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Models are considered of one- and two-photon interaction in a two-level nondegenerate medium 
and of four-photon interaction in a medium with cubic nonlinearity and a resonant two-level 
transition. A model of three-wave interaction in a medium with quadratic nonlinearity is also 
considered: All the models are characterized by the presence of a nonlinear frequency shift and 
can be described within the framework of a new integrable equation set. A suitable formalism of 
the inverse scattering problem method is developed for solving the Cauchy problem. Soliton and 
nonsoliton quasi-self-similar asymptotic solutions are found. It is shown that a nonlinear 
frequency shift leads not only to qualitative but also to quantitative changes in the behavior of the 
solutions. It is demonstrated that the theory is applicable in a broad range ofparameters which 
can readily be attained in experiment. 

1. INTRODUCTION 

Over the last several years intensive research of the co- 
herent interaction of ultrashort impulses (USP) in a nonlin- 
ear medium has been ongoing. This research is of interest 
because such an interaction may be utilized for the transmis- 
sion of information, for frequency conversion, and for the 
description of processes which proceed in more intensive 
fields and at times shorter than to relaxation time'. It is 
known that a number of models of the coherent USP interac- 
tion are integrable by the inverse scattering transform meth- 
od (ISTM). At present, the value of such models is that the 
ISTM is actually the only method which can solve the 
Cauchy problem for the evolution of USP. Specifically, by 
utilizing the ISTM it is possible to answer a question of prac- 
tical importance: which initial conditions are necessary to 
get a specific asymptotic state of the system. 

There are not many integrable models describing the 
resonant interaction of light in a two-level nonlinear medi- 
um. These are the reduced Maxwell-Bloch equations de- 
scribing one-photon resonance interaction3 and the two- 
photon interaction (sum or difference of the carrier 
frequency close to the transition frequency) .4 The first mod- 
el was investigated in the framework of the ISTM in Ref. 5, 
and the second in Refs. 6 and 7 under zero detuning condi- 
tions. These models have a well-known reduction, namely 
the sine-Gordon eq~ation.~-"n a recent paper8 Zakharov 
and Mikhailov have shown that interaction of two polarized 
wave packets propagating in a cubic nonlinear medium and 
having carrier frequencies such that their difference is close 
to the frequency of the two-level transition, is described by 
equations that formally agree with the non-isotropic-chiral- 
field equations in the O(3) group. This model originated in 
the theory of elementary particles and is integrable in the 
framework of the ISTM. Several new integrable versions of 
four-field interactions in an analogous medium are shown in 
Ref. 10. These models, and also a combination of the Max- 
well-Bloch and the nonlinear Schrodinger equations, which 
is integrable under certain values of the wave detuning, ac- 
count for all the known integrable models of the USP inter- 
action in a two-level nondegenerate medium. 

In the present paper are given several variants of the 
USP interaction, USI, which are described in the framework 
of a new integrable set of equations. The common trait of 

these physical models is the presence of a nonlinear frequen- 
cy shift and of a linear detuning, the influence of which can 
lead to qualitative changes of the dynamics of UPS propaga- 
tion. The ISTM has yielded soliton solutions that can be 
associated with self-induced transparency, and nonsoliton 
solutions that describe the decay of the unstable initial state 
of the system after the action of a weak perturbation. 

In the next section are UPS interaction schemes that are 
described in the framework of a common set of equations. In 
Sec. 3, a suitable ISTM formalism is developed. The solu- 
tions derived with the aid of this method are given in Sec. 4. 
In the last section it is shown that the models and the corre- 
sponding solutions "work" in a wide range of fully attainable 
values of parameters of the medium and of field intensities. 

2. SCHEMES OF COHERENT USP INTERACTION WITH A 
TWO-LEVEL NONLINEAR MEDIUM AND FORMULATIONS OF 
THE PROBLEMS 

1. The four wave interaction. Four schemes of coherent 
USP interaction in a cubic nonlinear medium are given in 
Ref. 10. In these schemes two pairs of fields propagate to- 
ward each other. The carrier frequencies of the waves are 
subject to the conditions 

here fli and mi -are the carrier frequencies of wave packets 
with respective envelopes Pi and S, and with wave vectors k,  
and q, : 

Different schemes of four-wave USP interaction are real- 
ized, depending on the signs of phase velocities and U, of 
the respective fields Pi and S, ,  and on the sign of yi . These 
equations were derived in the constant population-level ap- 
proximation level (see Ref. 10 for details). The differences 
between Eqs. (3)  below and the similar equations in Ref. 1 
(page 245 ) is that allowance is made for time dependence on 
the envelopes and that the substitution iv,+ r is made. The 
equations in the case yi = 1 are: 
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here 

the expressions for pi, are derived from (4)  by making the 
substitutions fl,*f12, q,ttg2, w1ttw2, k,*k2. No is the den- 
sity of the number of particles, and n is the difference 
between the level populations. We assume that the medium 
is isotropic, i.e., the scattering tensor xi, is a scalar: xi, 
= %aij. We also assume that x is a real number. In the case 

of complex x = lxle'q the phase e, can be eliminated by a 
simple shift of the field phase by a constant S2--+S2eip/2, 
P2+ P2e-ip/2 ; A = k2 - q2 - k, + q, is the wave detuning. 

For arbitrary values of parameters and field intensities 
it is impossible to integrate the system ( 3 ) . In a number of 
experiments aimed at observing four-wave parametric inter- 
action, the intensity of one of the fields was maintained con- 
stant with good accuracy (Ref. 11, Chap. 7). This approxi- 
mation allows Eq. ( 3 )  to be reduced to an equation set 
integrable for arbitrary ) and A and under the condi- 
tion that the phase velocities of the field pairs propagating in 
one direction be equal. 

To save space, only the interaction schemes which lead 
(in the approximation of constant intensity of one of the 
fields) to mathematically different sets of equations. As the 
first step, we rewrite (3 ) in the following form: 

Here 

For the scheme of interaction in which V, = V2 = V>O, 
U, = U2 = - U>O, we have 

For the phase velocities V, = U2 = V> 0, 
V2 = U, = - U>O we have 

Let, g Ipll) lp21 for any 9, i.e., R,  can be considered con- 
stant. This condition allows (5 )  to be reduced to the short- 
ened system: 

a;i.R+=i(g'R+Fs+GF+), ~xF+=ivF++i~F3R+,  
( 6 )  

I ~ ~ F , = ~ / ~ ~ ( F + R - - - F - R + ) ,  

where the transformation F ,  + F ,  eFiAZ was carried out, 

Linear dispersion analysis shows that the stakes of the 
system 

with g'v < SE are stable if 

and unstable if 

In the case g'v = SE the states (7)  are in the linear approxi- 
mation in indifferent equilibrium with respect to the ampli- 
tude of the field. In the present paper we study the evolution 
of the fields between the states (7).  The formulations of the 
Cauchy problem of the evolution of fields with variables X 
and Tare different for the stable and unstable states (7).  In 
the soliton interactions regime we assume that the system is 
in one of the states (7),  F+ (0,T) = 0 and the field pulses 
introduced into the medium are such that the quantity 

is sufficiently large for the onset of a discrete spectrum of the 
corresponding spectral problem (see below). We note that 
the soliton solutions are able to link both stable and unstable 
states (7).  The instability is eliminated in an order higher 
than the first in the field amplitude by a nonlinear frequency 
shift. 

The second formulation of the problem involves the 
non-soliton quasi-self-similar asymptotic state of the sys- 
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tem. The system is initially in one of the unstable states (7) 
or (9),  F+ (0,T) = Ois taken out ofit by a "pulse" R+ (X,O) 
of very small area, such that 

The system ( 6 )  is the principal object of the present 
paper. All the other physical models discussed below will be 
represented in the form ( 6 ) .  For these models we will also be 
utilizing the above formulations of the Cauchy problem. 

2. Interaction of two polarized electromagnetic waves in 
a medium with cubic nonlinearity. In Ref. 9 it was shown 
that the equations describing the interaction of two wave 
packets propagating toward each other in a medium with 
cubic nonlinearity, and of a two level medium with a transi- 
tion frequency close to the difference of the carrier frequen- 
cies of the fields, coincide with the equations of an anisotrop- 
ic chiral field on group O(3). In the isotropic case this 
problem is formally equivalent to the mode considered 
above under the conditions Vl = V2, U, = U2, S = E = 1, 
A = 0, g, = g2. The quantities PI,  P2 andS,, &-are the polar- 
ization components of the first and second fields. Under the 
condition I PI I % I P2 1, the equations of this model reduce to 
the system (6).  

3. Two-photon interaction with a two-level medium. Sti- 
mulated Raman scattering and two-photon propagation of 
USP in a two-level medium was analyzed in a framework of 
integrable equations in Refs. 6,7, 13, and 14, while in Refs. 6, 
7, and 14 the motion of the level population was considered 
and the condition of exact resonance was used. The corre- 
sponding reduced Maxwell-Bloch equations can be present- 
ed in the form ( 5 ) ,  where 

= N o 1 ,  R+=r+ exp [ i(b,+ b.) J A (r1)dr1], 
- OZ 

here r3 is the difference of the level populations of the transi- 
tion, No is the number of atoms, r+ is the polarizability of the 
medium, t is the time and z the space coordinates, E l  and E2- 
are the slow envelopes of the fields with a , ,  such that 
ill - = wo + Cl, wo is the transition frequency, and C, is 
the detuning. The values of the constants b, and x, is given in 
Ref. 7. In many experiments, a constant level-population 
difference is maintained with good precision15 ( lop4- 

Using this fact, it is possible to reduce the Maxwell- 
Bloch equation to the form (6).  In experiments on observa- 
tion of collective Raman scattering,16 a different regime of 
interaction was observed, in which the pumping was practi- 
cally not exhausted. This regime can be realized by introduc- 
ing in the medium N>N, pump-field photons. In this case we 
also arrive at (6) with allowance for the substitutions 

For E = 1 the stable (unstable) states ( 7 )  upon onset of the 
pumping correspond to the inverted (ground) state of the 
medium. For E = - 1 the ground (inverted) state of the 
medium is stable (unstable). 

4. Four-wave interaction in a noncentrosymmetric medi- 
um with allowance for nonlinear frequency shift. It is known 
that for three-wave interaction in a medium with quadratic 
nonlinearity it is necessary, at sufficiently high field intensi- 
ties, to take into account the nonlinear change of the fre- 
quency l7 

where Ei are the field envelopes and ai are certain constants. 
Let the contribution of the field E3 to this shift be small. This 
is possible if w3 is close to the frequency of the molecular 
transition or if the field intensities satisfy the condition 
I E 1 % 1 E3 1 ', where wi is the carrier frequency of the field 
Ei.  If the phase velocities of the fields El  and E2 are also 
equal and the detuning v is large, 
wi ) v = w1 - &a2 - w3 % Am, the corresponding evolution 
equations reduce to the system (6).  We omit the details to 
save space, and note only that IP+JalElE21 and 
I R + I a I E3 1. This model can be used in plasma theory17 and 
to describe stimulated Brillouin scattering. The case E = I 
corresponds to three-wave interaction, and E = - 1 corre- 
sponds to the explosive instability investigated in the ISTM 
in Ref. 18 for ai = 0. 

5, One-photon interaction with allowance for the qua- 
dratic Stark eflect. The Maxwell-Bloch equations of this 
model are 

Here E is a slow envelope of a field of frequency w = w, + v,, 
while w, and d are the transition frequency and its dipole 
moment, x = x,  - x,, x, and x, are the polarizabilities of 
the levels, R is the polarizability of the transition, N is the 
population difference, and C = v, + xfi- ' I E / '. Let 
v0%xfip I E 1 ,, then the system ( 11 ) coincides with ( 6 )  after 
making the substitutions 

The formulations of the Cauchy problem of USP evolution 
coincide with the known formulations of problems relating 
to self-induced transparency3 and to amplification of a weak 
light pulse in a laser am~l i f i e r .~ , ' ~  

3. CONSTRUCTION OF THE ISTM 

The ISTM formalism presented here is a generalization 
of the corresponding results obtained by Kaup and Newell*' 
for a differential nonlinear Schrodinger equation, and agrees 
with these results for g'v = SE. 

The system (6)  can be represented in the form of the 

87, L-dzA+ [L, A] =O 
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compatibility condition The integration contour is shown in the figure, and 

where \Y = Y ( Z ,  T ' ,  T ) ,  q+ = 2gR+, Z  = X ( 2 g ~ ) - ' ,  
T '  = SF, D  = 1 - g w ,  g  = glS. We define the solutions of 
the spectral problem ( 12) (Jost functions) as follows: 

where 6 = r12 - D. 
The scattering coefficients a  and b are given by the rela- 

tions 

@ = a T + b Y ,  a=-iiY+6T, ( 1 4 )  

where aZ + bz = 1. The functions @ and Y  satisfy the rela- 
tions 

from which it follows that 

i i (11)  = a ' ( q ' ) ,  6 ( 1 1 )  = - ~ b *  (q*). 

The analytic properties of Jost functions are similar to the 
case investigated by Kaup and N e ~ e l l , ~ '  and will not be con- 
sidered here in detail. We seek a solution in the class of func- 
tions that decrease rapidly as Z -  , co . The zeroes o f a ( 7 ,  ) 
correspond to bound states, i.e., to soliton solutions. The 
discrete eigenvalue lies in quadrant I, and 7,  corresponding- 
ly in quadrant I11 of the complex 7 plane, see Fig. 1.  For the 
zeroes of a ( 7 ,  ) we have from ( 14) 

Let q + - have a compact carrier, leading to the representation 

Y ( q )  e x p [ i  (q2-D) Z ]  

FIG. 1. Integration contours. Contour R was used in the derivation of 
Eqs. (22)  and (23) .  

We represnt Y  ( 7 )  in the form 

Y ( q )  = ( 0 ~ e x p [ i ( q 2 - ~ ) Z + i ~ ]  11 

where K ,,, ( Z , S )  -0, S -  co . Substituting ( 18) in ( 12) we 
get 

(dz-ds+iel q+I2/2) K , ( Z ,  S )  =ieq + K 2 ( Z ,  S ) e x p  (2i i%I(%)) ,  

( 2 0 )  
(dz+as-ie I q+I2/2) K 2 ( Z ,  S )  =q-aSKi(Z, S )  exp (-2iAl l(%) ) . 

(21  

It follows from (19 ) - (21 )  that there exists a solution 
K ,,, ( Z , S )  that determines q+ ( Z )  and vanishes at infinity 
( S +  CO ). 

Substituting ( 1 8 )  in ( 1 7 )  and using the symmetry 
properties ( 15 ) , we obtain the Marchenko-Ge'fand-Levitan 
equations ( y  > Z )  

ca 

-&K, (2, y )  +F' (z+Y) + K2* ( S ,  2) Fe(S+y)  dS=O. ( 2 3 )  
z 

The function F ( Z )  is of the form (7' = D  + 6 )  

4. SOLITON AND NON-SOLITON QUASI-SELF-SIMILAR 
ASYMPTOTIC SOLUTIONS 

We substitute 7,- - 7 in ( 12) and ( 13) and obtain the 
simplest soliton solution corresponding to the eigenvalue 
7 = ( D  + 6 )  "* of the spectral problem ( 12) .  We put 

The function F ( Z )  takes then the form 

F ( Z )  =c, esp [ - i ~ % ]  . ( 2 6 )  

The solution of the system of integral equations ( 2 2 )  and 
( 2 3 )  with kernel ( 2 6 )  is of the form 

D+E 
- 1 

{ - (;--E) 2 c ,  1 e x i - ) }  . ( 2 7 )  

Using ( 19) ,  we obtain the single-soliton solution 
m 

q+ (z)  = 2 i d I  (2.2) exp{ 2ir J K ,  ( Z r ,  Z ' )  d ~ ' } .  ( 2 8 )  
z 
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This solution agrees with the corresponding stationary solu- 
tion of the nonlinear Schrodinger equation2 at g = 0 and the 
differential nonlinear Schrodinger equationz0 at D = 0 
(6 = 2gw~) .  The dependence of q+ on T is determined by 
the c ,  evolution which we obtain from the set of equations 
(13). For F, (0,T') = 0 we obtain 

T' 

We rewrite the solution in a form more amenable to analysis: 

q+ (2. T )  =riao. exp [ - i  (2Ei.Z+T + Rc B 
m 

where 

Here - gOd$/dT is the soliton velocity, which can be as- 
sumed to be independent of T if d,F3(0,T) 4F3(0,T)/T. 

The maximum field intensity is 

and is reached at 

It is seen from (3  1) that a nonlinear frequency shift makes 
the soliton amplitude dependent on the linear detuning. As 
g0+O two limiting values of I,,,,, are possible, depending on 
the sign of W: 

lim Im,,=8g-' ( I W 1 - W )  . 
go-0 

The soliton degenerates in this case into a plane wave with an 
amplitude that is constant of W <  0. 

It is known that for a stationary soliton solution it is 
necessary to use a "pulse" R + (X,O) of sufficiently high area 
Q k 1. Besides the soliton solutions, the system (6)  contains 
non-soliton solutions that describe the decay of the unstable 
state (7)  or (9).  We assume that this decay is initiated by a 
weak "jolt" Q< 1, after which the system evolves to a stable 
state. During the linear stage of the interaction, an instabil- 
ity develops, viz., F+ increases exponentially. Let us esti- 
mate the characteristic scales of the quantities at which IF+ I 

is small: IF+ I < 1. Solving (6),  we get 

Fo F+ ( X ,  T) = ------ exp (hoSivX+ig,TF3") ,  
(2nho)  '" 

where 

The function Fo can be defined in terms of R+(X,O), 
F+ (0,T). For the function R +  (X,O), which meets the con- 
dition ( 10) 

the solution (33) is valid in the self-similar-variable range 
A, 2A,'0') 1. We use this property to obtain an asymptotic 
solution that describes the shape of the first field spike 
R + (X,T). The field R + (X,T) consists (at the exit from the 
system) of an infinite sequence of spikes having an ampli- 
tude that decreases as T ~ +  a. Under real conditions, how- 
ever, relaxation processes cause the contribution of the suc- 
ceeding spikes to the field energy to become small (model 5 
of Sec. 2). In any case, by analyzing the form of the first spike 
one can obtain important information on the character of the 
interaction and on the properties of the medium. Note that 
at sufficiently large T the linear solution can be "joined" to 
the asymptotic solution of the system (6)  (cf. Ref. 19), but 
to explain the singularities of the behavior of the solution it is 
expedient to obtain the form of the first field spike R + (X,T) 
explicitly. 

We seek the solution of Eqs. (22) and (23) with that 
part of the kernel which is determined by the continuous 
spectrum of the scattering problem 

1 
F ( Z )  = - I p ( 5 )  exp (-iE2) dE; 

2n-_ 

herep({) = b ( l ) / a ( 6 ) ~ ,  T = (D  + i )"2.  
Let q + (X,O) be small: Iq + (X,O) 1 < 1; then, iterating 

(12), we obtain accurate to 0( L+ - (X,O) 1') 

b (g) =iq 1 g- ( 2 )  erp (2ig.Z) dZ, a (E) m i .  

Taking into account the evolution of b with respect to T, 
which takes a form similar to (29), we get 

where - 
p (@ =-i 1 p- (2) exp ( 2 i ) Z )  dZ ,  P=8R3 I F, (0,T) IT.  

We assume that p (6 )  changes slowly enough (not faster 
than a power law) and Z is larger than the characteristic 
dimensions of the "perturbation" q- ( Z ) .  Under these as- 
sumptions the dynamics of the interaction process is deter- 
mined mainly by a self-similar asymptotic relation. We ob- 
tain K2 from (22) and, substituting it and the kernel of (34) 
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in (23), we arrive at the following integral equation 
({ = 2gw&, z = EX(2g)r1): 

& K g  ( X ,  XI )  -P' ( X + X f )  

X K ,  ( X ,  S f )  ( D - t - 2 g o i - g v ~ )  

Y v  
+ i [ w ' * ( s + x ' )  + - + - ( s + x / ) ] }  = 0, Y-YE.  

20" 2 
(35) 

We multiply (35) by exp( - iwX') and integrate with re- 
spect to X'. We obtain the function 

rn 

K ( X I  = I K ,  ( x ,  x') e i m X r  d x l .  
X 

Next, substituting K(X) in (35), we determine K, (X,X1). 
We calculate the integrals with respect tow and w' and by the 
saddle-point methodz1 for large A,. This solution is valid 
accurate to 0(A ; 3'2) for A,(')) 1. 

To calculate the integrals, we change to new variables: 

We deform the integration contours in such a way that they 
pass through the points A = i and A' = - i. We obtain ulti- 
mately 

I 

1 
K ,  ( x ,  x ~ )  = - 2  (g ) ' h ~ . ( ~ + ~ ~ )  

x { E +  
I+2go+& . , f i ( 2 ~ ) ~ ( 2 ~ ) ) .  (36) [ 2 - i v  ( - X I Y )  ] 

where 

1 
P ( X + X t )  = --- 

(2nh')  '" 
po' (2ga - '+gv&)  

x exp[ h f + i Y + i v  ( X + X ' )  2  I 
rn 

The solution for q+ (X,T) takes the form (28) with the value 
K, (X,X ') (36) on the characteristic X = X'. In the calcula- 
tion of the integrals with respect to w and w' we assume that 
p,(S) is regular at zero. In this case, if 
po(S)  = r (S)B-21a1- '  and r ( 8 )  is a function regular at 
zero, Eq. (36) acquires a factor exp [ - i~lal] (Ref. 21). 
Thus, we have obtained an asymptotic solution (which is 
correct for A% 1 ), modulated by a slowly varying function 
that is determined by the initial condition (R - (X,O) ) , and 
having a power-law dependence on the variable a = ( - Y / 
X) ' I 2 .  The maximum value of the modulus of the beam am- 
plitude for variable A and fixed a is 

where 

0 = v / 0 ,  x=h-LO-ln (2nk)"' ,  h=3 ( - Y X )  'I:, 

A,,=-ln ) p 0 ' ( 2 g o - + g v e )  1 ,  g=ge=g'6&,  

I Q + ]  = 0 ( % + 0 ~ ) ' / (  [~e - ' (4+0 ' ) '+  (4-0'-4gv) ex] 

+ [ 0  (%-gv) +hgo] 'e")'". (38) 

For 8g 1 we obtain from (37) 

4 o  
m a s  I q ,  I =, 

A 112 [ (fT2+gZo2) ' i J + W ]  

where k= ( 1 - ~ Y ) E .  Note the analogy with the soliton 
case ( 3 1). For \gal % 1 it 1 we obtain from (39) 

and for lga/ g I @'I, 

In the other limit, 8% 1, it follows fr.om (37) 

max Iq+ I = v ~ [ v ( l - ~ ) + ~ / ~ 0 - ~ ~ 1 - ' ~ [ 1 + 0 ( a - ~ )  I ,  (42) 
h 

whence we have for& = - 1, Y # O  

max Iq+ I = 2 - ' ~ [ 1 + 0 ( 0 - ~ )  ] 

and for E = 1 

1 2  vS'* 
max / q + I = -  rm'" [ l + o ( e - "  I. 

If Y = 0, we obtain in place of (42)-(44) ( g a g  1 ) 

max I q+ I =20 ( l + ~ + g ~ a ~ / 2 ) - ~  [ 1 + O  (1 go  1 ' )  1. (45) 

For YZO, U= 0,8% 1 we find in place of (44) 

Let us obtain the maximum value of (q, (X,T) ( attaina- 
ble when a is varied, and for a fixed A. For 8< 1 the maxi- 
mum of Iq, I is reached at infinity and is equal to 

max I q+ I = (4!l g 1)e-j [ I  + 0 (0)l; (46) 
a 
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if 8 )  1, then cles" can exert a substantial influence on the pulse evolution 

5. DISCUSSION OF SOLUTIONS AND COMPARISON WITH 
EXPERIMENTAL RESULTS 

The behavior of the soliton and non-soliton quasi-self- 
similar solution obtained in the preceding section is deter- 
mined mainly by the two parametersg' andg'v - ES. AS seen 
from the asymptotic relations above, the limiting values of 
the amplitude can change qualitatively when the signs of w 
and Ware reversed. The presence of a nonlinear frequency 
shift leads to stabilization of the "explosive instability," 
which takes place at E = - 1, g = 0. This effect is known in 
plasma theory. '' What is new is that a stationary soliton can 
be formed within the framework of the considered model. 
The very same mechanism determines the feasibility of self- 
induced transparency for two-photon absorption in a two- 
level medium. For the quasi-self-similar solution describing 
the decay of an unstable initial state at g = 0, a- co, the 
amplitude of the spike (within the scope of the given math- 
ematical model) tends to infinity in proportion to a. This 
was demonstrated in Ref. 19 for a two-level laser amplifier. 
For g#0, the character of the asymptotic relations changes 
qualitatively [see (39)-(45) 1. Let us estimate the field am- 
plitudes at which the nonlinear frequency shifts makes a 
contribution on the order of unity. For ruby, the dipole mo- 
ment i s d z 6 .  lo-" cgs esu and x- cm3; we obtain the 
a field amplitude /EoI =: lo6 V/cm, lower by two orders than 
the breakdown field. If linear detuning is present together 
with the nonlinear shift, the conditions for observing the 
effect become substantially more favorable. At lgvl- 1 one 
can observe an appreciable (on the order of unity) change of 
the soliton form even in weak fields I E I 4 IE 1,. Let us esti- 
mate the parameters of the medium: the condition g v z  1 is 
met ford=: 10-'s-10-21 cgs esu, x.1 10-22-10-25 cm3, the 
detuning lies in the interval 107-10'4 s-' <w, = 1015 s-'. It 
can be seen that the effect can be discerned under the usual 
conditions for observation of self-induced transparency. For 
two-photon interaction we have /g /  - 1 (e.g., for various 
transitions in cesium vapor g, = - 1.43, g, = - 0.51, Ref. 
7).  In the case of a four-photon interaction Igl are functions 
of the carrier frequencies and can take on values $1. Values 
gv = + 1 are easily reached in these models. 

The dependence of the USP on the "number of parti- 

in those problems where an important role is played by inter- 
ference of fields. For example, in the case of a transition 
degenerate in the angular-momentum projections, such an 
interference can be the mechanism that "blurs" the ~ u l s e  
shapes and which is observed in experiments on collective 
Raman scattering in ortho-hydrogen.22 One should expect 
here a more appreciable shortening of the pulse "tail." Inter- 
ference can take place when the fields are not uniformly dis- 
tributed relative to the transverse coordinates, i.e., it must be 
taken into account in the nondegenerate case. 

We note in conclusion that the results of the present 
paper can be used also outside the scope of nonlinear optics. 
In particular, the set of equations (6)  can be obtained by 
simplifying the equations used to describe wave interaction 
in a plasma,' an anisotropic chiral field,9 and also for the 
description of stimulated Brillouin scattering. 
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