the structure of the phase space 
in the resonance case, for rational ratios of the electrostatic- 
field and cyclotron frequencies. 

A kinetic equation of the Fokker-Planck-Kolomo- 
gorov type is derived in Sec. 5 on the basis of a dissipative 
mapping for particles in a magnetic field. This equation has a 
stationary solution, owing to the presence of friction. The 
energy limit for stochastic heating of particles is found and 
the size of the strange attractor is estimated 

2. INFLUENCE OF DISSIPATION ON THE AVERAGED MOTION 
IN THE RESONANCE CASE 

We transform Eq. ( 1.5) for the dynamics of a charged 
particle in the field of a harmonic wave propagating across 
an electric field into the set of equations 

We restrict our investigation to resonant interaction of a par- 
ticle with the wave, i.e., we consider a situation in which the 
electrostatic-wave frequency is close to a multiple of the nat- 
ural frequency of the unperturbed problem: 

where N is an integer and 

is the friction-shifted natural frequency for E = 0. The 
damping y is assumed further to be relatively weak: 

We change to new independent variables I and q, in a frame 
rotating with angular velocity w / N :  

cp+ot x= (2N1/52) I" sin (-) 
N  ' 

This change of variables transforms (2.1 ) into 

We expand the right-hand sides of the equations in (2.6) in a 
series 

where J,  (k,) is a Bessel function. The prime denotes differ- 
entiation of the Bessel function with respect to its argument, 
and 

is the particle Larmor radius. The terms in the right-hand 
sides of (2.7) are of two types: resonant with n = N and 
nonresonant with n # N, which oscillate rapidly if 

Under the condition (2.9) the influence of the nonresonant 
terms is weak and the dynamics of the system (2.7) can be 
investigated in the framework of an equation set averaged 
over the cyclotron period 

E f +TI = - JN(kop)  sin cp, 
ko 

Q+G= ( ~ N / 5 2 p ) J , ' ( k , ~ ) c o s  cp. 

We consider next the phase portrait of Eqs. (2.10) for exact 
resonance, S = 0. 

The phase plane of the averaged system (2.10) has sta- 
tionary points defined by the condition r = 0 and C# = 0. 
These points can be found from the set of equations 

This set determines the stable (foci and nodes) and unstable 
(saddles) fixed points. In the saddle points we have 
cos q, . = 0, i.e., 

The corresponding values of the variable I. are cbtained 
from the equation 

where X .  = k g * .  It follows from this equation that the 
number of saddle points is limited and they are concentrated 
in a bounded region around the origin. 

The stable stationary points of the system (2.1 1) to 
which the phase trajectories can be attracted, correspond to 
IF' values determined from the equation 

Designating by j , , ,  the root of the derivative of thesth Bessel 
function of order N, we write down the equations for the 
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FIG. 1.  Poincart section of the phase space of Eq. 
(1 .5) fors= 1/80, ~ = 8 . 1 0 - ~ , k , , =  15,w =5w,. 

angle coordinates q, g' of the stable stationary points: 

where 

It follows from (2.15) that the stable points, like the unsta- 
ble ones, are localized around the origin in a region 

Equation (2.17) shows that as the damping increases the 
localization region, and the number of the stationary points 
decrease until a single stable fixed point-the origin-is left. 
Let us determine the damping coefficient y for which this 
occurs. We puts = 1, and then 

The condition for the existence of a stationary point for the 
action value I?'< 1 is the inequality sin p h"<l or 

For N = 5, in particular, we find ,that if 

the only remaining stationary point is the origin. 
Figure 1 shows the PoincarC cross section for trajector- 

ies with several different initial conditions. This figure was 
obtained by numerically solving the set (2.1 ) for E = 1/80, 
y = 0.0008, ko = 15 and w = 5w,. The values of x ( t )  and 
v(t) were marked as points on the (x,v) plane after equal 
time intervals At = 2?r/w. Since the damping is rather weak, 
stable stationary points other than the origin are present. 
One can see the trajectories that are attracted, depending on 
the initial conditions, to different stationary points. 

Let us examine in greater detail the behavior of the 
phase trajectories near the origin. For y = 0 the origin is a 
degenerate unstable stationary point that has stable and un- 

stable invariant manifolds. A weak dissipation lifts the de- 
generacy, and as a result new stationary saddle points appear 
on the unstable invariant manifold. The origin turns then 
into a node to which the trajectories are attracted. 

3. STOCHASTIC DYNAMICS OF CHARGED PARTICLES IN A 
WEAK MAGNETIC FIELD 

The analysis in the preceding section pertains to the 
case of weak nonlinearity ko&4w; .  As the parameter E is 
increased, the situation becomes more complicated and the 
averaging method is inconvenient for further analysis. Nu- 
merical estimates show that if E is large enough a strange 
attractor is produced on the phase plane. Figure 2a shows 
the PoincarC section t  = 2m/w, n = 0, 1, ... of the set (2.1), 
obtained by numerical integration for one initial condition 
and for the parameter values E = 8.0, ko = 15.0, y = 0.16, 
w = 5 and w ,  = 1. It is seen from this figure that the dynam- 
ics tends to a strange attractor having a rather complicated 
structure comprising a "spiral" and a "beak." The explana- 
tion of this attractor shape is the following. Motion over the 
beak means motion in which the particle is trapped by the 
wave. The particle phase oscillates relative to the phase of 
the wave u = k~ - wt, while x increases on the average by 
27r/k0 after each iteration of the PoincarC mapping. After a 
number of iterations the particle reaches a region where the 
term w$x in (2.1), which reflects the influence of the mag- 
netic field, becomes large, and ejects the particle from the 
wave's potential well. The main influence on the particle 
motion is now that of the magnetic field and of the friction. 
As a result the particles approach the origin along a spiral. 
Near the origin, where x  and x are small, the conditions 
become again favorable for particle trapping by a wave. The 
trapping takes place, the particle moves again over the beak, 
and the process is repeated. We present below an analytic 
description of the trapping regime that corroborates the 
foregoing qualitative scheme. 

We introduce 

(3.1) 
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where n  is chosen so that O,<u<277 at the initial instance 
t  = to. We obtain 

ii=k0e sin u - o x 2 ( 2 n n + o t )  -oH2u-y (l+o). ( 3 . 2 )  

Let the condition k0&%max{w;,  yw, y, ( w ; ~ ) * / ~ )  be met. 
Equation ( 3 . 2 )  with 1 u (  5 ( k , ~ )  ' I2  can then be regarded as a 
perturbation of a torsion pendulum: 

u=k,e sin u-L, L=const. ( 3 . 3 )  

The perturbation causes L to vary slowly with time: L 
= w ;  ( 2 a n  + w t ) .  The phase portraits of Eq. ( 3 . 3 )  for dif- 

ferent fixed values of L are shown in Figs. 3a-3d. For 
IL 1 < k g  each portrait has an oscillatory region whose area 
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FIG. 2. a) Poincark cross section of the stochastic 
attractor of Eq. (1.5) for y = 0.16, E = 8.0, 
k,, = 15, o = 5o,,; b) the same for y = 0.08. 

we designate by S( L )  . This area decreases with ( L  I. 
Let the phase point (u ,  u )  be located at t = to in the 

oscillatory region of the pendulum ( 3 . 3 )  with L 
6= w ;  ( 2 m  + a t , ) .  To describe the motion we average over 
the phase of the unperturbed oscillations. We denote by J the 
action variable of the pendulum ( 3 . 3 )  in the oscillatory re- 
gion. The averaged equation for J yields 

so that the point remains in the oscillatory region of pendu- 
lum ( 3 . 3 )  with L = w; (271-n + w t )  so long as the condition 

2 n J ( t o ) e s p [ - y  ( l - t o ) ]  <S ( o H 2 ( 2 n n + o t )  ) ( 3 . 5 )  
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\ 1 \ \\ FIG. 3. Phase portraits of Eq. (3.1) for different 

is met (here we note that 2 r J  is the area bounded by the 
unperturbed-pendulum trajectory passing through the 
phase point ). Equations (3.4) and (3.5) describe the motion 
of a particle trapped by the wave. The phase point moves in 
this case over the beak on the PoincarC cross section. 

The times t- < to and t+ > to at which (3.5) turns into 
an equality are respectively the instants of trapping into and 
ejection from the oscillation region. According to (3.5 ) , the 
relation between them is 

S ( o H 2  ( 2 n n + o t + ) )  
exp[-7 ( t+ - t - )  I = 

S ( o H 2 ( 2 n n + w t - )  ) ' 
(3.6) 

In these equations, L = w; k ~ .  It can be seen that trapping 
is most probable in the region of small x, i.e., near the origin 
[since trapping also calls for (x - w/k,( - ( d k , , )  IJ2]. 

The trapping probability for large x is small but is none- 
theless present and is according to (3.8) larger for negative 
x, where S'  < 0, than for positive x. The corresponding 
trapped points are seen near the negative x axis on Fig. 2a. 

Since u varies in a limited range, we obtain from (3.1) 4. PARTICLE DYNAMICS IN A LOW-INTENSITY WAVE- 

k+ z w t  + 2nn, and from (3.6) we get an approximate con- PACKET FIELD 

nection between the values x T  of the coordinate x of the We turn to Eq. ( 1.6), i.e., assume that the electrostatic 
particle trapping and ejection points: field comprises a set of plane waves with different ampli- 

S ( u H ' ~ o x + )  tudes, frequencies, and wave vectors. The packet structure is 
exp[- ( y k o / o )  (x+-x-)  1 = 

S (oa2kox- )  ' (3'7) assumed to satisfy the expressions 

Equations (3.4) and (3.7) show that the narrowing of the 
beak with increase ofx is due to the interaction of two effects: 
the decrease of the action J due to friction, and the decrease 
of the area S(wLk6)  of the oscillation region as x increases 
for x > 0. If the friction coefficient is large enough, the first 
effect predominates almost over the entire length of the 
beak. Most points then travel along the entire beak and are 
ejected nears its end point, where x ZWL/E and the oscilla- 
tion region vanishes (Fig. 2a). For a smaller friction coeffi- 
cient the second effect becomes substantial earlier and some 
of the points are ejected from the beak at smallerx (Fig. 2b). 

Let us examine in greater detail the trapping of a parti- 
cle by a wave. Let the point ( u ,  u )  reach at the instant to the 
segment AB (Fig. 3 ) .  We denote by AC the segment from 
which trapping into the oscillation region adjacent to the 
point A is possible. The phase-space flux through AC is ap- 
proximately equal to yS - S'W&W (we have calculated the 
phase space freed inside the oscillation region on account of 
compression of the volumes by the friction and by the change 
of the area bounded by the separatrix loop; here S' is the 
derivative of S with respect to its argument; trapping is im- 
possible if the calculated flux is negative). The phase-space 
flux through the entire segment AB is equal to 2nlL I. 

For L ko& it is natural to define the trapping probabili- 
ty as the ratio of these fluxes: 

Expressions (4.1 ) mean that the dispersion effects are weak 
and that the spectral characteristics of the wave packet are 
homogeneous and symmetrical enough. Substituting (4.1 ) 
in ( 1.6) we get 

+ m  

i + y d + o H z x = e  ) s i n ( k 0 x - n o t ) .  
n=-m 

(4.2) 

Using the equation 

we rewrite (4.2) in the form 
+m 

b+yb+wH2r=2ne sin kox 6 ( o t - 2 n n ) .  (4.3) 

In Eq. (4.3), unlike Eq. ( 1.5) considered in the preceding 
sections, the continuous perturbation of the damped oscilla- 
tor in (1.5) is replaced by periodic 6 pulses, i.e., instanta- 
neous jolts. 

We confine ourselves in the present section to an inves- 
tigation of the phase portrait of Eq. (4.2) for weak nonlin- 
earity ko& gw; and at resonance, w = N f l .  Changing over in 
(4.2) to the variable I and q, [Eq. (2.5) ] in a frame rotating 
with frequency w/N, we obtain the following set of equa- 
tions: 

we have the familiar problem of excitation of pendulum os- + m 

cillations in the presence of a small torque and low friction. = 8 (g) "' c o s ( 5  + at) ) sin ( k o z - n o t ) ,  
The probability of this excitation islo n=-rn 
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"( ha,* = - [ - I *  (I- ( e k , / ~ Q ) ~  cos koxo cos kayo)"]. ' (4 .14)  
2 

Depending on the value of the parameter ~ k , / y f l  and on the 
position of the point (x, ,  yo ) ,  the following cases are possi- 
ble: 

Averaging in ( 4 . 4 )  over time, we obtain 
1. cos k+, cos k g ,  > ( y R / ~ k , ) ~  

I+@= - [ I., (k.p) coo nyi] , 
ko ayi ,,...-a, 

i.e., both eigenvalues have negative real parts and nonzero 
imaginary parts, so that the point (x,, y , ) ,  is an attracting 
focus; 

2. ( y R / ~ k , )  * > cos k,+, cos k g ,  > 0 

i.e., both eigenvalues are real and negative. The point (x , ,  
y ,)  is consequently an attracting node; The series in the right-hand sides of ( 4 . 5 )  is summed with 

the aid of the identity 
3. cos k ~ ,  cos k g ,  < 0 x cos [ k o p  sin - x In, (kop)  cos nyi = - 

n - - m  N j-1 

i.e., both eigenvalues are positive and of opposite sign, so 
that (x,, yo)  is a saddle point. 

We confine ourselves next for simplicity to N = 4  and return 
to the old variable x  and y  = x / R .  In these variables, the 
averaged system ( 4 . 4 )  takes the form 

i+ ( y / 2 ) z = -  (e12Q) sin k,y ,  ( 4 . 6 )  

5. DISSIPATIVE MAPPING WITH "TWISTING" 

The differential equation ( 4 . 3 )  can be replaced by a 
finite-difference equation. Between two successive applica- 
tions of a S function the particle trajectory satisfies the equa- 
tion z j +  (712) y= ( c / 2 R )  sin k,x. 

The stationary points are obtained from the equations 

sin k , x = ( y Q / e )  y, ( 4 . 7 )  Its solutions on passage through the S function at  the instant 
t ,  = n T ( T = 2n-/w ) should satisfy the boundary condi- 
tions 

x (t,+O) =x (tn-i)) , 2 (t,+O) =i ( tn -0 )  +eT sin k , z  ( t , )  ; 

sin k,y=-  ( y Q / e ) x .  

For the variable x  we obtain the transcendental equation 

using these conditions, we obtain from ( 4 . 3 )  
In the strong-dissipation limit, 

e - 1 T / 2  

Tn+t = 5 { (p.+eT sin k.x,) sin QT 

it follows from ( 4 . 8 )  that the only stationary point is the 
origin. For weak dissipation, 

pn+,=e-TT/2{ (p.+eT sin koxn)  ( cos 82' - there are many stationary points [roots of Eq. ( 4 . 8 )  ] locat- 
ed in the bounded region 

The size of this region does not increase when the parameter 
y  is decreased, but the locations of the stationary points ap- 
proach those of the stationary points ( x ,  , y ,  ) of a conserva- 
tive system: 

where 

p , , = l ( t = n T - 0 ) ,  

i.e., the subscript n corresponds to the instant of time imme- 
diately preceding the action of the S function at t = nT and 
a= (a; - 7214) ' ' 2 .  

The mapping ( 5 . 2 )  goes over as w ,  - 0 into the dissipa- 
tive standard mapping7: 

The number of stationary points decreases with the param- 
eter ~ k , / y R ,  and the last stationary points other than the 
origin vanish at ~ k , / y R = :  3.57. 

Let us investigate the stability of the stationary points 
for this purpose. We linearize the set ( 4 . 6 )  in the vicinity of 
the fixed point (x, ,  y o ) .  The tangent matrix is 

X , + ~ = X , +  (p,+eT sin ~ D X , ) - - - - -  7 

Y 
pn+i=e-TT (pn+&T sin k,x,,) , 

- (&k0/2Q)  cos kayo (4 .13 )  
(&ko/2Q)  cos k , so  - y / 2  

the connection of which with the kinetic description of parti- 
cle dynamics is quite well known.'' In  particular, Eqs. ( 5 . 3 )  
correspond to the equation of motion ( 4 . 3 )  with w ,  = 0, and its eigenvalues are 
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and stochasticity sets in in this caseI2 if We change over in (5.2) to dimensionless variables 

kox=-v, k0p/Q=u, a=QT. 
(5.4) h 

The mapping (5.2) then takes the form D,: 

~,+~=e- t~ / z  { (un+KH sin u.) ( cos a - - s i n a ) + u n s i n a ( l + & ) }  

a, : 252 

U ~ + ~ = ~ - T T A ~  { - (u.+K, sin v.)sin a+v,(cos a + l s i n  .)I, 
2Q 

where 

KH=-Tko&/Q. 
h 

The mapping D, as y -0 goes over into a measure-conserv- 
ing mapping with "twisting"': 

u,+,= (u,+KH sin v,) cos a+vn sin a 
u,+I=- (un+KH sin v,) sin a-l-v, cos a' (5.7) 

which generates structures if a = 2rp/q ( p  and q are inte- 
gers). In particular, it was shown in Refs. 8 and 9 that for 
arbitrarily small KH the unbounded part of the phase plane 
of the set (5.7) is covered by a stochastic web, in the chan- 
nels of which the particles move randomly in analogy with 
Arnol'd diffusion, but for the minimum dimensionality 
(three) of the phase space. For small K, the thickness of the 
stochastic web is exponentially small, but if K,, is large, the 
stochastic-web channels broaden, the chaos becomes strong, 
and a large fraction of the particles participate in the diffu- 
sion. 

A criterion for strong chaos in the dissipative problem 
(5.6) can be roughly estimated from the condition that the 
origin be stable. The mapping (5.6) has a stationary point 
u = v = 0 for all values of the parameters. Linearizing (5.6) 
in the vicinity of this point, we obtain the characteristic 
equation 

hLhe-TT12 (2 cos a-KH sin a )  +e-TT=O. (5.8) 

The point (0,O) becomes unstable when 

Ka sin u s 2  [cos u+ch (yT/2) 1,  KH>O. (5.9) 

For y = 0, in particular, (5.9) leads to the condition 

obtained earlier in Ref. 8. As a, -0 we have accordingly 
from (5.9) the inequality 

which corresponds to the criterion (5.4). When conditions 
(5.9)-(5.11) are met the dynamics ofthe particles is chaotic 
and tends to a strange attractor. A numerical analysi2con- 
firms the criterion (5.9), and the set of points of the D, on 
one trajectory has the form typical of a strange attractor 
(Fig. 4).  With increase of scale, each line on Fig. 4a split into 
a family of straight lines (Fig. 4b). This pattern repeats as 
the scale is further increased (Fig. 4c), i.e., the strange at- 
tractor has the structure of a Cantor set. The arrangement of 
the lines in phase space is determined by the twist angle a 
and by the damping y. Figure 5 illustrates the results of a 

I 
h 

numerical analysis of the mapping D, for different values of 
the angle a. The slopes of the straight lines in Fig. 5 can be 
estimated by putting K,) 1 and yTk 1 in (5.6). The dy- 
namics of the system is then described by the mapping 

U . + I = ~ - ' ~ ~ ~ K ~  sin vn (5.12) 

~ , + , = - e - ~ ~ ' ~ ~ ~  sin u, sin a. 

For the slopes of the straight lines we obtain 

In particular, for yT = 1 and RT = 2r/5 we obtain q, =:4", in 
good agreement with the results of a numerical analysis 
(Fig. 5b). 

6. FOKKER-PLANCK-KOLMOGOROV EQUATION 

If condition (5.9) is met, it is easiest to understand the 
simplest properties of stochastic dynamics by starting with 
the FPK kinetic equation. We assume the dissipation to be 
weak, i.e., 

y T ~ 1 ,  y/oH<I. (6.1) 
h 

If the inequalities (6.1 ) are satisfied, the mapping D, can be 
approximately written in the form 

- ( ;T ) { (un+K, sin v,) (cos a u,+,-- 1 - - 

+ v n  sin a }  , 

u,+.= ( I  - $) { - (un+KH sin v,) sin a 

In the mapping (6.2) we change over to the new variables 

The FPK-equation approximation becomes valid when the 
variable I is large enough to meet the condition 

The phase y, can be assumed here to be randomly distributed 
in the interval (0, 2 ~ ) .  The condition for this assumption is 
the inequality 

We use (6.2) and (6.3) to calculate the friction coefficient 
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FIG. 4. Stschastic attractor specified by the mapping (5.6) (the abscissa 
and ordin2te are respectively u and u ) :  a )  result of lo4 iterations of the 
mapping D, for one initial condition at K, = 6.0, a = 1.57, yT = 0.7; b )  
magnified attractor section in the box on Fig. 4a, with 10"nteractions; c) 
further magnification of the box on Fig. 4b, with 5.10' iterations. The 
fractal structure typical of a strange attractor is evident. 

KH2 ' -11 = - ( I - 1 ~  --s in2a) (I-Jo(21'h))-yI. 
2T 2Q 

-- ' ' sin 2 a  sin' p + - sin 2a  cos 29-2yT sin2 p - - T 
Q Q 2 ' I  

(6.5) 
For 1% 1 we obtain from (6.5) = [ ( I  - -sin 7 2 a - 2 y ~ ) ( 1 - 1 - " ~ ,  (21'") ) 

T Q 

Similar calculations yield for the diffusion coefficient where J ,  ( 2 1  ' I 2 )  is a Bessel function. In the region 1% 1 we 
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A 

FIG. 5. Result of 2.5. lo4 iterations of the mapping D, in the case of strong 
nonlinearity. The abscissa and ordinate are u and u, respectively; 
K, = 50, yT= 1.0: a )  a = 2.093; b)  a = 1.256. 

obtain from (6.7) an approximate expression for the diffu- 
sion coefficient 

The FPK equation for the distribution function F(I ,  t)  isI2 

The stationary solution F5 of (6.9) satisfies the following 
ordinary differential equation: 

Substituting expressions (6.6) for the friction coefficient 
and (6.8) for the diffusion in (6.10) and solving the latter, 
we get 

~ , = C [ ~ ( 2 T + ( s l n  z ~ ) / z < I )  exp ( - 2 y T I / K I z 2 ) .  (6.11) 

It follows from (6.11 ) that the stationary distribution func- 
tion is localized in the region 

The quantity I ,  can be used as an estimate of the size of the 
strange attractor if the latter exists for the given parameters 
of the problem. The constant C in (6.1 1 ) is determined by 
the normalization conditions. For small y the low-energy 
region in which the FPK equation approximation is not val- 
id is small compared with I and can be neglected if Fs is 
normalized. Consequently we obtain from (6.11) 

OD 

Let us now examine the time dependence of the approach to 
a stationary distribution. The equation for the first moment 
of the distribution function 

m 

can be obtained by multiplying (6.9) and I and integrating 
over I from zero to infinity: 

The solution of (6.14) is 

where I, is the initial value of the variable I.  It follows from 
(6.15) that for y t 4  1 we have 

i.e., the particle energy increases linearly with time, but at 
yt$ 1 the solution becomes stationary and (I) approaches 
the value 

The corresponding maximum energy to which the particles 
are heated is 

The physical content of (6.18) is that it determines not only 
the feasibility of stochastic heating of magnetized particles 
by a wave-packet field in the presence of dissipation, but also 
the heating limit as a function of the packet parameters (am- 
plitude, wave-mode spacing). 

CONCLUSION 

An investigation of the dissipative dynamics of charged 
particles in the field of a wave packet propagating across a 
magnetic field has made it possible to identify two typical 
limiting cases that are different for narrow (single-mode) 
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and broad packets. A common feature of both cases is degen- 
eracy of the unperturbed problem, and an important phys- 
ical consequence of the dissipation is the limit imposed on 
the increase of the particle energy by stochastic heating. The 
particle dynamics, however, is substantially different in 
these limiting cases. In the single-mode approximation, if 
the particles are strongly perturbed by the electrostatic- 
wave field, the chaotic dynamics of the particles is deter- 
mined to a considerable degree by the trapped particles, 
whereas in the limit of an infinitely broad wave packet the 
stochastic dynamics tends to a strange attractor typical of 
nonintegrable dissipative systems. 
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