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Quantum fluctuations nonlinear in the laser field and time correlations of photons in four-wave 
mixing are obtained. Stationary propagation of two radiation-field modes in a resonant medium 
in the presence ofan optical cavity is considered with allowance for vacuum fluctuations of the 
radiation, intermode correlation, and relaxations. The time correlation functions of the mode 
amplitudes and occupation numbers are calculated for different experimental setups within the 
framework of quantum electrodynamics. It is shown that the laws governing the damping of 
optical correlations in time depend strongly on the radiation spectral range, on the mode-locking 
conditions, and on a parameter that characterizes resonance interaction between an atom and a 
laser field. Suppression of the fluctuations of the quadrature amplitudes of a radiation field in a 
squeezed state is attributed to growth of the intensity correlation function. The spectral-line 
intensities of parametric fluorescence in one-photon and two-photon excitation laser fields are 
also calculated. 

1. INTRODUCTION 

Problems involving quantum fluctuations of an electro- 
magnetic field and photon correlations have recently be- 
come important topics in nonlinear optics. One of the rea- 
sons is the observation of novel unconventional optical 
quantum effects that appear in quantum fluctuations of 
light. These include results on quantum statistics of light, 
on generation and detection of electromagnetic fields in 
squeezed states with suppressed quantum-fluctuation level. 
Another reason is the better experimental facilities available 
to the existing spectroscopy of intensity  fluctuation^,^." 
which calls for a more accurate quantum theory of optical 
mixing of light. 

Foremost among the optical phenomena in a nonlinear 
atomic medium which exhibits strong quantum properties is 
nondegenerate four-wave mixing, or parametric fluores- 
cence, which is a source of an electromagnetic field in a 
squeezed state (see the experimental results in Refs. 7 and 
8) .  This process is due to interaction, in a nonlinear atomic 
medium, between the laser field and two radiation-field 
modes having frequencies w, and w, symmetric about the 
laser frequency w (w, - w = w - w,). 

The theoretical results of Refs. 9 and 10 on squeezed 
states in four-wave mixing deal with calculations of second- 
order radiation-field moments, viz., the mode occupation 
numbers and the mean squared amplitude fluctuations. 

The present paper is devoted to a systematic and consis- 
tent study of radiation-field correlation functions of order 
higher than second, under conditions of four-wave interac- 
tion in a nonlinear atomic medium. We consider a stationary 
mode-propagation regime which is realized in the presence 
of an optical cavity, with account taken of the intermode- 
correlation quantum effects. Section 4 is devoted to para- 
metric fluorescence in the cavity for the two typical cases of 
atomic media in one-photon and two-photon laser-field exci- 
tation. In Secs. 5 and 6 are calculated the photon-number 
correlation functions of two coupled modes w, + w, = 20. 
In Sec. 7 we calculate the correlation function of the radi- 
ation-field intensities in a squeezed state with suppressed 
quantum amplitude fluctuations. Optical correlation effects 

that are nonlinearly dependent on the laser-field intensity 
are observed in the cavity, including photon superbunching, 
temporal oscillations of intensity fluctuations, and others. 
The dispersion about the mean of higher-order quadrature 
amplitudes of a two-mode field is considered in Sec. 8. 

A consistent treatment of these questions is possible 
only within the scope of a quantum-electrodynamic theory 
of nonlinear wave mixing, allowing for both stimulated and 
spontaneous emission processes. Nondegenerate four-wave 
mixing has been thoroughly investigated for a two-level 
atomic medium in the semiclassical approximation (see, 
e.g., Ref. 11). Different quantum theories are proposed in 
Refs. 10 and 12. We use here the quantum approach pro- 
posed in our preceding paper.13 Its salient feature is that the 
coefficients of the radiation-field mode-density matrix equa- 
tions and the diffusion coefficients of the Langevin kinetic 
equations it uses are written in the quasi-energy-state (QES) 
representation." This makes it relatively easy to take into 
account effects nonlinear in the laser field (see Secs. 2 and 3) 
in addition to electromagnetic-field vacuum fluctuations, 
parametric mode interaction in a medium, and relaxations. 

2. QUANTUM DESCRIPTION OF FOUR-WAVE MIXING IN THE 
QES REPRESENTATION 

We consider four-wave interaction in an atomic medi- 
um in which the frequencies and momenta of a laser mono- 
chromatic field are transformed in accordance with the 
scheme 20  = w, + w,, k,, + k,, = k, + k,. 

The radiation-field modes produced in the nonlinear 
medium, with frequencies w, and o,, propagate in an optical 
cavity along an axis that differs from that of the cavity that 
forms the laser-radiation wave k,! = - k,, (Refs. 7-9). 

The time evolution of the two radiation-field modes is 
described by the Langevin equations for the boson creation 
and annihilation operators of the mode occupation numbers 
in the QES representation of the "atom + monochromatic 
laser field" system. 

We present first the semiclassical equations for the 
quantum-mechanical average mode amplitudes A ,  ( t )  

2461 Sov. Phys. JETP 67 (12), December 1988 0038-5646/88/122461-08$04.00 @ 1989 American Institute of Physics 2461 



= ($Olai ( t )  in an atomic medium of density Nin a cav- 
ity volume v. Here 

ai ( t )  =S+(t)aiS(t)  (2.1) 

are the annihilation operators for the photons of mode i 
( i  = 1,2), S ( t )  = S ( t ,  - co ) is the scattering in the QES 
repre~entation'~ with the interaction operator in the dipole 
approximation 

(2.2) 

ei are polarization vectors, and d(t)  is the dipole-moment 
operator in the QES representation: 1 $,) = Ip,) I $,), where 
Ip,) and I $ , )  are respectively the initial QES and the initial 
state of the modes. 

Using the equation for the scattering matrix, we get 

a 2no,v '" 
-A. ( t )  = (R) ci ( D ( t )  ), 
dt 

where 

Using this expression in an approximation linear in the field 
E ( t ) :  

where 10) is the vacuum of the radiation field, we obtain for 
the four-wave-mixing scheme the following equations for 
the slowly varying amplitudes of two parametrically coupled 
modes 2w = w, + w,; 

where 

(2.5) a 
-A,' ( t )  = az'A2' ( t )  + p1A1 ( t )  . 
at 

In these equations, ai = aOi - T i ,  where aOi are the nonlin- 
ear susceptibilities in the presence of the laser field, ri are 
the cavity absorption widths for the frequency oi and are 
introduced as usual phenomenologically; pi are the mode- 
coupling coefficients. The coefficients of the equations are 
calculated using the formulas 

2 n w N  (0) '  ( 0 )  
Uoi =- en* (i)  em ( i )  [Anrn ( a ~ , )  - A n m  (wi) I ,  

ti 

where 
n/o t 

X (cpo,OIDn(t)Dn,(tl) IO,cpo). (2.7) 
The quantum Langevin equations of motion are ob- 

tained from (2.5) by the standard transition to the corre- 
sponding operators and adding noise operators f ,,, with zero 
mean values K) = 0. We limit ourselves to writing down 
the solutions of these equations in matrix form for the quan- 

tity b = (:>): 

2g,=a,+a,'k[ (a2*-al)2+4pz*pi] '". (2.10) 

We proceed now to calculate the field amplitude corre- 
lators containing averages over the initial state I&,). Using 
the well known fluctuation regression theoremI6 based on 
relations of the type ( a ,  ( t  + T )  J ( t ) )  = 0 for r >  0,  we ob- 
tain from (2.8) 

(al+(t+r)al( t )  ) = B l l * ( ~ ) n l ( t )  +B~z ' ( r )g( t ) ,  

(a2(t+r)al(t))=B2,'(r)g(t)+Bzi'(r)n1(t), 

(aI(t+r)al+(t))=~ll(~)[nl(t)+~] +Bi2(r )ga( t ) .  

(2.11) 

Here n, ( t )  = (a,+ ( t ) a ,  ( t ) )  are the mode occupation 
numbers and g ( t )  = ( a ,  ( t ) a ,  ( t )  ) is the anomalous correla- 
tor.,' The other correlation functions are obtained by the 
subscript exchange 1 ~ 2  in (2.1 1 ) with a corresponding ex- 
change in the coefficients (2.9 ) and (2.10). 

The contributions of the spontaneous radiation pro- 
cesses are contained in the quantities n, and g ( t )  , which can 

I 

be calculated with the aid of the solutions (2.8) and the 
equal-time mean values of the Langevin operators. We pres- 
ent expressions for these mean values in terms of the coeffi- 
cients (2 .7) .  Using the Einstein relations to determine the 
diffusion coefficients,16 we obtain in the framework of the 
field-density-matrix formalism13 for the radiation 

(2.12) 

(the averages for distinct t vanish). The correlation of the 
noise operators is a delta function with diffusion coeffi- 
cients'* 

( f i+( t ) f i ( t l )  )=(1-2ai/pi)-'<fi(t) ft+(t'))=Pi6(t-t'), 
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The physical meaning of the coefficients aOi and pi in 
(2 .6 )  is well known from an analysis of the semiclassical 
solutions of the four-wave mixing problem. The other coeffi- 
cients describe one- and two-photon spontaneous emission 
proces~es'~ and are equal to 

They characterize the quantum theory of nonlinear field 
mixing and were calculated for various atomic systems in 
our preceding paper." 

It must be noted that the solutions (2 .8 )  ofthe quantum 
equations and the mean values (2 .12)  and (2 .13)  for the 
coupled modes are given in the general case for arbitrary 
atomic systems in which the four-photon process 
2w = w ,  + w, takes place. It is important that the diffusion 
coefficients are calculated in the proposed method micro- 
scopically and are not specified phenomenologically. 

Another equivalent approach, more convenient for the 
investigation of a stationary regime, is to solve directly the 
equations for n, ( t )  a n d g ( t ) .  These equations were obtained 
in Ref. 20; in our approach they are also easily derived by 
using the equation for the density matrix of two modes in the 
QES representation,13 and take the form 

3. HIGHER-ORDER CORRELATION FUNCTIONS 

The system of equations for the fourth-order moments 
are easiest to obtain with the aid of Eqs. (2 .15)  and the fluc- 
tuation-regression theorem mentioned earlier. According to 
the latter, equal-time mean values of the type 
(a ,  ( t ) B ( t  + r ) a ,  ( t ) )  with an arbitrary function B ( t )  of the 
operators ai and a+ satisfy at T > 0  the same equations as the 
mean value ( B ( t  + T )  ). As a result we get the equations 

a - G,, ( t ,  t+r)  = 2  Re aLGl, ( t ,  t+z )  
d  r  

a 
-A , ( t ,  t t r )  = (aL+az)Rl  ( t ,  t f z )  + pa0Giz(t, t+z)  
dr 

R l ( t ,  t+r)=(~~+(t)~~(t+r)a~(t+r)a~(t)) (3 .4 )  

for normally ordered correlators. 
Consider stationary propagation of two modes excited 

in acavity at time t% (Re ai I-'. In this regimeAi ( t )  is zero, 
but the stationary solution ni ( t )  + n i ,  g ( t )  - + g  of the quan- 
tum problem, i.e., a solution of (2 .15)  with ani /& = dg/ 
at  = 0, which is independent of the initial state of the radi- 
ation field, does exist. 

Let us find the stationary solution G,, ( t , t  + r )  
-Gij ( r ) ,  Ri ( t , t  + T )  -Ri  ( 7 )  ofthesetofequations (3 .1)-  
( 3 . 3 ) .  It is necessary first of all to find expressions for the 
equal-time correlators. In the stationary regime, the mo- 
ments of the radiation field are independent of its initial state 
and are governed by vacuum processes. The equal-time cor- 
relators below the threshold for lasing in the cavity have a 
structure typical of Gaussian fields: 

GLl=2nla, G,,==nlnr+ lgJ , Ri=2%g, (3 .5 )  

where ni and g  are stationary solutions of Eqs. (2 .15) .  It is 
easy to verify that the solution of Eqs. (3.1 ) - (3 .3 )  with the 
boundary conditions ( 3 . 5 )  take the form 

Rl(r)=nlg+(al+al(r))(a2(r)a,) (3 .8 )  

where (a i  ( t  + r ) a j  ( t ) )  + (a i  ( r ) a , )  in the stationary limit. 
Another quantity of interest, describing the fluctuation 

of the number of photons, is similarly given by 

(a i+ ( z )a i ( r )a i+a i ) -n?=<a i+( z )a , )<a i (~ )a ,+ .  ( 3 . 9 )  

The results are valid below the lasing threshold in the 
cavity and include nonlinear quantum fluctuations of light 
and photon correlations. They are analyzed in the sections 
that follow. 

4. SPECTRAL-LINE INTENSITIES IN PARAMETRIC 
FLUORESCENCE 

We begin the discussion of the indicated nonlinear ef- 
fect by calculating the mode occupation numbers and the 
anomalous correlator for a medium of two-level atoms with 
transition frequency w, in a resonant field. We consider the 
case (n = (c2 + 41 V 1 ') ' I 2  > y, when the emission lines of this 
system at the resonant w ,  = w  + Cl and "three-photon" fre- 
quencies a, = w  - Cl are separated in the spectrum. We use 
the following notation: E = a,, - w  ( I E I  & w ) ,  V =  - dE,/fi 
is the matrix element of the interaction of a two-level atom 
with the pump field of amplitude E,, d  is the dipole moment 
of the atomic transition, and y  is the spontaneous width of 
the atomic transition. Calculation using Eqs. ( 2 . 6 ) ,  ( 2 . 7 ) ,  
and (2 .14)  by the method described in Refs. 15 and 19 yield3' 
in the approximation a>) y: 

in which 
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The spectral widths 

in these equations agree with the known widths of the reso- 
nance fluorescence spectrum," while 

is the difference between the stationary populations of two 
quasi-energy states. Note that in this scheme of parametric 
fluorescence in a cavity the coefficients 8, and il of the equa- 
tions contain each a spectral component of unbiased Ray- 
leigh scattering without a contribution of coherent forward 
scattering. 

In the case of a two-level medium the quantities n, andg 
have a structure with three peaks at the frequencies w, = w, 
w R. We present approximate equations obtained for their 
peak values from the stationary solutions of Eqs. (2.15) in 
general form. It can be verified with the aid of (4.1 )-(4.4) 
that the following relations hold for each of these frequen- 
cies: 

and as a result the indicated solutions can be reduced to the 
following simpler form: 

(Expressions for the average number n, of photons of the 
coupled mode are obtained for (4.8) by the exchange 1 ~ 2 . )  
As a result, the heights of the peaks n, =rill,, =,, 
n, = n, I,, = ,,, n, = n,J,, = ,, and the anomalous correlator 
i? = gl ,, = , ,  ,2 = cdr are found to be 

n.=oo(l-p2) 1 V12/I'(eZ+Q2), (4.10) 

In these expressions, go = 4?rNw01d I2/fiy is the mode ab- 
sorption coefficient at the resonance frequency w, = w, in 
the absence of a laser field; we have left out the dependence 
on the mode polarization vectors and assumed for the cavity 
widths the simplifying condition r l  = T2 = T. 

The heights of the side peaks of the average number of 
photons in the modes are thus equal, and for weak fields or 
large displacement from resonance 1 V I < E  we obtain under 
the condition E )  y 

(4.12) 

The peak ratios for I VI )E and T 5u0 are n,/n, = nu/ 
n, = 3, just as in the case of resonance fluorescence without 
a cavity. 

We describe now the application of the results to para- 
metric fluorescence in an atomic medium under the condi- 
tions I wba - 2wl <wba of two-photon resonance of atomic 
levels of like parity. We assume that the system excitation 
w, -ab is described by a two-photon matrix element V2 and 
the decay is predominantly via a level w,  in accordance with 
the scheme / b  ) - lc) - la) by dipole-allowed one-photon 
transitions. It is known2' that under the conditions 
.R2= (E: +41V212)1'2%ybc,yca, where &,=wb, -2w, 
while y,, and yc, are the spontaneous partial widths of the 
respective atomic transitions 1 b  ) -. lc) and Ic) - la), the 
spectral lines of the system 

are separated in frequency: lvi - v, 1 )ybc, y,, . Using the 
calculatedI3 coefficients a,;, pi, Pi ,  A it is easy to verify that 
relations (4.7) hold also in this case, so that at the frequen- 
cies w, = vi , w2 = 2w - vi the number of the photons in the 
mode n ,  = n, I,, = ,  and the anomalous correlator are given 
by Eqs. (4.8) and (4.9). 

We present the final results for coupled radiation-field 
spectral components v, + v, = 2w in the limit of weak pump 
fields under the condition I V2 1 ' 1 yb, - y,, 1 /E:  yca < 1 and in 
the simple case T,, = T, = r :  

where 

u,,=4nNvl I e,,*d, ('/tiyb,, uv,=4nNvLI e,,'dz 1 2/fiyca 

are the absorption coefficients in adjacent atomic transi- 
tions, while d l  = (p, (dipb ), d, = (p, /dipc ). In these ap- 
proximations, the anomalous correlator g in the region 
w, = v,, w2 = v4 is equal to 

In contrast to the case of a two-level medium, the Stark- 
doublet peak heights are in our case asymmetric, nv, # n,. 
This follows also from the general result (4.8). In fact, the 
equality n, = n, holds if the ratio of the emission rates of 
photons with frequencies w, and w2 is equal to the ratio of the 
cavity absorption widths at the corresponding frequencies, 
i.e., P,/D2 = r , /T2 .  Note that the line intensities of the sec- 
ond Stark double (v2,v,) are smaller in the weak-field region 
by an additional factor I V2I2/&: compared with (4.13). 
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5. QUANTUM STATISTICS WITH ALLOWANCE FOR 
INTERMODE CORRELATION 

Let us investigate the correlator GI, (7) for a two-level 
medium in the region of interest R )  y, with an aim at an 
experiment in which the radiation field outside the cavity is 
filtered and is incident on a photodetector. We assume that 
the spectral bandpass of the filter is Aw &a. Thus, we mea- 
sure the photocurrent spectrum of single-mode light which 
can be expressed6 in terms of a Fourier transform of GI,  (r) . 

Using (2.9), (2.1 I ) ,  and (3.6) we get the expression 

G11(t)-n,2=(b+12 exp ( 2  Re g+t)+l  b-IZ exp (2 Re g-t) 
-21 b+b-'1 exp[(Re g++Re g-) t ]  cos (AT-cp), 

(5.1) 

in which 

We consider first the frequency range of the spectral 
lines. Calculations using the results of the preceding sections 
[Eqs. (4.1)-(4.5) and (4.1 I ) ]  show that the normalized 
second-order correlation function is the same for the fre- 
quencies w, = a,, w, = w, and is equal to 

where 

Let us comment on the result (5.2). It is accurate to 
terms of order y / R  if R > y, when the resonance and three- 
photon lines are separated in the spectrum, if the mode po- 
larizations are equal, e, = e, = e, elJd. It is easy to verify 
with the aid of (4.1 ) and (4.3) that the assumptions made 
for the four-wave mixing we are considering lead to the fol- 
lowing useful relations between the coefficients: 

over a wide frequency range w, z w, (the same relations hold 
also in the region w, ~ w ,  ). As a result we obtain the simple 
expressions (5.3) for the coefficients (2.10) of the expo- 
nents. 

It follows from (5.2) that the correlation function of 
the occupation numbers of one mode is affected by the 
damping of the fluctuations of both modes w, and w, . This is 
due to the parametric interaction between the modes, par- 
ticularly to allowance, in the correlator, for the contribution 
from the spontaneous two-photon emission 2w+w1 + w, of 
the atoms of the medium. In the absence of parametric inter- 
action in the medium (meaning in our scheme that there is 
no cavity for the pump field, in which case k,, + k,, #O, so 
that the synchronism condition is not met, 
k,, + k,, #k,  + k,), we havep, = A = 0 and, as follows di- 
rectly from Eqs. (3.1 )-(3.3), 

FIG. 1 .  Dependence of G I ,  (r) /n:  - 1 on the parameter u , ~  for the pa- 
rameter values r / ~ ( ,  = 0.01 and 21 V I = l&/ .  Curves l and 3 correspond to 
the absence of mode locking and are shown for the frequencies 
w  , = w  - R and w ,  + 0, respectively. Curve 2 describes the case of mode 
locking at w ,  = w  f R. 

The fluctuation damping is determined in this case by the 
mode enhancement Re a,, > 0 in the region of the three- 
photon line and by the mode absorption Re a,, 4 0  in the 
region of the resonance line, with 

A graphical comparison of the correlators for the two cases 
of parametric interaction of the modes and in the absence of 
correlation is shown in Fig. 1. 

For weak pump fields or large displacement from reso- 
nance we must put in (5.2) g+ = - T andg- = - r - a,. 
In other frequency regions, the correlator (5.1) contains 
time-beat effects with a parameter A that is indicative only of 
a nonlinear medium and, as is important for spectroscopy 
problems, does not contain the cavity absorption width. In 
the region w, ~ w ,  or w, z w ,  we obtain with the aid of (5.1) 
an expression 

0 0  e2 
IAI =- 

y l o , -orPI  
2 e"21 V I 2  ( o , - o ~ Q ) ~ + ' / ~ y ~ ( 1 + 2 I  V12/Q2)2 ' 

(5.7) 

which vanishes in the region I V I ) IEI. The temporal oscilla- 
tions in the correlator are due to parametric interaction; they 
are substantial on the emission spectral-line wings and van- 
ish at w = w, or o = w, in agreement with (5.21, and also 
when mode locking is violated. 

The temporal variation of the intensity correlation 
function depends also on the ratio I V ( / I  E I and on the param- 
eter r / u o .  For a cavity with large absorption width T ) u ,  
the intensity-fluctuation damping is determined by the 
quantity 

We present numerical results obtained from Eqs. (5.1 ) and 
the exact stationary solutions of Eqs. (2.15) for a good cav- 
ity with small absorption width. The normalized correlator 
has the same dependence on the dimensionless parameter 
a,r in either the frequency region w ,  z w ,  or w, z w ,  , and is 
shown for two typical cases in Fig. 2. These data are evidence 
that the oscillation scale depends on the density of the medi- 
um via the absorption parameter a, and via the detuning of 
the mode frequency from the side lobes of the triplet. 

In the region w, z w  the gain and the absorption of the 
unshifted mode cancel each other, therefore a,, = p, = 0 in 
accordance with (4.1) and (4.3), and g+ = g- = - T. As 
follows from (5. I ) ,  we obtain in this region for the normal- 
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FIG. 2. Dependence of second-order normalized correlation function on 
the delay time for the following parameter values: a-T/u, = 0.001, 
21 VI = lal, o, - o, = y, b-T/u, = 0.001, 21 Vl = / & I ,  w, - a ,  = 10y. 
The parameter cr, is equal to 1.3-10' s- '  for the transition 
( 6 2 )  ISo+ (6s6p) IP? in atomic Ba (at a density N = 10" cmp3. 

ized correlator expression (5 .8 )  in which n,  is given by Eq. 
(4 .10) .  

6. NONLINEAR PHOTON SUPERBUNCHING 

Let us investigate the temporal photon-number correla- 
tions between two modes, as determined by the quantity 
G I 2 ( r ) .  These effects are due to parametric interaction be- 
tween the modes; in its absence, in view of violation of the 
mode-locking condition, we obtain G I 2 ( 7 )  = n1n2. In the 
stationary regime, Eqs. (2.9), (2.11),  and (3.7) yield 

G12(~)-nln2=IC+ exp ( ~ + T ) - C -  exp (g-.c) 12,  

It is simplest to analyze this expression for a cavity with 
large damping, r ) max .( laoi 1, [ p i  I). In this approxima- 
tion, as follows from Eqs. (2.15 ) in the stationary regime, we 
have ni = Pi /2T, g = A * / 2 r ,  and obtain for the normalized 
correlator the expression 

which is symmetric with respect to photon permutation in 
the two modes. 

The ratio IA 12//3,P2 does not contain the atomic num- 
ber density and is indicative of the difference between pair- 
wise spontaneous emission of photons of frequency w ,  and 
213 - w ,  and the corresponding independent emission by an 
atomic system. For resonance fluorescence by a two-level 
atom we have (A l 2  = P I P 2  in the frequency region 
w ,  z w , z w  and IA 12/fl,P2) 1 in the region w ,  #w,#w for 
weak pump fields or large detuning from resonance [see Eqs. 
(4 .2 )  and (4 .4 )  1. 

Let us examine the functions 

G , , ( ~ ) l n ~ n , = i + F ( ~ )  (6 .3 )  
in the frequency region w ,  = a , ,  w2 = w, or w ,  = w, ,  
w2 = w, . They correspond to setting up a correlation experi- 
ment in which the statistics of delayed counts of photons 
having frequencies w f R separated by spectral filters are 
measured. The quantity F,(T) = F ( r )  I ,, = WCOl = - ,  deter- 
mines the probability of detecting photons of frequency w, at 
a time T after recording photons of frequency w , .  Similarly, 
the probability of detecting photons of frequency o ,  and or 
in reverse chronological order is determined by the quantity 
F 2 ( r )  = F ( r )  1 ,, = ,,,? = ,,. Calculations similar to those 
leading to ( 5 . 2 ) ,  with account taken of the ratio Jgl/ 
n ,  = ( R 2 + ~ 2 ) / 4 1 V 1 2 i n  (4 .11) ,  yield 

The results of calculations using ( 6 . 4 )  for the case 
2 1 V  I = E and for the two values r / a ,  = 0.01 and 1 are 
shown in Fig. 3. For clarity, the F , ( T )  and F 2 ( r )  curves are 
drawn on opposite sides of the ordinate axis. 

It follows from the foregoing that at zero delay the 
probability of recording two photons is a maximum, with 

The correlation between photons from different modes is 
therefore of the bunching or superbunching type if I E I  ) I V I .  

For r + 0 ,  the time sequence in which the photons of the 
Stark triplet side peaks are recorded is not symmetric. Thus, 
the number of events in which photons w, of the resonance 
line are recorded prior to the photons w, of the "three-pho- 
ton" line on leaving the cavity exceeds the number of events 
detected in the reverse sequence. The asymmetry vanishes in 
the case of a small absorption coefficient a, < T ,  since the 
spectral component w, is absorbed while w, is amplified in a 
two-level resonance medium. It is important to note that the 
situation is different for resonance fluorescence by an indi- 

FIG. 3. Time-dependence asymmetry of normalized 
correlation between photons of two coupled modes at 
21 V I = la1 for the cases T/u<, = 0.01 (a)  and T/u(, = 1 
( b ) .  
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vidual atom.4' Namely, the number of pairs in which pho- 
tons of the "three-photon" line are emitted prior to photons 
of the resonance line exceeds the number of pairs for the 
reverse emission sequence. 

7. LIGHT-INTENSITY CORRELATION IN A SQUEEZED STATE 

We consider now the correlation function of a two- 
mode field emerging from the cavity without the additional 
mode filtering considered in the problems of Secs. 5  and 6 .  If 
the interval between two frequencies w ,  and w2 in the cavity 
is much less than the laser frequency w ,  the field intensity 
[see Eq. ( 2 . 2 )  ] can be written in the form 

where 

The intensity of the resultant field is, in the stationary re- 
gime, 

Our aim is to calculate the correlator 

Leaving out intermediate steps, we present the following in- 
termediate result: 

+ < a 1 ( ~ ) a 2 ) ( a 2 ( ~ ) a 1  > * ) C ~ ( ~ ~ - ~ I ) ' } ,  ( 7 . 5 )  

where the G ,  are given by Eqs. ( 3 . 6 )  and ( 3 . 7 ) .  This 
expression was obtained by using, for arbitrary values of T ,  

the identities 

which can be easily verified using the solutions ( 2 . 8 )  and the 
equation cited in Sec. 2  for the density m a t r i ~ . ~ '  Note also 
that expression ( 7 . 5 )  corresponds to the following factor- 
ized form of the correlator: 

There is no correlation for large delay-time intervals: 
G ( T )  I , _ ,  + I 2 ,  and at zero time we obtain from ( 7 . 5 )  

If the mode coupling is made to vanish by eliminating 
the mode locking, Eq. ( 7 . 8 )  describes the statistics of ran- 
dom light: G ( 0 )  = 212.  

It was shown recentlyz5 that under certain conditions 
the field (7.1 ) is in a squeezed state. In this case the variance 
of any one of the quadrature components A ,  = A  + A  +, 
A 2 =  - i ( A - A + ) :  

( (AAt ,2 )2>= l+n i+n , r2  R e g ,  ( 7 . 9 )  

is smaller than in the coherent state, i.e., ( ( AA < 1 or 
( ( u 2 l 2 )  < l f ~ r ( ( M , ) ~ ) ( ( A A , ) ~ > l  (AAi  = A i  - ( A i ) ) .  
The maximum suppression of the fluctuations of one of the 
quadrature amplitudes is realized when the condition 

2  J g l >  n ,  + n, is met, if the phase of the normal correlator is 
specially chosen. For such a radiation field we have a ratio 
G ( 0 ) / 1 2  > 3, i.e., substantially different from the ratio that 
characterizes random light. Recall that G ( 0 )  = I' for a co- 
herent field. 

We present the final result for the correlator in the spec- 
tral-line regions w ,  = a , ,  w2 = w ,  , for four-wave mixing in a 
two-level medium. With the aid of Eqs. ( 2 . 9 ) ,  (2.1 I ) ,  
(4 .1  I ) ,  ( 5 . 4 ) ,  and ( 7 . 5 )  we obtain the expression 

in which the coefficients g + , - are given by ( 5 . 3 ) .  Thus, the 
two-mode field intensity correlation attenuates with in- 
crease of 7 and contains oscillations at the difference fre- 
quency w2 - w ,  = 2 R .  For T = 0 the intensity correlation 
has a bunching behavior 

and increases at small values of the parameter I V I / ( E ( ,  which 
determines the resonance interaction of the atom with the 
pump field. For mutually coupled modes in another spectral 
region, Iw, - w ,  I k y, Iw2 - w ,  I >y,  the ratio G ( 0 ) / 1 2  de- 
pends also on the parameter T / u O  and has a rather compli- 
cated form. Analysis shows that in this region the depend- 
ence of the normalized correlator ( 7 . 8 )  on the parameter 
( V I/IE~ differs little from (7.1 1 ) for the case of cavities with 
small damping T,<uO.  A substantial difference appears for 
four-wave mixing in a poor cavity, r)uo. In this case the 
radiation spectrum is similar to the fluorescence spectrum in 
free space [see the results preceding Eq. ( 6 . 2 )  1. The correla- 
tion function ( 7 . 8 )  is determined by the ratio 41A 12/ 
(8, + P212, which increases, as follows from ( 4 . 2 )  and 
( 4 . 4 ) ,  in proportion to ( w  - u , , , ) ~ / ?  on the spectral-line 
wings. 
8. DISPERSION OF HIGHER-ORDER QUANTUM 
FLUCTUATIONS 

We turn now to an analysis of the moments of the high- 
er-order quantum fluctuations of the quadrature amplitudes 
of two-mode field (7.1 ) 

E ( t )  = c [ A , ( t )  cos o t + A z ( t )  sin o t ] .  ( 8 . 1 )  

To calculate the higher moments we use Eqs. (3.5 ) and 
the relation ( a , a2a2a , )  = 2g2, which express the fourth-or- 
der moments in terms of second-order moments. As a result 
we obtain the following simple result: 

where the second-order dispersion is given by Eq. ( 7 . 9 ) .  
The condition for realizing squeezed states in fourth 

order can be obtained by the method of Ref. 26. As applied to 
four-wave mixing, it takes the form ( < 3. The con- 
dition for squeezed states is met in fourth order together 
with the analogous condition ( ( AA, 1,) < 1 in second order. 

Let us discuss briefly the question of quantum fluctu- 
ations of the square of the amplitude ( 7 . 2 )  
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A(t) '=d1( t )+idz( t ) ,  &+=dl,  dzf=dz. (8.3) 

Direct calculation of the dispersion with allowance for the 
equations that relate the fourth- and second-order moments 
yields 

( (Ad,,2)2)=i12(l+ni+nz)+Q1,2r 

Ql,z=ilr(ni+nz)2*4 [(Re g)'-(Im g)']. (8.4) 

Using the commutator [AJ  + ] = 1 and Eq. (7.6) for 
T = 0, we easily derive uncertainty relations for the disper- 
sion of the amplitudes dl and d,: 

This leads to a condition for squeezed states of the squared 
amplitude: either Q, < 0 or Q, < 0. 

The authors thank A. P. Kazantsev, M. L. Ter-Mikael- 
yan, V. I. Man'ko, and V. I. Ritus for a discussion of the 
results. 

"Quasi-energies and QES of a composite "atom + monochromatic 
field" system were introduced in Ref. 14. 

2'The anomalous correlator of a radiation field in a scattering medium 
was introduced in Ref. 17. 

" The coefficients (4.1 )-(4.4) are more general than given in our preced- 
ing paperi2 and contain, in particular, the incoherent Rayleigh scatter- 
ing. 

4 '  A theory and experimental results on spectral-temporal correlations in 
resonance fluorescence are given in Refs. 23 and 24, respectively. 

"One way of verifying this is the following. Equations of type (2.15) for 
the mean values (af ( t ) ) ,  (a,+ ( t )a2( t ) )  do not contain free terms, and 
have consequently zero stationary solutions. 
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