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It is shown that fluctuations of the pump field when squeezed states are generated limits the 
degree of maximum squeezing and leads to the existence of an optimal length of the nonlinear 
medium. The role of group synchronism of the interacting wave is explained. 

I. INTRODUCTION where 6 = t - z /up and A(t)eiq"' are the values of the 

The greater part of the experimentsI4 devoted to gener- Parameters at = 

ation of squeezed states of an electromagnetic field is based The equations for the operators 2 and 2+ are then 

on parametric photon decay (PPD) in a nonlinear medium5 86 1 dL 
or on four-wave mixing.697 The low degree of squeezing at- - + - - = (0) e ' ~ ( @ ) & + ,  

dz  u d t  
(3a) 

tained in these experiments poses the problem of a consistent 
analysis of the causes that limit the degree of squeezing. The ail+ 1 a&+ - + -- = (0) e - i Q ( e ) & .  

influence exerted on the degree of squeezing by losses in the dz u dt 
radiation propagating in the medium and by spontaneous 
emission of particles of the medium in four-wave mixing was The pump field is assumed here to be a classical parameter. 

Fluctuations of one of the quadrature components of analyzed in Ref. 8. In the present paper we analyze the influ- 
ence exerted on the squeezing by the fluctuations of the am- the field 

plitude and phase of the electromagnetic wave used as the ,&&+ &+if 
pump in PDP, or the influence of the reference waves in four- 8.=-  or 8,=-  

2i 2 (4) 

wave mixing. 
are then suppressed in the squeezed state of the electromag- 

II. DEGENERATE PARAMETRIC PHOTON DECAY netic field. It is therefore expedient to continue the investiga- 
h * 

1. Basic equations tion by writing down equations for the operators X, and X, . 
We assume that a pump field of frequency 2" with flue- Since the ~ u m p j e l d  is a fu?ctio?of the argument 6, it fol- 

tuating amplitude and phase lows that X,  = X,  (6)  and X, = X, (6) ,  and we obtain from 
( 3 )  

is applied at the entrance ( z  = 0)  of a nonlinear nonresonant 
medium. A photon of frequency 2w decays in this medium 
into two equal photons of frequency w (secondary field). 
The equations describing the propagation of complex ampli- 
tudes of the pump fields Ep and of the secondary wave a ( t )  
take, when the phase-synchronism condition is met, the 
form9 

where up and u are the group velocities of the corresponding 
waves in the nonlinear medium, x = [ 2 ~ w / c n ( w )  ]X'2'; x"' 
is the material nonlinear-susceptibility coefficient, n ( w  ) is 
the linear part of the refractive index of the medium, and c is 
the speed of light in vacuum. Note that the plane-wave ap- 
proximation is used here and hereafter. 

To solve the problem we must derive equations for the 
secondary-wave photon creation and annihilation opera- 
tors. Assume that the secondary-wave intensity is low com- 
pared with the pump intensity during the entire squeezing 
process. We can then neglect the right-hand side of Eq. ( la) .  
Its solution satisfying the boundary condition is 

dX, x 
-=- A (0) [ X ,  cos cp (0) + X ,  sin cp (0) I ,  

d0 v 

ax, 3C -=-- 
do 

v A (0) [X, cos cp (0) -d, sin cp (13) 1. (5b) 

Equations (5)  have for a constant phase the solution 

8. (0, q)='/z[X,o(q) (I-cos cp) 

-R,o(q)sincpleV+'lz[Xso(q) (i+cos cp) 

+dc0(q)sin rpl cL, (6a) 

X, (0, q)='/2[Xco(?) (1+cos rp)-8.0(r)sin cpleA 

+'/2[XCO(rl) (1-cos cp) 

h h 

where X ,  and X,  are the values of the quadrature-compo- 
nent operators at z  = 0, and 

We introduce the definitions 

A X , = [ < X . ~ > - ( ~ , ) ~ ] ' ~ ,  A x ~ + ( ~ , Z > - ( ~ ~ ) ~ ] ' " .  ( 7 )  

We assume the field to be normalized in such a way that the 
uncertainty relation takes the form 
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If q, = 0, it follows from (6)  that 

Assume that the secondary radiation evolves from vacuum 
fluctuations, or that a wave of frequency w in a coherent state 
is applied at the entrance into a nonlinear system. We have 
then AX, = AX, = 1/2 and as the process evolves in the 
nonlinear medium the fluctuations of one of the quadrature 
components (AX, in our case) becomes smaller than the 
vacuum fluctuations, and a squeezed state of the electromag- 
netic field sets in. The degree Sq of the squeezing is given by 
the simple equation 

The fluctuations of the second component grow in this case, 
so that the condition 

remains satisfied. 
If q, #O, the fluctuations ultimately increase exponen- 

tially in both components [see (6) 1. This does not mean, 
however, that no squeezing takes place. The coordinate 
frame in which the squeezing takes place is simply rotated 
through an angle IC, = q, /2 relative to the initial one. In fact, 
at q, = const the transformation 

reduces Eqs. (5 )  to 

These equations coincide with (5)  if q, = 0. The constant 
phase at the entrance into the nonlinear medium determines 
only the orientation of the axes of the squeezed state, but 
does not influence the squeezing process. The situation 
changes radically if q, is a time dependent random quantity. 

2. Phase fluctuation. Role of group synchronism 

We assume that the pump fluctuations are set only by 
the boundary conditions-there are no fluctuation sources 
in the medium itself. In this case the phase at each point of 
the pump-wave profile is constant during the wave propaga- 
tion in the nonlinear medium. In the language of mathemat- 
ics, the phase is constant on the characteristic of the pump 
wave 8 = const. Therefore, if the group velocities of the 
waves are equal, the i~teraction of the secondary wave with 
the pump wave at each point of the latter takes place at a 
constant phase, even though the phase varies randomly from 
point to point. As shown above, a constant phase does not 
limit the degree of squeezing, and determines only the orien- 
tation of the axis along which the squeezing takes place. The 
phase fluctuations at the entrance into the nonlinear medi- 
um cause fluctuations of the squeezing direction, but should 
not influence the degree of squeezing under group synchro- 
nism conditions. 

If, however, the group velocities differ, the secondary 
wave either lags or leads the pump wave. In either case, the 
secondary wave goes over from one characteristic of the 

pump wave to another, and the wave interaction takes place 
under conditions in which the phase fluctuates at each point 
of the secondary wave. This prevents establishment of even a 
local squeezing direction, thereby limiting in final analysis 
the degree of squeezing. The calculation below confirms 
these qualitative considerations. 

We assume in the calculation that the amplitude is con- 
stant: A(@ = A,. With an aim of obtaining substantial de- 
grees of squeezing, we assume a small change Aq, of the 
pump-wave phase during the time of passage of the wave 
through the nonlinear medium, Aq, ( 1.  Equations (5) can 
then be solved by pert~rbatio~theory. The orientation of the 
coordinate frame in X, and X, are defined is chosen such 
that at the entrance into the nonlinear medium 

cp ( t ,  z=O) =O. (13) 

We have then a first-order approximation 

where Aq,(6,17) = ~ ( 6 )  - ~ ( 1 7 ) ~  and 

3. Case of diffusing phase 

Further analysis requires assumptions concerning the 
character of the phase fluctuations. Assume that ~ ( t )  is a 
Wiener diffusion process, so that 

Then, taking ( 13) into account, 

It is known9 that in the absence of the amplitude fluctuations 
the diffusion coefficient Afl of the phase of an electromag- 
netic wave is equal to the width of the intensity spectrum of 
this wave. 

Taking ( 16) into account, we obtain from ( 15) 

where 

1% the cakuktion of (17) it was taken into account that 
(X,X, + X,X,  ) = 0, and terms of order unity compared 
with ec were neglected. 

It follows from (17) that the degree of squeezing 
reaches a maximum at a point z, defined by the relation 
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The maximum squeezing Sq, turns out to be connected with 
the parameters of the nonlinear medium and of the pump: 

According to (19), large degrees of squeezing require 
large values of q. Thus, to reach a squeezing of the order of 10 
we need q=: lo4. Numerical analysis shows that at large q the 
solution of (18) can be approximated by the relation 

Equation ( 19) takes then the more elegant form 

and the accuracy of this approximation for q> lo4 is better 
than 10%. 

In a nonlinear medium, the path length I,,, 
= &/2 x A, defined by Eqs. ( 18) and (20) is optimal, since 
further development of the process leads to degradation of 
the squeezed state. For example, doubling the path length in 
a nonlinear medium compared with the optimal at q) 1 in- 
creases the fluctuations in the squeezed component back to 
the initial values AX,. At half I,,, we have Sq(l,,,/ 
2) Zsq, 'I2. 

It is more convenient in experiment to choose not the 
optimal path length in the nonlinear medium, but the opti- 
mal pump-source intensity. Equation (17) can be tested for 
maximum squeezing as a function of the pump intensity at a 
given path length I in a nonlinear medium. The result is 

( A  lop, = (In y ) 2 / 4 ~ 2 1 2 ,  

S q m 4 y - l  ln 7 ~ 1 ,  

where y = 4/vARI. It should be noted that when I is in- 
creased the maximum degree of squeezing decreases. There- 
fore, if the pump supply has power to spare, a short path in a 
nonlinear medium is preferable. 

Since the degree of squeezing enters in ( 19') raised to 
the fourth power, a relatively small increase of the squeezing 
must be "paid for" by an appreciable increase of q. Evident- 
ly, in view of the parameter q, the degree of squeezing is 
strongly influenced by the difference between the group ve- 
locities of the pump and of the secondary wave, this differ- 
ence being smaller the larger the degree of squeezing for the 
same pump-wave intensity and spectrum width. This con- 
clusion agrees fully with the qualitative reasoning above. 

For a specific nonlinear material, one can seek a polar- 
ization direction and a wavelength for which the phase and 
group velocities of the pump and secondary waves are simul- 
taneously equal. 

The possibility of simultaneously meeting the phase and 
group synchronism conditions for PPD was investigated in 
Ref. 10. It was found, in particular, that at a pump wave- 
length ~ 0 . 5 3  pm there exists in the nonlinear crystal LiIO, 
a direction in which the conditions of group and phase syn- 
chronism are met simultaneously. However, an analysis of 
the data of Ref. 1 1 for nonlinear optical materials shows that 
the possibilities of ensuring the double synchronism are 
quite limited. The most direct way ofobtaining a high degree 
of squeezing is therefore the use of pump with highly mono- 
chromatic radiation. The required degree of monochromati- 

city can be estimated for individual nonlinear media. Exam- 
ples of such estimates are given below. 

4. Stationary random phase 

Assume now that the pump-radiation phase is deter- 
mined by a stationary random process with a Lorentz spec- 
trum of half-width An,. According to the boundary condi- 
tion (13), the phase at the entrance into the nonlinear 
medium is certainly zero. This means that in our chosen 
coordinate frame, in accord with the assumptions made, 
Ap(f3,q) in each cross section z is a stationary process, but 
with dependent on z. The dependence should be such 
that Ap ' ( 0 , ~ )  = 0 forz = 0 and Ap 2(f3,q) - ?for large 
z. This condition can be met by choosing for the correlation 
function of Ap the expression: 

where 

Arp2(8-q) =rp2(1-exp [-AQ,(-8-q) 1). (23) 

Substituting (22) in ( 15) we obtain by obvious trans- 
formations 

where q = 2xAO/vAflV. With this equation we easily calcu- 
late the optimal length of the nonlinear medium and the 
maximum attainable degree of squeezing. We have 

The choice of the coordinate frame in which = 0 
at the entry into the nonliner medium is neither formal nor 
trivial. Not formal, because it is on the basis of this frame 
that the experimenter detects the squeezing. Not trivial, be- 
cause the frame must be oriented in step with the variation of 
the pump phase p ( t ) .  Squeezed states are usually revealed 
by homodyning the detected signal,'s2 i.e., by mixing it non- 
linearly with a reference oscillation of the same frequency to 
separate the slowly varying signal amplitude. In the homo- 
dyne system the coordinate frame is thus tied to the phase of 
the reference oscillation. This means that the reference-os- 
cillation phase must be a random process strictly identical to 
the process p(t)/2. This can be done if the fluctuations of 
the pump-wave parameters are strictly correlated with the 
fluctuations of the parameters of the reference oscillations. 
In Refs. 1 and 2, for example, the pump and reference oscil- 
lations were produced by the same generator. If, on the other 
hand, the pump phase fluctuations are not correlated with 
those of the reference phase, it is impossible to meet condi- 
tion ( 13) reliably in any point of space. Equation (23) must 
then be replaced by the stationary correlation function 
-- - 
A c p ( 0 ' ) A q ( 0 " ) = q 2  exp(-AO,(0'-@''I). 

This replacement yields for the maximum degree of 
squeezing 
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The most remarkable feature of this result is that the squeez- 
ing has a finite limit even as q -+ m . Since q- Y- I ,  the squeez- 
ing remains finite also when the group velocities are 
matched. 

A wave with a random but small stationary phase can be 
represented by a sum of a monochromatic wave of amplitude 
A, and a random wave with zero mean amplitude and uni- 
form phase distribution in the interval [ - a , ~ ]  .9 If the ran- 
dom-wave field has a Gaussian distribution with variance a, 
the variance of the combined-wave phase is given by 

and Eq. (26) takes the form 

5. Amplitude fluctuations 

We consider now the influence of amplitude fluctu- 
ations, assuming the phase to be constant. In this 
case the squeezing is described by Eqs. ( 12). Assume that 
A (0)  = A, + a (0),  where A, is the average pump-wave am- 
plitude, and a ( 0 )  is its fluctuating part and has a Gaussian 
probability distribution. By simple calculations we can ob- 
tain then from ( 12 ) 

The succeeding calculation depends on the assumed spectral 
characteristics of the random quantity a ( @ .  Let a ( 0 )  have 
a Lorentz spectrum of width Afl, . Then 

U ( B ' ) U ( O " ) = ~ ~ X ~ ( - A Q ~ [ ~ ' - ~ "  I), (30) 

It follows from (28) and (31) that for P-vA,A~,/ 
x 2 > 1 the squeezing is unlimited if the length of the non- 
linear medium is unbounded. If, however, P < 1, the degree 
of squeezing is limited to 

- 
xA 0 xZa2 Sq, = exp - - ------ { v A v Z  AQA2 

(1-b)ln- }, ,321 
1-P 

which is reached at a length 
1 I =- 

1 
opt ln-. 

YAQA l-P (33 

The length determined by Eq. (33) is the optimum, and 
when increased above I,,, the degree of squeezing at the exit 
is smaller than Sq, . 

In group synchronism (Y-0) the amplitude fluctu- 
ations do not limit the degree of squeezing, for (M)' -0 in 
this case. In general, amplitude fluctuations are not as dan- 
gerous as phase fluctuations. If they are small enough, their 
presence only slows the squeezing down somewhat. In the 
presence of pump amplitude fluctuations, however, notwith- 
standing the squeezing of one of the quadrature components, 
the product AX, AX, increases: 

-. 
AX.AX,='/, exp [ (Ah) ' ] .  (34) 

6. Numerical estimates 

We present now concrete numerical examples. We con- 
sider PDP in a nonlinear medium of the "banana" type; the 
pump and parametric-signal wavelengths are 530 nm and 
1.06 pm, respectively; x"' = 1 . 3 2 ~  lo-'' m/V = 3X 10W8 
CGS units. The difference of the group velocities for these 
two wavelengths can be calculated by using the dependence 
of the "banana" nonlinear-susceptibility tensor on the wave- 
length." It turns out that cv = 0.16 in the case of interest to 
us. Therefore, according to ( 19'), to obtain a tenfold squeez- 
ing with the aid of a "banana," the connection between the 
pump intensity I and the width of the spectrum should be 
A 0  z 103Z "' ( A n  in Hz and Zin W/cm2). A pump of inten- 
sity I z 1 0 3  W/cm2 must be monochromatic, AR/ 

lo-". An estimate based on (20) of the optimal path 
length in the nonlinear medium with the same parameters 
leads to a value I,,, =: 10' cm. Clearly, to set up a real experi- 
ment we must either have a pump intensity substantially 
higher than lo3 W/cm2 or employ a cavity in which the pho- 
ton mean free path in the nonlinear medium is much longer 
than the medium. 

111. FEATURES OF SQUEEZING IN DEGENERATE FOUR- 
WAVE MIXING 

Two possible experimental setups are discussed in ex- 
periment: forward scattering6 and backward scattering.' 
What is squeezed in both cases is a superposition of waves 
scattered in four-wave mixing. The forward-scattering 
scheme is considered preferable from the standpoint of the 
effect of the losses.' A wave in a squeezed state is obtained by 
merging the scattered 

By using an anisotropic nonliner medium, however, it is 
possible to generate scattered waves that are parallel to one 
another (see Fjg. 1 ), by automatically effecting their merg- 
ing." We shall use this scheme as the basis of the analysis 
that follows. 

The equations for the complex amplitudes E, in four- 
wave forward mixing take under phase-synchronism condi- 
tions the form9 

In these equationsP= 2~0x '~ ' / cn  (a) ,x '~ '  is the third-order 
nonlinear susceptibility coefficient of the substance, u and u, 
are the group velocities of the scattered and primary waves, 

FIG. 1 .  Four-wave mixing in a nonlinear medium in the case of collinear 
scattered waves, E , ,  E,-primary waves. E,, E4-scattered waves. 
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and z,,, are the coordinates in the propagation direction of 
the corresponding waves-the "intrinsic" coordinates. As 
before, attenuation of the primary waves in the course of 
scattering is neglected, as indicated by the zero right-hand 
side of Eq. (35c). 

The solutions of Eqs. (35c) can be written in the general 
form 

At the point z, the waves E,,, interact with primary waves 
for which z,,, = z cos $. Therefore 

As already noted, what is squeezed in four-wave mixing 
is not each scattered wave but their superposition6.': 

It is therefore more convenient to analyze the equations for 
the operators 6 and b + 

in which A,  and A, are the amplitudes of the primary waves, 
p, and p, are their phases, 

This equation is mathematically equivalent to Eq. (3) .  
The results of Sec. I1 can therefore be transformed into the 
results from Eq. (38) by making the substitutions 

and by taking AR, AR,, and 7 to mean the characteristics 
of the combined random process p( t) = p, ( t )  + p,(t). 

One of the features of four-wave mixing is the possibil- 
ity of transforming amplitude fluctuations into phase fluctu- 
ations. The point is that in a cubic nonlinear medium the 
wave vector of the primary waves depends on their ampli- 
tudes', 

where k is the wave vector in the limit of infinitely small 

reference-wave intensities. [We have neglected in (39) the 
influence of the angle between the wave vectors of the pri- 
mary waves, assuming them to be small.] For fluctuating 
amplitudes, the phase-synchronism condition 

can be met only in the mean, so that the equations describing 
the compression process contain a fluctuating pump phase 

AI ,  and AI, are the fluctuating intensity terms of the pri- 
mary waves ( hl,= X&=O).  

If AI ,,, is regarded as a stationary S-correlated process, 
then p ( 8 , ~ )  is a diffusion process with a diffusion coefficient 
AR = 4.5?rB2(~,  + G,), where G ,,, are the spectral densi- 
ties of the amplitude  fluctuation^.^ In this case the computa- 
tional part of the problem is similar to that considered in Sec. 
11.3. 

Consideration of four-wave mixing in resonant isotrop- 
ic media requires allowance for the inevitable losses to reso- 
nance absorption, and also for the influence of spontaneous 
emission of the nonlinear medium. In isotropic media it is 
impossible to satisfy the phase synchronism condition at a 
zero angle between the scattered waves. All this calls for a 
special analysis. 
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